@inproceedings{mopidevi-chenna-2023-quintilian,
title = "Quintilian at {S}em{E}val-2023 Task 4: Grouped {BERT} for Multi-Label Classification",
author = "Mopidevi, Ajay Narasimha and
Chenna, Hemanth",
editor = {Ojha, Atul Kr. and
Do{\u{g}}ru{\"o}z, A. Seza and
Da San Martino, Giovanni and
Tayyar Madabushi, Harish and
Kumar, Ritesh and
Sartori, Elisa},
booktitle = "Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.semeval-1.222",
doi = "10.18653/v1/2023.semeval-1.222",
pages = "1609--1612",
abstract = "In this paper, we initially discuss about the ValueEval task and the challenges involved in multi-label classification tasks. We tried to approach this task using Natural Language Inference and proposed a Grouped-BERT architecture which leverages commonality between the classes for a multi-label classification tasks.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mopidevi-chenna-2023-quintilian">
<titleInfo>
<title>Quintilian at SemEval-2023 Task 4: Grouped BERT for Multi-Label Classification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ajay</namePart>
<namePart type="given">Narasimha</namePart>
<namePart type="family">Mopidevi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hemanth</namePart>
<namePart type="family">Chenna</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Atul</namePart>
<namePart type="given">Kr.</namePart>
<namePart type="family">Ojha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="given">Seza</namePart>
<namePart type="family">Doğruöz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giovanni</namePart>
<namePart type="family">Da San Martino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Harish</namePart>
<namePart type="family">Tayyar Madabushi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ritesh</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elisa</namePart>
<namePart type="family">Sartori</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we initially discuss about the ValueEval task and the challenges involved in multi-label classification tasks. We tried to approach this task using Natural Language Inference and proposed a Grouped-BERT architecture which leverages commonality between the classes for a multi-label classification tasks.</abstract>
<identifier type="citekey">mopidevi-chenna-2023-quintilian</identifier>
<identifier type="doi">10.18653/v1/2023.semeval-1.222</identifier>
<location>
<url>https://aclanthology.org/2023.semeval-1.222</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>1609</start>
<end>1612</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Quintilian at SemEval-2023 Task 4: Grouped BERT for Multi-Label Classification
%A Mopidevi, Ajay Narasimha
%A Chenna, Hemanth
%Y Ojha, Atul Kr.
%Y Doğruöz, A. Seza
%Y Da San Martino, Giovanni
%Y Tayyar Madabushi, Harish
%Y Kumar, Ritesh
%Y Sartori, Elisa
%S Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F mopidevi-chenna-2023-quintilian
%X In this paper, we initially discuss about the ValueEval task and the challenges involved in multi-label classification tasks. We tried to approach this task using Natural Language Inference and proposed a Grouped-BERT architecture which leverages commonality between the classes for a multi-label classification tasks.
%R 10.18653/v1/2023.semeval-1.222
%U https://aclanthology.org/2023.semeval-1.222
%U https://doi.org/10.18653/v1/2023.semeval-1.222
%P 1609-1612
Markdown (Informal)
[Quintilian at SemEval-2023 Task 4: Grouped BERT for Multi-Label Classification](https://aclanthology.org/2023.semeval-1.222) (Mopidevi & Chenna, SemEval 2023)
ACL