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Abstract

Sexism is one of the most concerning problems
in the internet society. By detecting sexist
expressions, we can reduce the offense toward
females and provide useful information to
understand how sexism occurs. Our work
focuses on a newly-published dataset, EDOS,
which annotates English sexist expressions
from Reddit and categorizes their specific
types. Our method is to train a DeBERTa-V3
classifier with all three kinds of labels provided
by the dataset, including sexist, category, and
granular vectors. Our classifier predicts the
probability distribution on vector labels and
further applies it to represent category and
sexist distributions. Our classifier uses its label
and finer-grained labels for each classification
to calculate the hierarchical loss for optimiza-
tion. Our experiments and analyses show that
using a combination of loss with finer-grained
labels generally achieves better performance
on sexism detection and categorization.
Codes for our implementation can be found at
https://github.com/KomeijiForce/SemEval2023
_Task10.

1 Introduction

The advent of the internet has drastically changed
the way we communicate and interact with one
another. It has enabled people from different parts
of the world to connect and share their thoughts
and ideas on various platforms. However, with
the increased usage of the internet, there has been
a concerning rise in the prevalence of sexism in
online communities and platforms. This issue has
been especially rampant towards women and other
marginalized groups, with the negative sentiment
and abuse contributing to the deterioration of the
friendly atmosphere that online groups strive to
foster.

While various censorship systems have been im-
plemented to filter out sexist content, they often fail
to provide a deeper understanding of the underlying

reasons for the sexism. This is where SemEval2023
Shared Task 10 (Kirk et al., 2023) comes in, aim-
ing to categorize online comments into fine-grained
vectors of sexism. Doing so, it takes the first step
towards exploring the root causes of sexism and
developing more effective strategies to combat it.

The labels used in SemEval2023 Shared Task 10
are annotated hierarchically as sexist, category, and
vector, providing a nuanced understanding of the
different forms of sexism present in online com-
ments. The statistics of the labels are depicted in
Figure 1, highlighting the prevalence and diversity
of the issue.

In our approach, we recognize the hierarchical
nature of the problem and propose a method to im-
prove expression representations by training a clas-
sifier with all three hierarchies of labels. We obtain
a probability distribution on vector labels from the
classifier’s output and use this to compute category
and sexist probabilities. To optimize the model,
we calculate the loss of probability distributions in
different hierarchies and aggregate them to obtain
the final loss. For encoding, we leverage the power
of the DeBERTa-V3 model, which has shown ex-
ceptional performance in various natural language
processing tasks. Our experiments demonstrate the
superiority of our approach over other pre-trained
language model encoders in learning sexist text
representations. Moreover, we conduct a thorough
analysis of the impact of different combinations of
loss functions on training results, highlighting the
benefits of using finer-grained label annotations.

2 Related Works

Online sexism detection has been actively stud-
ied in recent years to face the growing offensive
content against women in online spaces. Many
tasks and competitions have been introduced to
expedite the study of sexism detection, such as
SemEval-2019 Task 5 (Basile et al., 2019), Iber-
LEF 2021 EXIST (Rodríguez-Sánchez et al., 2021),
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Figure 1: Distributions of labels for Task A, B and C in the EDOS dataset.

and SemEval-2022 Task 5 (Fersini et al., 2022).
The datasets have also facilitated the develop-
ment of automated methods for identifying online
sexism in various languages, including English,
French, Spanish, and Chinese (Chiril et al., 2020;
Rodríguez-Sanchez et al., 2021, 2022; Jiang et al.,
2022).

Most existing methods rely on the neural net-
works models, such as Convolutional Neural Net-
works (Boriola and Paetzold, 2020), transformer-
based large language models (LMs) (Wiedemann
et al., 2020; Wang et al., 2020; Davies et al., 2021),
and Graph Neural Networks (Wilkens and Og-
nibene, 2021). Other approaches include data aug-
mentation with back translation (Butt et al., 2021),
knowledge distillation (Wang et al., 2020), lever-
age external resources (García-Baena et al., 2022)
and multi-task learning (del Arco et al., 2021). In
this work, we use DeBERTa-V3 (He et al., 2021a),
which has shown superior performance over other
transformer-based LMs. In experiments, we show
that DeBERTa-V3 achieved competitive perfor-
mance with a simple hierarchical loss function com-
pared to the counterpart LMs.

be

3 Task and Dataset

We work on the EDOS sexism detection and expla-
nation dataset1 (Kirk et al., 2023). Identified by the
task, Sexism is “Any abuse or negative sentiment

1https://semeval.github.io/SemEval2023/tasks

that is directed towards women based on their gen-
der, or based on their gender combined with one
or more other identity attributes”.2 Our goal is to
detect and explain the sexism in the expressions.
Specifically, the dataset contains three subtasks:

• Task-A: Binary Sexism Detection is a binary
classification task to determine whether an
entry is sexist or not.

• Task-B: Category of Sexism is a 4-class clas-
sification task that categorizes the specific
types of sexist. The 4 types are threats, dero-
gation, animosity, and prejudiced discussions.

• Task-C: Fine-grained Vector of Sexism is an
11-class classification task that provide more
fine-grained classification for sexism. Each of
the sexist types in Task-B has subtypes of 2,
3, 4, and 2, respectively.

For the dataset D = {D1, D2, . . . , Dn}, the for-
mat of instances D is (S,LA, LB, LC) where S
refers to the sentence and LN is the label of S
for Task-N. LB, LC exists only when LA is sex-
ism. Also, LC is fully dependent on LB since it
is a sublabel of LB . Notice that Task-B and C
only categorize sexist expressions, instances with
LA = not sexism will not be involved in training
or evaluation.

2https://codalab.lisn.upsaclay.fr/competitions/7124
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Model Task A Task B Task C

Dev Test Dev Test Dev Test

BERTLarge (Devlin et al., 2019) 82.74 82.63 61.16 57.48 36.65 36.17
RoBERTaLarge (Liu et al., 2019) 84.29 83.58 61.09 57.88 42.28 37.57
BERTweetLarge (Nguyen et al., 2020) 84.97 84.64 65.20 64.04 46.90 39.22
DeBERTa-V3Large (He et al., 2021a) 85.48 85.67 70.39 66.36 45.61 38.25

Table 1: The performances of different pre-trained language models.

4 Methodology

In this section, we present our method for training
a classifier to predict labels from three different
categories, using a hierarchical loss function. We
acknowledge the reviewer’s feedback on the need
for additional information on the training setting
and losses, and we have made revisions accord-
ingly.

Given an input sentence S, our classifier outputs
PC = P (LC |S), a probability distribution over all
categories in LC and an additional not-sexist label.
We then calculate the probability distributions for
LB and LA as follows:

P (LB = lb|S) =
∑

lc∈lb
P (LC = lc|S)

P (LA = not sexist|S) = P (LB = not sexist|S)
P (LA = sexist|S) = 1− P (LB = not sexist|S)

Here, lc ∈ lb denotes that lc is a sub-category of
lb. We then use the cross-entropy loss for all three
predictions:

L =
∑

h∈A,B,C

CELoss(Ph, Lh)

where CELoss(Ph, Lh) is the cross-entropy loss
between the predicted distribution Ph and the true
labels Lh for each category h ∈ A,B,C.

For our backbone model, we fine-tune DeBERTa-
V3 (He et al., 2021a) on the classification task.
DeBERTa-V3 is a pre-trained language model that
improves upon the original DeBERTa (He et al.,
2021b) by replacing the masked language model-
ing objective with a replaced token detection task.
This change results in state-of-the-art performance
across various natural language processing tasks.

Configuration We train our classifier with an
AdamW optimizer initialized by a learning rate of
10−5. The batch size is set to 16, and the maxi-
mum number of epochs is set to 20. We save the

best-performing model on the development set and
evaluate its performance on the test set. To predict
labels in a hierarchy, we only use the labels and
finer-grained labels of interest (e.g., for Task B,
we optimize LB + LC , excluding LA). We note
that our reported results in Section 5 differ from
those on the leaderboard as we merged the training
and development sets and split them by a ratio of
19 : 1 to train the model for the submitted version.
Here, we report the results achieved with the stan-
dard splits of train and development sets. On the
leaderboard, our submission includes all losses in
lower hierarchies, i.e., LA + LB + LC for Task A,
LB + LC for Task B, and LC for Task C.

5 Experiment and Result

5.1 Main Results
The results from our experiments are presented
in Table 1. We compare the results of DeBERTa-
V3 with other pre-trained LMs including BERT
(Devlin et al., 2019), RoBERTa (Liu et al., 2019),
and BERTweet (Nguyen et al., 2020). BERTweet
is trained following the RoBERTa’s pre-training
procedure, but it uses an additional large cor-
pus, which is about 850M English Tweets. Even
though DeBERTa-V3 is pre-trained with less size
of datasets than RoBERTa and BERTweet (He et al.,
2021a), DeBERTa-V3 achieved best performance
in Task A and Task B, outperforming 1.03 and 2.32
points over BERTweet on the test set. However,
in Task C, BERTweet shows the best performance
over DeBERTa-V3 with a gap of 0.97 points. We
provide a detailed analysis in Section 5.2.

5.2 Analysis
Table 2 shows examples and the prediction of each
model. We observed that BERTweet performs well
even if the input text includes slangs, abbrevia-
tions, and hashtags. Many users in social network
services (SNS) use variations of curse words to
avoid automated censorship (e.g., some SNS users
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Example BERT RoBERTa BERTweet DeBERTa
When a girl gives you s**t test, scare the s**t out of her. X O O O
Maybe if one of their women were molested... But no, they’re all too ugly. #Sweden X X O O
Can’t hit girls though......but.... a c@#t punt might be an idea.. X X O X
I like how it says "battle for equality" even though it’s an all-female coalition. X X X X

Table 2: Examples and model predictions in Task C. BERTweet performs well even if the input sentence contains
slangs or variations of curse words. On the one hand, in the example in the last row, all models fail to correctly
predict sarcasm expressions. X/O indicates incorrect/correct prediction.

Loss Task A Task B Task C

Dev Test Dev Test Dev Test

LA 85.20 84.18 9.72∗ 9.50∗ 3.66∗ 4.02∗

LB 84.88 85.26 66.33 63.66 9.85∗ 8.93∗

LC 84.67 85.41 65.46 59.87 45.61 38.25
LA + LB 85.82 86.10 47.97 43.87 11.14∗ 10.63∗

LB + LC 84.04 84.12 70.39 66.36 41.49 35.95
LA + LC 84.45 85.18 46.44 42.44 34.70 31.25
LA + LB + LC 85.48 85.67 47.25 45.37 34.46 32.49

Table 3: The performances of DeBERTa-V3Large with different combinations of loss hierarchies. ∗ : This configura-
tion does not contain the label annotation or any finer-grained annotation for this task.

replace the alphabet a with the special character
@). BERTweet shows its strength in handling these
types of variation since it is specialized on SNS
texts. However, without fine-tuning on additional
datasets, DeBERTa-V3 shows competitive perfor-
mance overall. On the one hand, we also found
that all models fail to correctly predict sarcasm pat-
terns. In the example in the last row in Table 2,
it is labeled as LA=sexist, LB=prejudiced discus-
sions, and LC=supporting systemic discrimination
against women as a group. However, the sentence
is indirectly expressing hostility even using “I like
~”. In this case, most models still struggle to predict
that it contains a negative intention.

5.3 Hierarchical Loss Contribution

Table 3 shows the performances of DeBERTa-V3
according to the combination of loss hierarchies.
We observed that using the loss of similar tasks
performs better rather than using whole loss terms.
For example, in the results on Task A, the model
trained with LA and LB slightly outperforms than
the result with LA + LB + LC . Similarly, using
LB and LC shows significant improvements over
other results in Task B. However, we found that LA

and LC are not compatible and conjecture this is
due to the gap of class granularity between tasks,
thus the model hardly benefits from other tasks.

6 Conclusion

In this paper, we study the detection of online sex-
ism and the categorization of the underlying rea-
sons for sexism. We train a DeBERTa-V3 classifier
to learn fine-grained representations of sexism in
online expression. Results from our experiments
show a combination of labels with finer-grained la-
bels generally improves classification performance.
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