@inproceedings{petersen-etal-2023-hhuedos,
title = "hhu{EDOS} at {S}em{E}val-2023 Task 10: Explainable Detection of Online Sexism ({EDOS}) Binary Sexism Detection (Subtask A)",
author = "Petersen, Wiebke and
Tran, Diem-Ly and
Wroblewitz, Marion",
editor = {Ojha, Atul Kr. and
Do{\u{g}}ru{\"o}z, A. Seza and
Da San Martino, Giovanni and
Tayyar Madabushi, Harish and
Kumar, Ritesh and
Sartori, Elisa},
booktitle = "Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.semeval-1.203",
doi = "10.18653/v1/2023.semeval-1.203",
pages = "1476--1482",
abstract = "In this paper, we describe SemEval-2023 Task 10, a shared task on detecting and predicting sexist language. The dataset consists of labeled sexist and non-sexist data targeted towards women acquired from both Reddit and Gab. We present and compare several approaches we experimented with and our final submitted model. Additional error analysis is given to recognize challenges we dealt with in our process. A total of 84 teams participated. Our model ranks 55th overall in Subtask A of the shared task.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="petersen-etal-2023-hhuedos">
<titleInfo>
<title>hhuEDOS at SemEval-2023 Task 10: Explainable Detection of Online Sexism (EDOS) Binary Sexism Detection (Subtask A)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wiebke</namePart>
<namePart type="family">Petersen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Diem-Ly</namePart>
<namePart type="family">Tran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marion</namePart>
<namePart type="family">Wroblewitz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Atul</namePart>
<namePart type="given">Kr.</namePart>
<namePart type="family">Ojha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="given">Seza</namePart>
<namePart type="family">Doğruöz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giovanni</namePart>
<namePart type="family">Da San Martino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Harish</namePart>
<namePart type="family">Tayyar Madabushi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ritesh</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elisa</namePart>
<namePart type="family">Sartori</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we describe SemEval-2023 Task 10, a shared task on detecting and predicting sexist language. The dataset consists of labeled sexist and non-sexist data targeted towards women acquired from both Reddit and Gab. We present and compare several approaches we experimented with and our final submitted model. Additional error analysis is given to recognize challenges we dealt with in our process. A total of 84 teams participated. Our model ranks 55th overall in Subtask A of the shared task.</abstract>
<identifier type="citekey">petersen-etal-2023-hhuedos</identifier>
<identifier type="doi">10.18653/v1/2023.semeval-1.203</identifier>
<location>
<url>https://aclanthology.org/2023.semeval-1.203</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>1476</start>
<end>1482</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T hhuEDOS at SemEval-2023 Task 10: Explainable Detection of Online Sexism (EDOS) Binary Sexism Detection (Subtask A)
%A Petersen, Wiebke
%A Tran, Diem-Ly
%A Wroblewitz, Marion
%Y Ojha, Atul Kr.
%Y Doğruöz, A. Seza
%Y Da San Martino, Giovanni
%Y Tayyar Madabushi, Harish
%Y Kumar, Ritesh
%Y Sartori, Elisa
%S Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F petersen-etal-2023-hhuedos
%X In this paper, we describe SemEval-2023 Task 10, a shared task on detecting and predicting sexist language. The dataset consists of labeled sexist and non-sexist data targeted towards women acquired from both Reddit and Gab. We present and compare several approaches we experimented with and our final submitted model. Additional error analysis is given to recognize challenges we dealt with in our process. A total of 84 teams participated. Our model ranks 55th overall in Subtask A of the shared task.
%R 10.18653/v1/2023.semeval-1.203
%U https://aclanthology.org/2023.semeval-1.203
%U https://doi.org/10.18653/v1/2023.semeval-1.203
%P 1476-1482
Markdown (Informal)
[hhuEDOS at SemEval-2023 Task 10: Explainable Detection of Online Sexism (EDOS) Binary Sexism Detection (Subtask A)](https://aclanthology.org/2023.semeval-1.203) (Petersen et al., SemEval 2023)
ACL