
Proceedings of the The 17th International Workshop on Semantic Evaluation (SemEval-2023), pages 1625–1629
July 13-14, 2023 ©2023 Association for Computational Linguistics

Mr-wallace at SemEval-2023 Task 5: Novel Clickbait Spoiling Algorithm
Using Natural Language Processing

Vineet Saravanan
Cranbrook Schools

Bloomfield Hills, MI
vineetsaravanan@gmail.com

Steven Wilson
Oakland University

Rochester, MI
stevenwilson@oakland.edu

Abstract

Clickbait creates a nuisance in the online expe-
rience by creating a lure towards poor content
in order to generate ad revenue. With the use
of natural language processing models, we can
save users time and reduce the need to follow
clickbait links. Task 5 at SemEval-2023 fo-
cused on precisely this problem and was broken
into two steps: identifying the clickbait spoiler
type and then identifying the clickbait itself.
Our approach involves the use of fine-tuned
text classification and question-answering mod-
els. Our classification model is able to deter-
mine the type of clickbait with 65.3% accu-
racy. The question-answering model exactly
spoiled clickbait generated around 42.5% of
the time. Efforts toward solving this task may
have an impact by helping to save users’ time
and quickly give an insight into the answer of
what the clickbait/article is about.

1 Introduction

Clickbait, in social media, are exaggerated head-
lines whose main motive is to mislead the reader
to “click” on them. They create a nuisance in the
online experience by creating a lure towards poor
content. Online content creators are utilizing more
of them to get increased page views and, thereby,
more ad revenue without providing the backing
content (Agrawal, 2016). Clickbait articles usually
appeal to a user’s emotions and curiosity. These
articles are often lacking in quality and information
accuracy. Clickbait articles have a considerably
higher click rate than non-clickbait articles. This
has been a rising problem in the 21st century with
the growth in internet usage and social media.

In SemEval-2023, the tasks of clickbait spoiling
task is split into two subtasks, as shown in Figure
1, the first task is to identify the clickbait type, and
the second task is to actually spoil the clickbait by
identifying the sequence(s) of text in the source
article that provide the information that the reader

is being lured to read about given a particular click-
bait post (Fröbe et al., 2023a). For Task 1, which
is the Spoiler Type Classification, the input is the
clickbait post and the linked document, and the task
is to classify the spoiler type that the clickbait post
warrants (either "phrase," "passage," or "multi"),
which can be approached using a supervised text
classification approach. For Task 2, which is on
Spoiler Generation, the input is the clickbait post
and the linked document. The task is to gener-
ate the spoiler for the clickbait post, which can
be approached using an information extraction or
question-answering approach where the question
is in the title of the post. More information about
the source datasets can be found in Figure 2.

We fine-tuned a DistilBERT (Sanh et al., 2019)
model for task 1, which was one of the top ten in
terms of precision for classifying the “multi” type
of clickbait. The submission was made on the Tira
platform (Fröbe et al., 2023b). While we were
unable to make an official submission for task 2,
we developed a BERT-based (Devlin et al., 2018)
question-answering-based model for this task and
evaluated it on our own held-out validation set.

2 Background

Previous work has been done using different Ques-
tion Answering like abstractive QA and extractive
QA, with abstractive QA models extracting the an-
swer to a given question from within a provided
context, and abstraction QA models which generate
new text and do not require a labeled answer span
(Johnson et al., 2022). In this paper, we will discuss
and implement an abstractive QA model since this
will give the user a more relevant answer which is
guaranteed to be in the clickbait article. There have
also been applications of passage retrieval models
(Hagen et al., 2022b). Previous work has been done
to check whether a certain tweet is clickbait or not.
One such high-accuracy system utilizes a neural
network architecture with bidirectional gated recur-

1625



Figure 1: Steps in the clickbait spoiling task.

Figure 2: Dataset statistics from Hagen et al. (2022a).

rent units (biGRU) and a self-attention mechanism
to assess clickbait strength (Zhou, 2017; Potthast
et al., 2018).

3 System Overview

In this section, we provide details about our ap-
proach.

3.1 Task 1
To read and utilize the data, specific fields have
to go through preprocessing. The first is from the
tag column. This column gives us the clickbait
type as a string, which we convert to an integer
value representing the class labels as 0, 1, and 2.
We also combine many of the input fields that are
available from the article itself (targetTitle, text,
targetKeywords, and Provenance). The targetTitle
is the title of the article, the text is the article itself,
the targetKeywords are the keywords for the article
itself, and the Provenance is the information about
who spoiled the clickbait for the dataset. Also, we
have to preprocess the text to add periods where
it is needed. This was usually at the end of the ar-
ticle itself since there was sometimes punctuation
missing at the end. After that, we concatenate all
the fields together into one string to increase the
simplicity of training the model. Next, we use the
default tokenizer for the Distilbert-base-uncased,
available from Hugging Face,1 to tokenize the text.
DistilBERT is a distilled version of BERT (Devlin
et al., 2018), which means that it has been trained
to achieve similar performance to BERT but with
fewer parameters and faster training times, as it
uses much more memory and computes efficiently
to use. In addition to these efficiency concerns,

1https://huggingface.co/

Figure 3: Task 1 Flow Chart for steps of preprocessing
and training

pre-trained language models like DistilBERT have
achieved strong performance on a variety of natu-
ral language processing tasks, including text clas-
sification. Therefore, we expect DistilBERT to
yield high-quality results for this task. Memory
efficiency is also helpful since we run our scripts
on Google Colab,2 where resources such as compu-
tational time and memory may be limited. Google
Colab is a free cloud-based platform that allows
users to code in Python notebooks. It is beneficial
for small-scale natural language processing experi-
ments since it provides access to resources such as
GPUs and TPUs, which can speed up the training
of large NLP models. For our training, We only
utilized GPU and CPU backends. Figure 3 shows
how many parameters DistilBERT uses compared
to other well-known models.

We use the TrainingArguments and Trainer
classes from the transformers library (Wolf et al.,
2019) to train a model. The TrainingArguments
object specifies various hyperparameters and set-
tings for the training process, such as the output di-
rectory, learning rate, batch size, number of epochs,
and others. The Trainer object is then created
with the model, training arguments, training and
evaluation datasets, tokenizer, data collator, and
a function for computing evaluation metrics. The
training method of the Trainer object is then called

2https://colab.research.google.com/

1626

https://huggingface.co/
https://colab.research.google.com/


Figure 4: Number of parameters in NLP models over
time from (Cistac et al., 2020). This figure emphasizes
the relative size of the DistilBERT model that we use
for Task 1.

Figure 5: Development accuracy every 250 steps during
training for clickbait classification.

to start the training process. The training process
will involve iterating over the training dataset for
a specified number of epochs, in which the model
is presented with batches of examples, and the
weights of the model are updated based on the
predicted scores and the actual labels. The model’s
performance on the evaluation dataset will be eval-
uated using the compute_metrics function, the
results will be logged, and the model achieving
the highest value on the development set will be
used. Figure 5 shows the accuracy plotted every
250 steps over 4000 training steps.

3.2 Task 2
For the second task, the data was pre-processed
differently. We combine all the parts of the target-
Paragraph into one string as the question-answering
models that we use expected a single sequence as
input. We then get the first element of the list of
postText. We also need to get the absolute positions
of where the clickbait spoiler is relative to the en-
tire targetParagraph. We do this by looping through
the elements in the spoilerPositions and adding up
the lengths of the paragraphs in targetParagraphs
until it reaches the start and end positions of the
spoiler.

Figure 6: Task 2 Flow Chart for steps of preprocessing
and training

The code then goes on to predict the answers for
a given set of examples. We first set some hyperpa-
rameters, such as the maximum length of the input
text and the stride of the tokenization process. To
train the model, we have the context in the target-
Paragraph, the question in postText, and the answer
in the spoiler. We then use the default tokenizer
for bert-based-uncased as our tokenizer. We then
iterate through the examples, finds the start and end
logits for the tokens, and use these to find the top
n_best answer candidates. It skips candidates that
are not entirely within the context or have a length
outside of a specified range. It then selects the an-
swer with the highest logit score as the predicted an-
swer and stores it in a list. Bert-based-uncased can
be tuned for a question-answering model. There are
several advantages to using BERT as a pre-trained
model for a question-answering model. BERT has
learned the English language’s structure and pat-
terns thanks to its pre-training on a sizable dataset.
This pre-training enables BERT to perform well
without the need for task-specific training data on a
variety of NLP tasks. Since BERT is a transformer
model, it can efficiently process lengthy text se-
quences. Due to the potential length and complex-
ity of the questions and answers, this is crucial for
question answering. Because of its bidirectional ar-
chitecture, BERT can process text while taking into
account previous and subsequent words, enabling
it to build a representation of a word’s meaning
in the context of the entire sentence. When per-
forming tasks like answering questions, where the
distinction between upper and lower case can be
significant, the “cased" version of BERT preserves
the case of the words in the input text.

1627



Figure 7: Confusion matrix for the clickbait type classi-
fication task

4 Experimental Setup

4.1 Task 1
We calculate the accuracy of the model every 250
steps in the training process. We define a function
compute_metrics() that takes in a list of tuples
eval_preds and returns the accuracy of the predic-
tions made. Predictions are determined by taking
the argmax of the logits, which are output by the
model. Finally, the function computes and returns
the accuracy of the predictions using the compute
method of the metric object, passing in the pre-
dictions and labels as arguments. Early on, we
noticed that the model’s accuracy, when graphed,
was plateauing early on, and we didn’t need to train
the models past five epochs due to this.

4.2 Task 2
In general, using BERT as the base model for
question-answering can give the model a solid foun-
dation and boost performance. We tokenize the text
by adding a [CLS] to the start, and [SEP] is used
as a separator token. It is used at the end of the
title and the end of the passage. This is used so the
model can differentiate between the title and pas-
sage. The preprocess_training_examples()
function takes a dictionary of training examples
as input and returns a dictionary of preprocessed
inputs that can be used by the model. The
function then processes the spoiler and spoiler-
Positions fields of the input examples to gener-
ate start_positions and end_positions, which
are the start and end positions of the correct answer
in the tokenized sequences. These start and end
positions are appended to the input dictionary and
returned by the pre-processing function. We train
the model by mapping the raw dataset using a hug-
ging face function and get the predicted spoilers
returned.

5 Results

Our system performed in the top ten in terms of
precision for the “multi” class classification. Fig-
ure 7 shows how misclassifications were made by

Figure 8: distilbert-base-uncased (red) vs bert-base-
cased (purple) vs bert-base-NER (green)

our model. The ”multi” classification was the clas-
sification in task 1, where the spoiler is a list of
multiple items. We were only given the ranking for
this specific classification.

While the model is training, our script outputs
the accuracy rate every 250 steps, so we can see
whether the model is overfitting or underfitting.
Figure 8 is a comparison of distilbert-base-uncased
vs. bert-base-uncased and bert-base-NER3 models
tuned on this task. BERT-based NER (Named En-
tity Recognition) is used to identify and classify
named entities in text using BERT (Bidirectional
Encoder Representations from Transformers) lan-
guage model. Named entities can be people, orga-
nizations, locations, etc. From the figure, we can
deduce that these types of models aren’t the best
for this specific task.

We use the F1 score for task 2 to improve upon
our model. The F1 score is a metric for evaluating
the performance of a model on a binary classifi-
cation task. The harmonic mean of the model’s
precision and recall is used to calculate the F1
score. Precision is calculated as the model’s to-
tal positive predictions divided by the number of
true positive predictions. The recall is calculated
by dividing the total number of positive examples
in the dataset by the number of true positive predic-
tions the model made. The F1 allowed us to see the
overlap between the correct spoiler vs the generator
spoiler. The F1 score was a better metric since it
gave insight into the overall message/meaning of
the spoiler instead of just word-for-word correct-
ness. On the test split of the dataset, the model
received an F1 score of 0.85, but generally, the re-
sults save users time and give an insight into the
answer to what the clickbait/article is about.

3https://huggingface.co/dslim/bert-base-NER

1628

https://huggingface.co/dslim/bert-base-NER


6 Conclusion

This paper presents a model for clickbait spoiling,
which aims at generating short texts that satisfy the
curiosity induced by a clickbait post. The model
is split into two tasks: identifying the clickbait
type and spoiling the clickbait. The first task is
to classify the spoiler type that the clickbait post
warrants, and the second task is to generate the
spoiler for the clickbait post. The model utilizes
the Distilbert-base-uncased model for the first task
and the Bert-base-uncased model for the second
task. The trained model is optimized through trial
and error on different model selections, and hy-
perparameters and results are presented in a con-
fusion matrix. From the figure 7, we were able
to deduce that the phrase and passage classifica-
tion were being misclassified as the other. There
was also a low accuracy for the multi-classification,
which could be attributed to the lower amount of
data for the multi compared to the phrase or multi-
classifications. This gave us insight into how to fur-
ther tune the model. The main reason we utilized
Distilbert-base-uncased is that it analyzes words in
the context of whats around it. The objective of this
model is to save readers time and spoil the click-
bait of different articles they may see on different
platforms like Twitter and Reddit.

References
Amol Agrawal. 2016. Clickbait detection using deep

learning. In 2016 2nd international conference on
next generation computing technologies (NGCT),
pages 268–272. IEEE.

Pierric Cistac, Anthony Moi, and Victor Sanh. 2020.
How hugging face achieved a 2x performance boost
for question answering with distilbert in node.js.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Maik Fröbe, Tim Gollub, Benno Stein, Matthias Hagen,
and Martin Potthast. 2023a. SemEval-2023 Task 5:
Clickbait Spoiling. In 17th International Workshop
on Semantic Evaluation (SemEval-2023).

Maik Fröbe, Matti Wiegmann, Nikolay Kolyada, Bas-
tian Grahm, Theresa Elstner, Frank Loebe, Matthias
Hagen, Benno Stein, and Martin Potthast. 2023b.
Continuous Integration for Reproducible Shared
Tasks with TIRA.io. In Advances in Information
Retrieval. 45th European Conference on IR Research
(ECIR 2023), Lecture Notes in Computer Science,
Berlin Heidelberg New York. Springer.

Figure 9: Example of the format in which we stored
data in the Hugging Face datasets hub.

Matthias Hagen, Maik Fröbe, Artur Jurk, and Martin
Potthast. 2022a. Clickbait Spoiling via Question
Answering and Passage Retrieval. In 60th Annual
Meeting of the Association for Computational Lin-
guistics (ACL 2022), pages 7025–7036. Association
for Computational Linguistics.

Matthias Hagen, Maik Fröbe, Artur Jurk, and Mar-
tin Potthast. 2022b. Clickbait spoiling via ques-
tion answering and passage retrieval. arXiv preprint
arXiv:2203.10282.

Oliver Johnson, Beicheng Lou, Janet Zhong, and An-
drey Kurenkov. 2022. Saved you a click: Auto-
matically answering clickbait titles. arXiv preprint
arXiv:2212.08196.

Martin Potthast, Tim Gollub, Matthias Hagen, and
Benno Stein. 2018. The clickbait challenge 2017:
Towards a regression model for clickbait strength.
arXiv preprint arXiv:1812.10847.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
and Jamie Brew. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. CoRR,
abs/1910.03771.

Yiwei Zhou. 2017. Clickbait detection in tweets
using self-attentive network. arXiv preprint
arXiv:1710.05364.

A Data storage format

We used the Hugging Face datasets library 4 to host
our training data while developing models. This
made it easy to access and load the dataset from
anywhere and use a common API to easily interface
with other Hugging Face libraries. Figure 9 shows
an example of some of the data in this format.

4https://huggingface.co/datasets

1629

https://blog.tensorflow.org/2020/05/how-hugging-face-achieved-2x-performance-boost-question-answering.html
https://blog.tensorflow.org/2020/05/how-hugging-face-achieved-2x-performance-boost-question-answering.html
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
https://huggingface.co/datasets

