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Abstract

Clickbait posts are a common problem on so-
cial media platforms, as they often deceive
users by providing misleading or sensational
headlines that do not match the content of the
linked web page. The aim of this study is to cre-
ate a technique for identifying the specific type
of suitable spoiler - be it a phrase, a passage, or
a multipart spoiler - needed to neutralize click-
bait posts. This is achieved by developing a
machine learning classifier analyzing both the
clickbait post and the linked web page. Mod-
ern approaches for constructing a text classifier
usually rely on fine-tuning a transformer-based
model pre-trained on large unsupervised cor-
pora. However, recent advances in the devel-
opment of large-scale language models have
led to the emergence of a new transfer learn-
ing paradigm based on prompt engineering. In
this work, we study these two transfer learning
techniques and compare their effectiveness for
clickbait spoiler-type detection task. Our ex-
perimental results show that for this task, using
the standard fine-tuning method gives better re-
sults than using prompting. The best model can
achieve a similar performance to that presented
by Hagen et al. (2022).

1 Introduction

1.1 Problem description
Clickbaits are social media posts designed to grab
the reader’s attention in order to visit a linked web
page. As they are used by publishers to increase
the number of views, clickbait posts are becoming
more and more common in the webspace.

Even though some clickbait posts are harmless,
a significant amount of them is misleading and
help spread fake news. Therefore, some research
works have been devoted to clickbait detection
problem (Potthast et al., 2016), leading e.g. to the
proposal of an additional plug-in for the browser
to alert the user of a clickbait header (Chakraborty
et al., 2016). However, clickbait detection alone is

not enough, as it only identifies the problem, but
does not solve it.

Therefore, Hagen et al. (2022) proposed using
automatically generated spoilers to overcome the
issue of clickbait posts. Spoilers are short texts that
provide the most necessary information from the
web page linked to the clickbait, completely neu-
tralizing the clickbait post. Three types of spoilers
are put forward (Hagen et al., 2022):

• phrase – a single word or phrase from the
linked page

• passage – one or a few sentences from the
linked page

• multipart – a few non-consecutive phrases or
passages extracted from the linked page

For instance, for a given clickbait post ”Obama
Admin Just Outlawed Wildly Popular Product
Found in Millions of Bathrooms”, the correspond-
ing spoiler is a phrase ”antibacterial soaps” con-
structed from the content of the linked page.

The current paper tackles the first step in design-
ing a successful spoiler generator, i.e. it concerns
spoiler-type classification for the given clickbait
post and the linked page. The purpose is to de-
termine the type of spoiler needed to completely
neutralize a clickbait post.

1.2 The explored methods

In this paper, the task of identifying the type of
spoiler needed to neutralize a clickbait is treated
as a text classification task i.e. we predict the type
of needed spoiler based on the text of a social me-
dia post and the textual content of the linked web
page. The methods for text classification range
from classical bag-of-word approaches to more re-
cent deep-learning ones. In particular, for many
text classification tasks the state-of-the-art results
are obtained by means of transfer learning from
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self-supervised models pre-trained on large cor-
pora.

A transfer learning method that is currently gain-
ing popularity is prompting (Gao et al., 2020). It
is usually applied within the few-shot learning
paradigm and involves transforming a task (such
as text classification) into a text generation task.
A selected Large Language Model (LLM) such as
GPT-3 (Brown et al., 2020), BLOOM (Scao et al.,
2022) or LLaMA (Touvron et al., 2023), is queried
with a human-designed prompt that introduces sev-
eral examples into the model and redesigns a task
to a text completion. Therefore, transfer learning
through prompting does not require model fine-
tuning or having a large supervised dataset and
only a human-designed prompt.

Therefore, we decided to verify the usefulness
of prompting to the clickbait spoiler-type classifi-
cation problem. Apart from designing and testing
the performance of prompts for the task, we also
explored the possibility of generating spoilers by
a LLM and using it as an additional input to the
classifier. More concretely, LLM was used to gen-
erate spoilers for all the examples in the validation
set1 basing on a prompt with few examples taken
from the training set2. Later, the final training set
for the classifier was constructed by combining the
examples with original spoilers and examples with
artificially generated spoilers. Finally, a standard
model fine-tuning was performed on the such cre-
ated training dataset and the effectiveness of the
model was tested only on the test data with artifi-
cially generated spoilers.

The last classification method explored in this pa-
per is the standard model fine-tuning. Fine-tuning a
model for a classification task is a process of adapt-
ing a pre-trained language model to a specific text
classification problem (Howard and Ruder, 2018)
by performing several updates of the model weights
through e.g. several epochs of standard backpropa-
gation on supervised data. Such a process allows
leveraging the general linguistic knowledge of the
pre-trained model to construct a better model for a
given task.

The performed experiments demonstrate that the
last method i.e. classical model fine-tuning obtains
superior classification performance in comparison
to approaches based on prompting.

1validation.jsonl file taken from Zenodo.org
2train.jsonl file taken from Zenodo.org

2 Background

2.1 Problem definition

The main aim of this work is to construct a ma-
chine learning model to classify the type of spoiler
needed to neutralize a given clickbait post. Three
spoiler types are considered: phrase, passage and
multipart spoilers. Even though for some types of
clickbait posts, it is easy to specify the appropri-
ate type of spoiler, in general, the task poses many
challenges due to the diversity of language itself
and the various topics that the posts may cover.

For instance, for the following post ”NASA sets
date for full recovery of ozone hole” it is relatively
easy to determine what the spoiler should look like
since some specific date should be expected. On
the other hand, for many clickbait posts, it is much
more challenging to determine the suitable spoiler
type. Let us consider the ”Should you drink Red
Wine?” clickbait post. Such a question could be an-
swered shortly (e.g. ”yes”) without any justification
or can be neutralized by a short passage containing
some reasons to support the claim. Neutralization
of this clickbait can even require a multipart spoiler
that lists several arguments, both supporting and
opposing the claim.

2.2 Related works

To the best of our knowledge, only the work of
Hagen et al. (2022) have so far addressed the
problem of the spoiler type detection. The authors
employed both classical machine learning methods
such as logistic regression and neural models such
as transformer networks to tackle this task. They
also explored the possibilities of using transfer
learning techniques, but their work was limited
only to the classical fine-tuning of Large Language
Models. In this work, we also used a fine-tuned
RoBERTa model to construct the classifier, but
also explored the possibilities of prompt-based
transfer learning.

2.3 Prompt engineering

Prompt engineering is the process of designing and
crafting high-quality prompts for language mod-
els. The goal of prompt engineering is to optimize
the performance of language models on specific
tasks, by providing tailored prompts that effectively
guide the model toward the desired outputs 3. This

3Text generated by ChatGPT, OpenAI, ChatGPT
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makes it possible to use previously trained Large
Language Models without fine-tuning them and to
extract the knowledge gained by the model during
pretraining. Prompts for few-shot learning are typi-
cally constructed based on the manually designed
textual template filled with the example and the ex-
pected answer. The test example is concatenated to
such prompt also by filling the same template with
the example, but without providing the answer. The
task of the model is to complete the missing part
of such prepared text. Currently, one of the most
popular tools that can be queried using prompts is
ChatGPT which partly created this subsection.

3 Prompting engineering for spoiler-type
classification

3.1 Prompts for classification

Prompts needed for the classification task should
clearly instruct the LLM that its task is to return
one of the specified classes. In this work we used
the following prompt structure for the classification
task: ”Question {clickbait post} Type of answer
{spoiler type}”. We tested this prompt template
in a few-shot learning fashion by concatenating
corresponding texts for several training examples
for each class. We consider prompts with 2, 5, 10 or
15 examples for each class. Prediction of the new
class consisted of completing the text ”Question
{clickbait post} Type of answer”.

3.2 Prompts for data augmentation

Having a spoiler before predicting its type would
obviously be very helpful for classification perfor-
mance. One idea could be to use spoilers from the
dataset, but they are not available during the test-
ing phase, as the whole task is to facilitate easier
spoiler generation. Therefore, we used LLMs to
generate (noisy) spoilers for each clickbait post and
used them as additional input to the classifier.

Prompt structure for spoiler generation has the
following form: ”Question {clickbait post} Con-
text {main content of linked web page} Answer
{spoiler}”. Due to the varying number of charac-
ters (sometimes very large) in linked web pages,
their content was limited to the first 2000 characters.
In this setting, few-shot learning with 2 examples
was used. Generation of new spoiler consisted of
completing the text ”Question {clickbait post} Con-
text {main content of linked web page} Answer”.
Spoilers generated in this way were added to the
corresponding clickbait posts, constructing a new

training set for fine-tuning or training a classifier.
The dataset contains training examples in the form
of ”Clickbait {clickbait post} Spoiler {spoiler}”
texts together with assigned gold-standard class
(i.e., spoiler type).

4 Spoiler-type classification using
fine-tuning

As a baseline, standard fine-tuning of the pretrained
MLM model was used. Fine-tuning typically re-
quires a larger training dataset (in comparison to
few-shots only), but also tends to be a more robust
approach, since it allows the model to learn from
many examples and adapt to the task at hand.

4.1 Structure of training examples
To construct training examples for MLM, we con-
verted each training instance to a textual form.
Each example looks as follows ”Clickbait {click-
bait post} Article {main content of linked web
page}’, where the content of a linked web page was
limited to its first 2000 characters. This enabled
faster training of the model and reduced memory
requirements.

5 Experimental evaluation

Due to the fact that the test dataset for subtask 1
at SemEval 2023 Task 5 (Fröbe et al., 2023a) has
not been made publicly available, the following
experiments use the provided validation examples
as the test dataset and as validation dataset a part
of training data was used.

As an LLM, we used BLOOM (Scao et al., 2022)
since it is:

• open-source

• trained to complete text from a prompt on
vast amounts of text data using industrial-scale
computational resources

• can be used to perform text tasks it hasn’t been
explicitly trained for, by casting them as text
generation tasks

For standard fine-tuning, MLM models:
RoBERTa (Liu et al., 2019), DistilBERT (Sanh
et al., 2019), and ALBERT (Lan et al., 2019) with
a softmax layer attached to the first token were
used as classifiers. Each model was fine-tuned
with 7 learning epochs only, since it was observed
that increasing the number of epochs did not result
in higher performance on the validation set. The
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transformers4 library provided by HuggingFace
company was used to implement the model.

5.1 Performed experiments

In order to determine the most effective method
for spoiler-type classification, three different ex-
periments were conducted. For each experiment,
balanced accuracy (Acc.) over all three spoiler
types, as well as precision (Pr.), recall (Rec.), and
F1 score (F1) for each class separately were re-
ported. For model fine-tuning performed in 5.3
and 5.4 the following hyperparameters were used:
learning rate (2e-5), batch size (8 in 5.3 and 6 in
5.4), number of training epochs (7), and weight
decay (10).

5.2 Spoiler-type classification using LLM

In this experiment, the spoiler-type classifica-
tion task was converted to a text generation task,
which was then to be solved by the selected LLM
(BLOOM). The method of conversion was pre-
sented in 3.1. The experiment checked a different
number of training examples for each class. The
passing of 2, 5, 10 and 15 examples per class was
tested.
The method used does not need a validation dataset
(model fine-tuning is not performed). According to
the 3.1 structure, the training examples were sen-
tences built on the basis of a set of clickbait posts,
which included i.e. five observations from each
class (the class is the spoiler type). The source
of training data was a file train.jsonl1 and test ex-
amples were all observations from the file valida-
tion.jsonl1.

Table 1: The classification performance of prompting
BLOOM on spoiler type detection task. The results
are computed on 800 test posts created from valida-
tion.jsonl, where n is the number of examples for each
class.

n Acc. Phrase Passage Multi

Pr. Rec. F1 Pr. Rec. F1 Pr. Rec. F1

2 0.34 0.43 0.81 0.56 0.47 0.21 0.29 0.35 0.08 0.13
5 0.40 0.44 0.28 0.34 0.44 0.64 0.31 0.27 0.29 0.11
10 0.37 0.43 0.60 0.50 0.00 0.00 0.00 0.22 0.52 0.31
15 0.34 0.43 0.49 0.46 0.44 0.14 0.21 0.18 0.41 0.25

The results in table 1 show that an increase in the
number of training examples does not necessarily
increase the effectiveness of the model. Increasing

4https://huggingface.co/docs/transformers/
index

the number of examples, and thus the length of the
input example causes an increase of inference time.

5.3 Spoiler-type classification using generated
spoilers and model fine-tuning

Due to the diversity of websites regarding volume,
two training examples were selected for each class
from the train.jsonl1. A spoiler was then generated
for each example from the file validation.jsonl1

using BLOOM and then use instead of the spoiler
included in the file. Next fine-tuning of the selected
model was performed for which the training and
validation datasets contained a total of 2,500 exam-
ples with spoilers included in train.jsonl1 and 300
examples with generated spoilers (the datasets were
divided in a ratio of 80:20). The test dataset con-
sisted only of 500 examples with generated spoilers.
The reason why testing is used only 500 examples
is that 300 examples (with generated spoilers) are
used for training. This is because the fine-tuning
model should see in training some of the samples
with generated spoilers, not only with spoilers from
the file.

In this experiment, spoilers were generated
based on the structure shown in 3.2, and then using
examples with original and generated spoilers, fine-
tuning of the model was performed with training
examples created based on the scheme shown on
the end of the section 3.2.

Table 2: The classification performance of fine-tuned
model with artificially generated spoilers by prompting.
The results are computed on 500 test posts created from
validation.jsonl (training: 2240; validation: 560).

Model
name Acc. Phrase Passage Multi

Pr. Rec. F1 Pr. Rec. F1 Pr. Rec. F1

DistilBERT 0.37 0.46 0.41 0.46 0.59 0.51 0.32 0.17 0.22 0.18
RoBERTa 0.45 0.49 0.47 0.48 0.54 0.67 0.55 0.27 0.15 0.14
ALBERT 0.38 0.46 0.41 0.43 0.46 0.59 0.51 0.32 0.17 0.22

The results presented in table 2 indicate that us-
ing the fine-tuning of the model together with the
generated spoilers (in the case of RoBERTa) a bet-
ter result is obtained than using only the prompting
alone. Obtaining better results in this case, how-
ever, is biased with an increase in computation time.
Generating spoilers alone (even with only 2 train-
ing examples per class) takes much more time than
querying the model based only on clickbait post
and attached spoiler type.

Unfortunately in more cases generated spoilers
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are not good. This seems they were not such helpful
as they could be. Generated spoilers with corre-
spondent clickbait posts and original spoilers are
available at the link generated spoilers.

5.4 Spoiler-type classification using model
fine-tuning

In the last experiment, only the fine-tuning of the
model was checked. The input data was prepared
as described in 4.1. As model input was used
the text of clickbait posts and the main content
of the connected article. Training and validation
datasets were created based on train.jsonl2 file and
test dataset was created based on validation.jsonl1.

Table 3: The classification performance of fine-tuned
models on spoiler type classification on 800 test posts
created from validation.jsonl (training: 2560; validation:
640).

Model
name Acc. Phrase Passage Multi

Pr. Rec. F1 Pr. Rec. F1 Pr. Rec. F1

DistilBERT 0.65 0.70 0.61 0.66 0.70 0.61 0.66 0.64 0.60 0.62
RoBERTa 0.73 0.75 0.71 0.73 0.70 0.77 0.73 0.76 0.70 0.73
ALBERT 0.66 0.68 0.64 0.66 0.65 0.70 0.67 0.65 0.64 0.64

Comparing the results of this experiment (table
3) with those in table 1 and table 2 shows that the
current results are significantly better.

5.5 Comparison of results
The results obtained by model fine-tuning definitely
outperform the other two approaches. For each of
the tested models, a clear increase in accuracy can
be observed. Ultimately, the best model turns out to
be RoBERTa. Based on the presented experiments,
RoBERTa was used as the final model for subtask 1
at SemEval 2023 Task 5. The above observations
may be due to several factors. One of them may
be the improper structure of the prompts. It is
difficult to explicitly measure the effectiveness and
matching of a manually created prompt to a given
dataset and Large Language Model.

6 Results on the SemEval-2023 test set

This section will present the model results obtained
for the test dataset for subtask 1 at SemEval 2023
Task 5. The results were generated using TIRA
(Fröbe et al., 2023b).
The results obtained on the test dataset for the se-
lected model are presented in table 4. Comparing
the results presented in this work with those in the

paper Hagen et al. (2022) shows a slightly worse re-
sult for the same model (RoBERTa, 71.57%). This
may be due to a different training data structure,
limited computing resources, or different prepro-
cessing methods. In paper Hagen et al. (2022), it
was not precisely described for which values of
hyperparameters the best model was obtained. Cur-
rently, the reproducibility of neural models is a
fairly common problem. The problem of repro-
ducibility of neural network models is the difficulty
in reproducing the same model and results using
the same code and data. This is due to the many
sources of variation that can occur in the training
process, such as optimization algorithms, as well
as differences in hardware and software configura-
tions.

Table 4: Overview of the effectiveness in spoiler type
prediction (subtask 1 at SemEval 2023 Task 5) measured
as balanced accuracy (Acc.) over all three spoiler types
and precision (Pr.), recall (Rec.), and F1 score (F1) for
a phrase, passage, and multi spoilers on the test dataset.

Acc. Phrase Passage Multi

Pr. Rec. F1 Pr. Rec. F1 Pr. Rec. F1

0.70 0.71 0.78 0.75 0.73 0.72 0.72 0.78 0.60 0.68

7 Summary

Prompting is certainly a very useful technique that
allows you to query the model even with a small
training dataset. However, the presented exper-
iments obtained worse results than the standard
fine-tuning method. Keep in mind that creating
new prompts is not trivial and sometimes even re-
quires thorough domain knowledge. One solution
is the automatic creation of prompts presented in
the paper Shin et al. (2020). It has not been tested
as part of this work and maybe a potential study in
the future.
Another possibility would be to check out another
model based on the Transformer architecture. Ha-
gen et al. (2022) also checked the DeBERTa model,
but it was not verified in this work due to limited
computational resources.

The source code and the best model can be ac-
cessed via the links given in the appendix.
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A Appendix

Our implementation can be found at
�https://github.com/mateusz-wozny/clickbait-
spoiling-alexander-knox.
The model can be downloaded from
https://huggingface.co/MateuszW/alexander-
knox-classification
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