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Abstract

The widespread popularity of social media has
led to an increase in hateful, abusive, and sexist
language, motivating methods for the automatic
detection of such phenomena. The goal of the
SemEval shared task Towards Explainable De-
tection of Online Sexism (EDOS 2023) is to
detect sexism in English social media posts
(subtask A), and to categorize such posts into
four coarse-grained sexism categories (subtask
B), and eleven fine-grained subcategories (sub-
task C). In this paper, we present our submit-
ted systems for all three subtasks, based on a
multi-task model that has been fine-tuned on a
range of related tasks and datasets before be-
ing fine-tuned on the specific EDOS subtasks.
We implement multi-task learning by formu-
lating each task as binary pairwise text classi-
fication, where the dataset and label descrip-
tions are given along with the input text. The
results show clear improvements over a fine-
tuned DeBERTa-V3 serving as a baseline lead-
ing to F1-scores of 85.9% in subtask A (rank
13/84), 64.8% in subtask B (rank 19/69), and
44.9% in subtask C (26/63).1

OFFENSIVE CONTENT WARNING: This re-
port contains some examples of hateful content.
This is strictly for the purposes of enabling this
research, and we have sought to minimize the
number of examples where possible. Please be
aware that this content could be offensive and
cause you distress.

1 Introduction

With social media’s expanding influence, there
has been a rising emphasis on addressing the
widespread issue of harmful language, especially
sexist language (Meyer and Cukier, 2006; Simons,
2015; Das et al., 2020). Automatic content mod-
eration and monitoring methods have become in-
dispensable due to the sheer amount of posts and

1We make our code publicly available at https://github.
com/jagol/CL-UZH-EDOS-2023.

comments on social media platforms. However, the
deployment of automatic methods has led to a new
problem: current approaches to sexism detection
rely on transformer-based language models whose
inner workings, in spite of model interpretability re-
search, generally remain opaque (Sun et al., 2021).
This stands in contrast with the need for explain-
able and transparent decision processes in content
moderation.

The EDOS 2023 shared task (Kirk et al., 2023)
focuses on the detection (subtask A), and coarse-
(subtask B) and fine-grained (subtask C) categoriza-
tion of sexism. The purpose of sexism categoriza-
tion is to aid the explainability of sexism detection
models, where categorization can serve as addi-
tional information for why a post was classified as
sexist.

In this paper, we present our approach for all
three subtasks. The annotated data for detecting
sexism is scarce compared to other natural lan-
guage processing tasks and is often not publicly
available. In response to this, we adopt a multi-task
learning approach, where we first train a general
model for the detection of hateful and abusive lan-
guage, and incrementally adapt it to the target task.

We implement multi-task learning via manip-
ulation of the input, concretely by adding label
descriptions, and dataset identifiers. This means
that the model is presented with a pairwise text clas-
sification task where it gets a label description and
a dataset identifier as a first sequence and the text
to classify as the second sequence. The model then
learns to predict if the label description presented
in the first sequence, in the context of a dataset
identifier, applies to the input text of the second
sequence. Figure 1 demonstrates the approach. We
collect data for a range of related tasks, including
hate speech detection, offensive language detection,
emotion detection, stance detection on feminism
and abortion, and target group detection, leading to
an auxiliary training set of over 560,000 annotated

1562

https://github.com/jagol/CL-UZH-EDOS-2023
https://github.com/jagol/CL-UZH-EDOS-2023


Figure 1: Task Formulation: The task is formulated as binary pairwise text classification where the model receives
as input a dataset identifier, a label description, and an input text and predicts if the label, as learned for the given
dataset, applies to the input text. Note that the same input text can appear with different annotations.

examples.
Our method involves a three-stage training pro-

cess. As a first step, we train a general abusive
language detection model using all available train-
ing data. In the second step, we further fine-tune
this model on all three EDOS subtasks, and finally,
in the third step, we fine-tune the model only on
the target subtask.

Our models obtain strong results for subtask A,
a macro-F1 score of 0.859 achieving place 13 out
of 84, but rank lower in subtasks B and C, in-
dicating the proposed approach works compara-
tively well with few classes during inference time,
but decreases in performance, relative to other ap-
proaches, with a higher number of classes. Our
ablation study demonstrates that multi-task learn-
ing with label descriptions leads to clear perfor-
mance improvements over a baseline consisting of
DeBERTa-V3 (He et al., 2021) fine-tuned on each
subtask. However, it remains unclear if there is
a positive contribution from the additionally pro-
posed dataset identifier.

2 Related Work

2.1 Sexism Detection

Sexism detection, sometimes also called sexism
identification, is the task of predicting if a given
text (typically a social media post) is sexist or not.
Most research on the detection of harmful language
has focused on more general phenomena such as of-
fensive language (Pradhan et al., 2020), abusive lan-

guage (Nakov et al., 2021), or hate speech (Fortuna
and Nunes, 2018). Sexism intersects with these
concepts but is not entirely covered by them since
it also refers to subtle prejudices and stereotypes ex-
pressed against women. Accordingly, datasets for
hate speech often include women as one of multi-
ple target groups (Mollas et al., 2022; Vidgen et al.,
2021; Waseem, 2016), and thus contain sexist texts,
but are not exhaustive of sexism, since they do not
cover its subtle forms. Recently, there has been
increased attention on the detection of sexism and
misogyny, leading to one shared task on sexism de-
tection (Rodríguez-Sánchez et al., 2021) and three
shared tasks on misogyny detection (Fersini et al.,
2018a,b, 2020).

Harmful language detection tasks, such as sex-
ism detection, are typically formulated as binary
text classification tasks (Fortuna and Nunes, 2018).
Categorizing sexism and misogyny is usually cast
as a single-label multi-class classification task
(Fersini et al., 2018a,b) with the exception of Parikh
et al. (2019) who formulate the task as multi-label
multi-task classification. Earlier approaches to sex-
ism detection varied in their methods ranging from
manual feature engineering using n-grams, lexical
features, and word embeddings with statistical ma-
chine learning (Fersini et al., 2018a,b) to custom
neural architectures (Fersini et al., 2020). Current
approaches typically rely on fine-tuning pre-trained
language models (Fersini et al., 2020; Rodríguez-
Sánchez et al., 2021).
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Figure 2: EDOS class distribution. Note that the category not sexist is absent from subtasks B and C. The percentages
provided for these subtasks pertain solely to the sexist class, rather than the entire dataset.

2.2 Label descriptions and Multi-Task
Learning

Prompts (Liu et al., 2021), and task descriptions
(Raffel et al., 2020) have been used to condition
generative models, while hypotheses (Wang et al.,
2021) and label descriptions (Zhang et al., 2022)
have been used to condition classification mod-
els in multi-task settings to produce a desired out-
put. Multiple works have shown that multi-task
learning (Caruana, 1998; Ruder, 2017) with aux-
iliary tasks such as polarity classification, aggres-
sion detection, emotion detection, and offensive
language detection can benefit sexism detection
(Abburi et al., 2020; Plaza-del Arco et al., 2021;
Rodrıguez-Sánchez et al., 2021; Safi Samghabadi
et al., 2020). However, to the best of our knowl-
edge, our approach is the first to implement multi-
task learning for sexism detection and categoriza-
tion via label descriptions and without multiple
model heads.

3 Data

3.1 EDOS Dataset

The EDOS 2023 dataset (Kirk et al., 2023) con-
tains 20,000 posts from Gab and Reddit, labelled
on three levels. On the top level, it is annotated
with the binary labels sexism and not-sexism, where
sexism is defined as “any abuse or negative senti-
ment that is directed towards women based on their
gender or based on their gender combined with one
or more other identity attributes (e.g. Black women,

Muslim women, Trans women).”.2 The posts la-
belled as sexist are further classified into one of
four categories, and eleven subcategories called
vectors. The label taxonomy and the respective
class distributions are displayed in Figure 2.

14,000 labelled examples are released as training
data, and 2,000 examples and 4,000 examples are
held back for validation and testing, respectively.
Additionally, the shared task organizers provide
one million unlabelled examples from Reddit and
one million unlabelled examples from Gab. For our
approach, we do not make use of the unlabelled
data.

3.2 Auxiliary Datasets

However, we do make use of the following addi-
tional, labelled datasets as auxiliary training sets
for multi-task learning:

DGHSD The “Dynamically Generated Hate
Speech Dataset” (Vidgen et al., 2021) contains ar-
tificial adversarial examples aimed at tricking a
binary hate speech detection model into predicting
the wrong class.

MHS The “Measuring Hate Speech” dataset
(Kennedy et al., 2020) contains comments sourced
from Youtube, Twitter, and Reddit and is annotated
for ten attributes related to hate speech. We only
use the subset of labels listed in Table 1.

2https://codalab.lisn.upsaclay.fr/
competitions/7124#learn_the_details-overview
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dataset label type label value size

DGHSD hate speech yes: 46.1%
no: 53.9% 32,924

SBF lewd yes: 10.1%
no: 89.9% 35,424

offensive yes: 47.1%
no: 52.9% 35,424

MHS hate speech yes: 40.5%
no: 59.5% 130,000

targets gender yes: 29.8%
no: 70.2% 130,000

targets women yes: 21.9%
no: 78.1% 130,000

TWE offensive yes: 33.1%
no: 66.9% 11,916

sentiment
negative: 15.5%
neutral: 45.3%
positive: 39.1%

45,615

emotion

anger: 43.0%
joy: 21.7%
optimism: 9.0%
sadness: 26.3%

3,257

hate yes: 42.0%
no: 58.0% 9,000

irony yes: 50.5%
no: 49.5% 2,862

stance feminist
none: 18.9%
against: 49.4%
favor: 31.7%

597

stance abortion
none: 27.1%
against: 54.3%
favor: 18.6%

587

Table 1: Label distributions of the auxiliary datasets.

SBF The “Social Bias Frames” dataset (Sap et al.,
2020) is a combination of multiple Twitter datasets
(Founta et al., 2018; Davidson et al., 2017; Waseem
and Hovy, 2016) with newly collected data from
Reddit, Gab, and Stormfront. We only use the
subset of labels listed in Table 1.

TWE “TweetEval” (Barbieri et al., 2020) com-
bines multiple datasets for different tasks into a
single benchmark for detecting various aspects
of tweets. We use the datasets for emotion clas-
sification (Mohammad et al., 2018), irony detec-
tion (Van Hee et al., 2018), hate speech detection
(Basile et al., 2019), offensive language detection
(Zampieri et al., 2019), sentiment detection (Rosen-
thal et al., 2017), and stance detection (Mohammad
et al., 2016) for stances on the topics feminism and
abortion.

3.3 Preprocessing

During preprocessing, we replaced all URLs in
the input texts with the placeholder string “[URL]”,
all usernames (strings starting with an “@”) with
“[USER]”, and all emojis with the respective textual
description, also surrounded by brackets.

phase Parameter Value

general

loss function cross-entropy loss
optimizer Adam (Kingma and Ba, 2015)
β1 0.9
β2 0.999
learning rate 1e-6
warmup steps 1,000
effective batch size 32
evaluation metric macro-F1

early stopping ✓

1/3: AUX + EDOS max epochs 1

2/3: EDOS
max epochs 20
patience 5

3/3: EDOS A/B/C
max epochs 20
patience 5

Table 2: Training hyperparameters. The left column
refers to the different training phases. general applies to
all training phases and all EDOS subtasks. AUX+EDOS
refers to training on all auxiliary datasets, EDOS to
training on all EDOS subtasks and EDOS A/B/C to
training only on the target subtask.

4 System Description

We formulate each EDOS subtask as a binary pair-
wise classification task where the model predicts if
a given label applies to the input text. This allows
us to simultaneously train on multiple datasets with
different labeling schemes and a different number
of distinct labels without adjusting the model archi-
tecture or having to use multiple model heads.

Formally, our model receives as input (1) the
concatenation of a dataset identifier di ∈ D and a
label description lj ∈ L, and (2) the input text
t. It predicts the probability distribution y =
softmax(model(concat(di, lj), t)) where y ∈ R2.
y1 then denotes the probability that lj , given the
context of di, does apply to t.

4.1 Model Details

We use DeBERTa (He et al., 2020), specifically
DeBERTa-V3-large (He et al., 2021) fine-tuned
on a range of natural language inference (NLI)
datasets (Laurer et al., 2022)3, since this model is
already fine-tuned to classify and relate text pairs.
We only change the output dimensionality from
3 to 2 for binary classification. In ablation tests,
we also use the DeBERTa-V3-large without further
fine-tuning.4

3The model is publicly available at
https://huggingface.co/MoritzLaurer/
DeBERTa-v3-large-mnli-fever-anli-ling-wanli.

4The model is publicly available at https:
//huggingface.co/microsoft/deberta-v3-large.
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4.2 Label Descriptions

Where possible, we use the label names listed in
Figure 2 and Table 1 as the label description. How-
ever, we make the following exceptions and ad-
justments: We strip the numbering from the label
names for EDOS subtasks B, and C, and add the
string “ (against women)” at the end since this tar-
get group information is not yet in the label name.
For multi-class classification in auxiliary datasets,
we follow the format “<label type>: <label
value>”. For example, for sentiment classification,
which has the three possible label values negative,
neutral, and positive, we can generate a true
example for positive sentiment with the label de-
scription “sentiment: positive”.

4.3 Dataset Identifier

The same labels may have slightly different defi-
nitions in different datasets or may be differently
applied due to different annotators. If no further
information is given to the model, this could be
a source of noise. Multiple datasets contain the
label hate speech for our auxiliary datasets. To
account for this, we introduce dataset identifiers,
which are short dataset abbreviations of a few char-
acters in length that are concatenated with the label
description.

4.4 Training Procedure

We train the model in three phases: In the first
phase, the model is trained with all available exam-
ples of all collected datasets. In the second phase,
the best checkpoint from the previous phase is fur-
ther fine-tuned on EDOS data from all three task
levels (subtasks A, B, and C). Finally, in the third
phase, the model is fine-tuned only on examples
from the relevant subtask. We consider all three
annotations from the three subtasks per example
for validation during the first two phases, resulting
in 6,000 annotations for each validation. In the last
training phase, the model is only fine-tuned on one
subtask. Thus, we only validated on the labels for
that specific subtask. Further training details are
provided in Table 2.

4.5 Random Negative Sampling

When converting a multi-class classification task
(such as subtask B and C) to a binary pairwise
text classification task, each positive example for
class ck ∈ C, where k ∈ [0, ..., |C|], can be turned
into |C| − 1 negative examples by choosing a label

ck ∈ C \ {ck}. However, generating all possible
negative examples for a positive example would
result in an imbalanced training set. Therefore, in
settings with more than two classes, we instead
sample a random wrong class label during training
to create one negative example for each positive
example.5 This means the model will be trained
on different negative examples in each epoch while
the positive examples stay the same.

4.6 Inference

During inference, we predict a probability pi for
each candidate class ci ∈ C and select the class
with the highest probability. This means that we
perform |C| number of forward passes per predic-
tion, except for binary classification (subtask A),
where we can use just one forward pass to predict
a probability for the label sexism.

Since our model produces just one probabil-
ity for subtask A, we can select a probability
threshold. For our official submission and for
our ablation experiments, we test the thresholds
{0.5, 0.6, 0.7, 0.8, 0.9} on the validation set and
use the highest performing threshold for the test
set.

5 Experiments and Results

Table 4 contains the official evaluation scores show-
ing strong results for subtask A and moderately
good results for subtasks B and C.

5.1 Ablation Study

To illustrate the relative importance of the proposed
methods, we systematically add components to a
baseline model until we arrive at the submitted
models and run each model version with three ran-
dom seeds for our ablation tests. We evaluate the
following settings: (1) "single task EDOS": We
start with DeBERTa-V3-large models, fine-tuned
on each subtask individually, serving as our base-
line. (2) "+ label description": We add label de-
scriptions while still only training each model on
one subtask. (3) "multi-task EDOS via label de-
scriptions": The models are trained on all three
subtasks simultaneously using label descriptions.
(4) "+ NLI fine-tuning": We repeat the setting but
start training from the DeBERTa-V3 checkpoint
fine-tuned on NLI datasets (see Section 4.1). (5)

5This applies to EDOS subtasks B and C, and the
sentiment- emotion- and stance- detection tasks in TweetEval.
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A B C AVG

single task EDOS 0.840 0.202 0.122 0.388
+ label description 0.851 0.160 0.098 0.370

multi-task EDOS via label descriptions 0.851 0.504 0.248 0.534
+ NLI fine-tuning 0.854 0.556 0.352 0.587
+ single task fine-tuning 0.850 0.623 0.412 0.629
+ fine-tuning on AUX 0.858 0.633 0.417 0.636
+ dataset identifier 0.858 0.629 0.431 0.640
+ class balancing - 0.642 0.466 -

Table 3: Results of the ablation study on the test set. The metric is macro-F1.

F1 Rank

Subtask A 0.859 13/84
Subtask B 0.648 19/69
Subtask C 0.449 26/63

Table 4: Results of the official evaluation on the test set.

"+ single task fine-tuning": We add a second fine-
tuning phase in which the multi-task model is only
fine-tuned on the target subtask. (6) "+ fine-tuning
on AUX ": We add fine-tuning on auxiliary tasks
and EDOS simultaneously as a first training phase.
(7) "+ dataset identifier": We add the dataset iden-
tifier to the input. (8) "class balancing": Finally,
we perform upsampling to increase the relative fre-
quency of scarce classes.6 The upsampled ver-
sion of the dataset is only used during the last fine-
tuning phase.

Table 3 contains the test set results averaged over
the three runs with different seeds. The full results
for each run, including evaluations after intermedi-
ary training phases, are displayed in Appendix A.
In what follows we analyze the effects of different
system components and settings.

Baseline The baseline single task EDOS shows
already a strong performance on subtask A, but
leads to surprisingly low scores on subtasks B and
C. We assume that this is due to underprediction
and low performance of the very scarce classes
(four classes of subtask C are below 3%), which
can drastically reduce the macro-F1 score.

Multi-Task Learning on all EDOS-Subtasks
Comparing the baseline, with multi-task EDOS via

6In subtask B, we increase classes with a frequency below
19% to ~19%. For subtask C, we upsample classes below 9%
to ~9%.

label descriptions, shows a clear improvement of
1.1 percentage points (pp) from multi-task learning
with label descriptions on subtask A, and drastic
improvements, more than doubling performance,
for subtasks B and C. Looking at single task models
with label descriptions (+ label description) reveals
that on subtask A the entire increase in performance
is due to label descriptions while in subtasks B and
C the dramatic performance increases are due to
multi-task learning.

Starting with an NLI Model Starting training
from a DeBERTa-V3 checkpoint that is already
fine-tuned on NLI increases scores on all three
subtasks. The more classes the task has, the larger
is the increase.

Additional Single-Task Fine-Tuning Adding
a second subtask-specific fine-tuning phase after
training on all EDOS subtasks leads to increases of
6.7pp and 4.0pp for subtasks B and C. However, it
reduces performance on subtask A by 0.4pp.

Multi-Task Learning on Auxiliary Tasks Insert-
ing a first training phase that includes all auxiliary
tasks and EDOS subtasks into the training process
leads to further improvements of up to 1.0pp on all
subtasks.

The Dataset Identifier Adding a dataset identi-
fier to the input leads to mixed results. On subtask
A the model does not change in performance, on
subtask B it slightly decreases, and on subtask C
we observe a clear increase of 1.4pp. Overall, we
cannot draw a clear conclusion about the effects of
the dataset identifier.

Class Balancing Finally, we observe that upsam-
pling low-frequency classes in subtasks B and C
has positive effects of 1.3pp and 3.5pp respectively.
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Figure 3: Visualized normalized confusion matrix for subtask B.

Figure 4: Visualized normalized confusion matrix for subtask C.

5.2 Error Analysis

Figures 3 and 4 display the confusion matrices
averaged over three random seeds for the submitted
model configurations for subtasks B and C.

In subtask B, we see that the category threats,
plans to harm, and incitement is accurately pre-
dicted. The derogation class has a high recall,
likely because it is the most common category.
However, this also results in a significant number
of false positives from the animosity and prejudiced
discussions classes. As a consequence, these last
two classes are strongly underpredicted.

In subtask C, it is evident that mispredictions
generally stem from class confusions within the
subtask B categories. Erroneous predictions out-
side of these categories are uncommon, except for
descriptive attacks, which are frequently mistaken
for various forms of animosity.

6 Conclusion

In this paper, we presented our approaches and
results for all three subtasks of the shared task To-
wards Explainable Sexism Detection. We devel-
oped and evaluated a multi-task learning model

that is trained in three phases: (1) training a gen-
eral multi-task abusive language detection model,
(2) fine-tuning the model on all three EDOS sub-
tasks, thus specializing it in sexism detection, and
(3) fine-tuning the model only on the target subtask.
We implemented the multi-task capabilities only
via input manipulation, i.e., label descriptions and
dataset identifiers, without modifying the model
architecture or using multiple model heads.

In the official shared task evaluation, our ap-
proach led to strong results on subtask A and mod-
erately good results on subtask B and C, indicating
that the method decreases more in performance
with a higher number of classes than other ap-
proaches. Our ablation tests demonstrate that multi-
task learning via label descriptions led to significant
performance improvements on subtask A and large
performance improvements on subtasks B and C.
It remains unclear if the dataset identifier has any
positive effect. Overall the results show that our
model for binary sexism detection is reliable, but
that there is still much room for improvement in
sexism categorization.
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A Full Results
Development set Test set

Training sets and training phases Run LD DI Base model A ρ B C A B C

EDOS A 1 ✗ ✗ DBV3 0.840 0.7 - - 0.837 - -
EDOS A 2 ✗ ✗ DBV3 0.845 0.5 - - 0.848 - -
EDOS A 3 ✗ ✗ DBV3 0.837 0.5 - - 0.836 - -
EDOS B 1 ✗ ✗ DBV3 - - 0.159 - - 0.159 -
EDOS B 2 ✗ ✗ DBV3 - - 0.159 - - 0.159 -
EDOS B 3 ✗ ✗ DBV3 - - 0.306 - - 0.287 -
EDOS C 1 ✗ ✗ DBV3 - - - 0.114 - - 0.115
EDOS C 2 ✗ ✗ DBV3 - - - 0.136 - - 0.126
EDOS C 3 ✗ ✗ DBV3 - - - 0.110 - - 0.124
EDOS A 1 ✓ ✗ DBV3 0.853 0.5 - - 0.852 - -
EDOS A 2 ✓ ✗ DBV3 0.845 0.5 - - 0.852 - -
EDOS A 3 ✓ ✗ DBV3 0.851 0.5 - - 0.849 - -
EDOS B 1 ✓ ✗ DBV3 - - 0.162 - - 0.159 -
EDOS B 2 ✓ ✗ DBV3 - - 0.162 - - 0.159 -
EDOS B 3 ✓ ✗ DBV3 - - 0.159 - - 0.161 -
EDOS C 1 ✓ ✗ DBV3 - - - 0.117 - - 0.118
EDOS C 2 ✓ ✗ DBV3 - - - 0.094 - - 0.086
EDOS C 3 ✓ ✗ DBV3 - - - 0.078 - - 0.089
EDOS ABC 1 ✓ ✗ DBV3 0.865 0.5 0.556 0.225 0.851 0.530 0.253
EDOS ABC 2 ✓ ✗ DBV3 0.850 0.5 0.466 0.193 0.845 0.449 0.184
EDOS ABC 3 ✓ ✗ DBV3 0.860 0.7 0.570 0.329 0.857 0.533 0.309
EDOS ABC 1 ✓ ✗ DBV3-NLI 0.855 0.5 0.616 0.439 0.854 0.554 0.350
EDOS ABC 2 ✓ ✗ DBV3-NLI 0.855 0.5 0.617 0.431 0.852 0.555 0.355
EDOS ABC 3 ✓ ✗ DBV3-NLI 0.854 0.6 0.614 0.440 0.855 0.558 0.351
Ph1: EDOS ABC, Ph2: EDOS A 1 ✓ ✗ DBV3-NLI 0.853 0.5 - - 0.848 - -
Ph1: EDOS ABC, Ph2: EDOS A 2 ✓ ✗ DBV3-NLI 0.855 0.6 - - 0.848 - -
Ph1: EDOS ABC, Ph2: EDOS A 3 ✓ ✗ DBV3-NLI 0.854 0.9 - - 0.855 - -
Ph1: EDOS ABC, Ph2: EDOS B 1 ✓ ✗ DBV3-NLI - - 0.665 - - 0.615 -
Ph1: EDOS ABC, Ph2: EDOS B 2 ✓ ✗ DBV3-NLI - - 0.683 - - 0.637 -
Ph1: EDOS ABC, Ph2: EDOS B 3 ✓ ✗ DBV3-NLI - - 0.683 - - 0.616 -
Ph1: EDOS ABC, Ph2: EDOS C 1 ✓ ✗ DBV3-NLI - - - 0.496 - - 0.412
Ph1: EDOS ABC, Ph2: EDOS C 2 ✓ ✗ DBV3-NLI - - - 0.496 - - 0.412
Ph1: EDOS ABC, Ph2: EDOS C 3 ✓ ✗ DBV3-NLI - - - 0.496 - - 0.412
Ph1: AUX + EDOS ABC 1 ✓ ✗ DBV3-NLI 0.825 0.5 0.283 0.247 0.831 0.263 0.228
Ph1: AUX + EDOS ABC 2 ✓ ✗ DBV3-NLI 0.825 0.5 0.291 0.230 0.828 0.269 0.237
Ph1: AUX + EDOS ABC 3 ✓ ✗ DBV3-NLI 0.824 0.5 0.302 0.245 0.827 0.284 0.239
Ph1: AUX + EDOS ABC Ph2: EDOS ABC 1 ✓ ✗ DBV3-NLI 0.850 0.6 0.601 0.422 0.860 0.541 0.382
Ph1: AUX + EDOS ABC Ph2: EDOS ABC 2 ✓ ✗ DBV3-NLI 0.851 0.6 0.608 0.421 0.859 0.549 0.379
Ph1: AUX + EDOS ABC Ph2: EDOS ABC 3 ✓ ✗ DBV3-NLI 0.853 0.5 0.602 0.424 0.857 0.538 0.380
Ph1: AUX + EDOS ABC Ph2: EDOS ABC, Ph3: EDOS A 1 ✓ ✗ DBV3-NLI 0.855 0.6 - - 0.860 - -
Ph1: AUX + EDOS ABC Ph2: EDOS ABC, Ph3: EDOS A 2 ✓ ✗ DBV3-NLI 0.854 0.7 - - 0.858 - -
Ph1: AUX + EDOS ABC Ph2: EDOS ABC, Ph3: EDOS A 3 ✓ ✗ DBV3-NLI 0.855 0.7 - - 0.857 - -
Ph1: AUX + EDOS ABC Ph2: EDOS ABC, Ph3: EDOS B 1 ✓ ✗ DBV3-NLI - - 0.663 - - 0.594 -
Ph1: AUX + EDOS ABC Ph2: EDOS ABC, Ph3: EDOS B 2 ✓ ✗ DBV3-NLI - - 0.693 - - 0.657 -
Ph1: AUX + EDOS ABC Ph2: EDOS ABC, Ph3: EDOS B 3 ✓ ✗ DBV3-NLI - - 0.689 - - 0.649 -
Ph1: AUX + EDOS ABC Ph2: EDOS ABC, Ph3: EDOS C 1 ✓ ✗ DBV3-NLI - - - 0.507 - - 0.423
Ph1: AUX + EDOS ABC Ph2: EDOS ABC, Ph3: EDOS C 2 ✓ ✗ DBV3-NLI - - - 0.495 - - 0.425
Ph1: AUX + EDOS ABC Ph2: EDOS ABC, Ph3: EDOS C 3 ✓ ✗ DBV3-NLI - - - 0.478 - - 0.401
Ph1: AUX + EDOS ABC 1 ✓ ✓ DBV3-NLI 0.796 0.5 0.260 0.196 0.805 0.236 0.214
Ph1: AUX + EDOS ABC 2 ✓ ✓ DBV3-NLI 0.798 0.5 0.259 0.206 0.801 0.237 0.207
Ph1: AUX + EDOS ABC 3 ✓ ✓ DBV3-NLI 0.793 0.5 0.257 0.226 0.803 0.253 0.230
Ph1: AUX + EDOS ABC Ph2: EDOS ABC 1 ✓ ✓ DBV3-NLI 0.862 0.6 0.637 0.466 0.859 0.605 0.395
Ph1: AUX + EDOS ABC Ph2: EDOS ABC 2 ✓ ✓ DBV3-NLI 0.852 0.5 0.565 0.411 0.857 0.533 0.370
Ph1: AUX + EDOS ABC Ph2: EDOS ABC 3 ✓ ✓ DBV3-NLI 0.849 0.6 0.569 0.424 0.859 0.534 0.366
Ph1: AUX + EDOS ABC Ph2: EDOS ABC, Ph3: EDOS A 1 ✓ ✓ DBV3-NLI 0.858 0.7 - - 0.859 - -
Ph1: AUX + EDOS ABC Ph2: EDOS ABC, Ph3: EDOS A 2 ✓ ✓ DBV3-NLI 0.855 0.6 - - 0.856 - -
Ph1: AUX + EDOS ABC Ph2: EDOS ABC, Ph3: EDOS A 3 ✓ ✓ DBV3-NLI 0.862 0.5 - - 0.861 - -
Ph1: AUX + EDOS ABC Ph2: EDOS ABC, Ph3: EDOS B 1 ✓ ✓ DBV3-NLI - - 0.674 - - 0.633 -
Ph1: AUX + EDOS ABC Ph2: EDOS ABC, Ph3: EDOS B 2 ✓ ✓ DBV3-NLI - - 0.665 - - 0.642 -
Ph1: AUX + EDOS ABC Ph2: EDOS ABC, Ph3: EDOS B 3 ✓ ✓ DBV3-NLI - - 0.664 - - 0.613 -
Ph1: AUX + EDOS ABC Ph2: EDOS ABC, Ph3: EDOS C 1 ✓ ✓ DBV3-NLI - - - 0.522 - - 0.455
Ph1: AUX + EDOS ABC Ph2: EDOS ABC, Ph3: EDOS C 2 ✓ ✓ DBV3-NLI - - - 0.464 - - 0.419
Ph1: AUX + EDOS ABC Ph2: EDOS ABC, Ph3: EDOS C 3 ✓ ✓ DBV3-NLI - - - 0.473 - - 0.419
Ph1: AUX + EDOS ABC Ph2: EDOS ABC, Ph3: EDOS B (up to ~19%) 1 ✓ ✓ DBV3-NLI - - 0.679 - - 0.653 -
Ph1: AUX + EDOS ABC Ph2: EDOS ABC, Ph3: EDOS B (up to ~19%) 2 ✓ ✓ DBV3-NLI - - 0.677 - - 0.642 -
Ph1: AUX + EDOS ABC Ph2: EDOS ABC, Ph3: EDOS B (up to ~19%) 3 ✓ ✓ DBV3-NLI - - 0.661 - - 0.632 -
Ph1: AUX + EDOS ABC Ph2: EDOS ABC, Ph3: EDOS C (up to ~9%) 1 ✓ ✓ DBV3-NLI - - - 0.473 - - 0.462
Ph1: AUX + EDOS ABC Ph2: EDOS ABC, Ph3: EDOS C (up to ~9%) 2 ✓ ✓ DBV3-NLI - - - 0.497 - - 0.470
Ph1: AUX + EDOS ABC Ph2: EDOS ABC, Ph3: EDOS C (up to ~9%) 3 ✓ ✓ DBV3-NLI - - - 0.516 - - 0.466

Table 6: Full results of the ablation study on the development and test set. LD refers to label descriptions, and
DI refers to dataset identifiers. DBV3 refers to DeBERTa-V3-large and DBV3-NLI refers to DeBERTa-V3-large
fine-tuned on NLI datasets. ρ refers to the threshold applied for subtask A. The settings containing the settings of
the models submitted to the official evaluation are marked in grey. Ph1, Ph2, and Ph3 stand for training phase 1, 2,
and 3 respectively.
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