@inproceedings{tsunokake-etal-2023-hitachi,
title = "Hitachi at {S}em{E}val-2023 Task 4: Exploring Various Task Formulations Reveals the Importance of Description Texts on Human Values",
author = "Tsunokake, Masaya and
Yamaguchi, Atsuki and
Koreeda, Yuta and
Ozaki, Hiroaki and
Sogawa, Yasuhiro",
editor = {Ojha, Atul Kr. and
Do{\u{g}}ru{\"o}z, A. Seza and
Da San Martino, Giovanni and
Tayyar Madabushi, Harish and
Kumar, Ritesh and
Sartori, Elisa},
booktitle = "Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.semeval-1.240",
doi = "10.18653/v1/2023.semeval-1.240",
pages = "1723--1735",
abstract = "This paper describes our participation in SemEval-2023 Task 4, ValueEval: Identification of Human Values behind Arguments. The aim of this task is to identify whether or not an input text supports each of the 20 pre-defined human values. Previous work on human value detection has shown the effectiveness of a sequence classification approach using BERT. However, little is known about what type of task formulation is suitable for the task. To this end, this paper explores various task formulations, including sequence classification, question answering, and question answering with chain-of-thought prompting and evaluates their performances on the shared task dataset. Experiments show that a zero-shot approach is not as effective as other methods, and there is no one approach that is optimal in every scenario. Our analysis also reveals that utilizing the descriptions of human values can help to improve performance.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="tsunokake-etal-2023-hitachi">
<titleInfo>
<title>Hitachi at SemEval-2023 Task 4: Exploring Various Task Formulations Reveals the Importance of Description Texts on Human Values</title>
</titleInfo>
<name type="personal">
<namePart type="given">Masaya</namePart>
<namePart type="family">Tsunokake</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Atsuki</namePart>
<namePart type="family">Yamaguchi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuta</namePart>
<namePart type="family">Koreeda</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hiroaki</namePart>
<namePart type="family">Ozaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yasuhiro</namePart>
<namePart type="family">Sogawa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Atul</namePart>
<namePart type="given">Kr.</namePart>
<namePart type="family">Ojha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="given">Seza</namePart>
<namePart type="family">Doğruöz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giovanni</namePart>
<namePart type="family">Da San Martino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Harish</namePart>
<namePart type="family">Tayyar Madabushi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ritesh</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elisa</namePart>
<namePart type="family">Sartori</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes our participation in SemEval-2023 Task 4, ValueEval: Identification of Human Values behind Arguments. The aim of this task is to identify whether or not an input text supports each of the 20 pre-defined human values. Previous work on human value detection has shown the effectiveness of a sequence classification approach using BERT. However, little is known about what type of task formulation is suitable for the task. To this end, this paper explores various task formulations, including sequence classification, question answering, and question answering with chain-of-thought prompting and evaluates their performances on the shared task dataset. Experiments show that a zero-shot approach is not as effective as other methods, and there is no one approach that is optimal in every scenario. Our analysis also reveals that utilizing the descriptions of human values can help to improve performance.</abstract>
<identifier type="citekey">tsunokake-etal-2023-hitachi</identifier>
<identifier type="doi">10.18653/v1/2023.semeval-1.240</identifier>
<location>
<url>https://aclanthology.org/2023.semeval-1.240</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>1723</start>
<end>1735</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Hitachi at SemEval-2023 Task 4: Exploring Various Task Formulations Reveals the Importance of Description Texts on Human Values
%A Tsunokake, Masaya
%A Yamaguchi, Atsuki
%A Koreeda, Yuta
%A Ozaki, Hiroaki
%A Sogawa, Yasuhiro
%Y Ojha, Atul Kr.
%Y Doğruöz, A. Seza
%Y Da San Martino, Giovanni
%Y Tayyar Madabushi, Harish
%Y Kumar, Ritesh
%Y Sartori, Elisa
%S Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F tsunokake-etal-2023-hitachi
%X This paper describes our participation in SemEval-2023 Task 4, ValueEval: Identification of Human Values behind Arguments. The aim of this task is to identify whether or not an input text supports each of the 20 pre-defined human values. Previous work on human value detection has shown the effectiveness of a sequence classification approach using BERT. However, little is known about what type of task formulation is suitable for the task. To this end, this paper explores various task formulations, including sequence classification, question answering, and question answering with chain-of-thought prompting and evaluates their performances on the shared task dataset. Experiments show that a zero-shot approach is not as effective as other methods, and there is no one approach that is optimal in every scenario. Our analysis also reveals that utilizing the descriptions of human values can help to improve performance.
%R 10.18653/v1/2023.semeval-1.240
%U https://aclanthology.org/2023.semeval-1.240
%U https://doi.org/10.18653/v1/2023.semeval-1.240
%P 1723-1735
Markdown (Informal)
[Hitachi at SemEval-2023 Task 4: Exploring Various Task Formulations Reveals the Importance of Description Texts on Human Values](https://aclanthology.org/2023.semeval-1.240) (Tsunokake et al., SemEval 2023)
ACL