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Abstract

We conduct a comparison of pre-trained
encoder-only and decoder-only language mod-
els with and without continued pre-training, to
detect online sexism. Our fine-tuning-based
classifier system achieved the 16th rank in the
SemEval 2023 Shared Task 10 Subtask A that
asks to distinguish sexist and non-sexist texts.
Additionally, we conduct experiments aimed
at enhancing the interpretability of systems de-
signed to detect online sexism. Our findings
provide insights into the features and decision-
making processes underlying our classifier sys-
tem, thereby contributing to a broader effort to
develop explainable AI models to detect online
sexism.

1 Introduction

Sexism represents “assumptions, beliefs, theories,
stereotypes, and broader cultural narratives that
represent men and women as importantly differ-
ent” (Manne, 2017). Sexist beliefs construct and
strengthen narratives that normalise gender distinc-
tions between males and females by promoting the
idea of innate variances between the two genders.
According to feminist studies (Drakett et al., 2018;
Andreasen, 2021), occurrences of online sexism
and harassment are frequently depicted as “permis-
sible” by presenting them as a kind of amusement
or joke. Challenging these narratives and working
to eliminate gender-based discrimination is crucial
to creating a more just and equitable society, espe-
cially over the internet.

The shared task Explainable Detection of Online
Sexism (EDOS) was part of SemEval 2023 and
there were three subtasks associated with it (Kirk
et al., 2023). This paper describes the DCU system
submitted for all the three subtasks of the EDOS
shared task.

Subtask A The first subtask is a straightforward
binary classification problem, in which the system

has to classify a textual phrase or a sentence as
sexist or not sexist.

Subtask B The second subtask is a mutli-class
classification problem, in which the system has to
classify a social media post in one of four different
categories: (a) threats, (b) derogation, (c) animosity
and (d) prejudiced discussions.

Subtask C The third subtask is a fine-grained
classification problem, in which the system has
to classify the sexist textual phrase or sentence
in eleven sub-types of the earlier mentioned four
categories of Subtask B.

Sections 3 and 4 describe our system in detail.
The results of our system are discussed in Section 5.
Furthermore, since the shared-task pertains to “ex-
plainable” detection of online sexism, we have
made an extra effort contributing towards the in-
terpretability of classification systems. To achieve
this objective, we recruited two gender studies and
one online harm research scholars to annotate ten
randomly selected phrases that our submitted sys-
tem failed to accurately classify as “sexist” and
“not sexist”. These contributions are discussed in
Section 6.

2 Background

We build on fine-tuning pre-trained language mod-
els (LMs), a method that has improved many tasks
in natural language processing (NLP) over the past
four years (Howard and Ruder, 2018; Radford et al.,
2018; Devlin et al., 2019; Ruder et al., 2019; Zhang
et al., 2021). This method can be categorised as
transfer learning as it transfers from one or more
pre-training tasks to the target task(s). For transfer
learning to be successful, the characteristics of the
data used in the pre-training stage should match
those of the target task to ensure that the model can
transfer relevant knowledge to the new target task.
Howard and Ruder (2018) and Gururangan et al.
(2020) find that the closer the statistical properties
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of the pre-training tasks are to the target task, the
more likely is success of transfer learning. Fur-
thermore, it has been observed that continued pre-
training on in-domain data improves downstream
task performance as compared to relying on out-
of-domain data only (Gururangan et al., 2020; Sun
et al., 2019; Zhang et al., 2021; Karan and Šnajder,
2018; Talat et al., 2018).

Several recent studies have explored the detec-
tion of sexist content in social media. Chiril et al.
(2020) introduce a unique method for characteris-
ing sexist content using speech acts theory. Having
collected and annotated 12,000 French tweets, they
conduct experiments in sexism detection using con-
volutional neural networks (CNN), bidirectional
recurrent LSTM networks with an attention mech-
anism and a BERT language model. In contrast,
Samory et al. (2021) aim to improve construct va-
lidity and reliability in sexism detection by gener-
ating adversarial examples. They conduct experi-
ments for sexism detection with CNN and BERT
language model and detect both online benevolence
and hostility, comparing against Jigsaw’s Perspec-
tive API (Jigsaw and Google, 2017) as a baseline.
Also, Mina et al. (2021) present their sexism iden-
tification system for the sexism identification in
social networks (EXIST) shared task at IberLEF
2021 (Rodríguez-Sánchez et al., 2021), and they
leverage both pre-training and fine-tuning strate-
gies with encoder-only language models, earning
them 5th and 6th rank in the shared task.

3 System Overview

Our system is based on two foundational encoder-
only pre-trained LMs, and one decoder-only pre-
trained LM, described in Section 3.1. Figure 1
shows the components of our system.

The first block shows continued pre-training of
the two encoder-only pre-trained LMs with ad-
ditional in-domain data and is described in Sec-
tions 3.2 and 3.3 below. The second block shows
fine-tuning for Subtask A, a binary classification
task. We fine-tune (a) models from the first block
and (b) off-the-shelf models, both encoder and
decoder LMs. The third block depicts a one-vs-
all multiclass classification scheme built by fine-
tuning an LM on individual categories of Subtask
B. Predictions are made based on which label re-
ceives the highest probabilities from the four bi-
nary classifiers. We experiment with both encoder
and decoder LMs. The final block of the system

overview shows a fusion of pre-trained LM-based
and traditional machine learning methods for Sub-
task C. This involves training traditional machine
learning algorithms, namely logistic regression and
nearest neighbor, by aggregating sentence embed-
dings from both the encoder- and decoder-only pre-
trained LMs.

Section 3.4 below discusses the task-specific
blocks in more detail. We make our imple-
mentation available on https://github.com/
kanishk-adapt/semeval-task10.

3.1 Foundation Models
As the starting point for continued pre-training
and/or fine-tuning, we leverage two encoder-only
language models, BERTbase−uncased (Devlin et al.,
2019) and HateBERTbase−uncased (Caselli et al.,
2021). In addition, we fine-tune two decoder-only
language models, namely Open Pretrained Trans-
formers (OPT) with 350 million and 1.3 billion
parameters (Zhang et al., 2022).1

3.2 In-domain Datasets
For continued pre-training on in-domain data, we
leveraged the combined two million sentences from
the unlabelled datasets made available by Kirk et al.
(2023). In addition, we leverage approximately
one million sentences related to hate speech, on-
line abuse and offensive language from various
sources2 (Davidson et al., 2017; Founta et al., 2018;
Kirk et al., 2023; Kolhatkar et al., 2020; Kurrek
et al., 2020; Mollas et al., 2022; Mathew et al.,
2021; Pavlopoulos et al., 2020; Samory et al., 2021;
Waseem, 2016; Wulczyn et al., 2017; Zampieri
et al., 2019).

Table 1 shows the size and type of each data set
used for continued pre-training.

3.3 Continued Pre-training
For continued pre-training of BERTbase−uncased,
and HateBERTbase−uncased, we experiment with
(a) training for both the next sentence prediction
task3 (NSP) and the masked language modelling
tasks4 (MLM), and (b) training only with the MLM

1We access these models using the Huggingface trans-
former library (Wolf et al., 2020).

2https://hatespeechdata.com
3Next sentence prediction task is a technique used while

training LMs where two sequences are combined as input.
The sequences may or may not be next to each other in the
original text. Then, the language model has to predict if the
two sequences were one after the other or not.

4Masked language modelling task is a technique wherein
at the time of pretraining 15% of the words in a sentence are
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Figure 1: System overview
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Author(s) Size Dataset Type
Wulczyn et al. (2017) 115,864 Pers. Attacks
Kolhatkar et al. (2020) 692,448 Unh. conv.
Mollas et al. (2022) 998 Hate Speech
Mathew et al. (2021) 20,148 Hate Speech
Zampieri et al. (2019) 13,240 Offensive lang.
Kurrek et al. (2020) 40,003 Abusive lang.
Samory et al. (2021) 13,631 Sexist
Davidson et al. (2017) 24,783 Hate Speech
Waseem (2016) 2,596 Hate Speech
Pavlopoulos et al. (2020) 19,915 Toxic lang.
Founta et al. (2018) 14,871 Abusive lang.
Kirk et al. (2023) GAB 1,000,000 Unlab. dataset
Kirk et al. (2023) Reddit 1,000,000 Unlab. dataset
Total 2,958,497 –

Table 1: Unlabelled data used for continued pre-training
and fine-tuning. The size represents number of sen-
tences or posts that were successfully retrieved from
the dataset. Pers. = Personal, Unh. conv. = unhealthy
conversations, lang. = language, Unlab. = Unlabelled
(shared task).

task. The aim of continued pre-training is domain
adaptation, i. e. to enhance the ability of the LMs
to produce useful representations for internet lan-
guage, which may include offensive, abusive, or
hurtful content. The ultimate objective, however, is
to develop a system for the downstream tasks. To
select the best pre-trained LMs for fine-tuning, we
use perplexity5 on in-domain data and, for the best
epoch only, macro-average F1-score in Subtask A.
To measure Subtask A performance, we fine-tune
each candidate model by adding a fully connected
layer at the top of the candidate model, see details
of Subtask A below.

3.4 Target Task LM Fine-tuning

In Subtasks A, B and C of the EDOS challenge,
we are asked to perform binary, multi-class and
fine-grained classification, respectively. For Sub-
tasks A and B, we adopted the standard approach
of fine-tuning both encoder-only and decoder-only
models for text classification by placing a fully
connected layer over the [CLS] output of the LMs.
This approach has been widely used for detect-
ing offensive, abusive, or bullying language us-
ing encoder-only language models such as BERT,
ALBERT, or RoBERTa (Wiedemann et al., 2020),
and has produced satisfactory results in English
(Zampieri et al., 2020; Ozler et al., 2020; Koufakou
et al., 2020; Elsafoury et al., 2021; Verma et al.,

randomly masked and the language model has to predict the
masked words.

5Perplexity measures a model’s surprise about the next
word in a sequence based on the previous words.

2022a,b).
In addition, we fine-tuned the language models

for six encoder-only LMs, namely the base versions
of BERTbase−uncased and HateBERTbase−uncased,
our continued pre-trained encoder-only LMs
BERTnsp+mlm, BERTmlm+, HateBERTnsp+mlm

and HateBERTmlm+, and two decoder-only LMs,
namely OPT-350M and OPT-1.3B.

Subtask A: Binary Classification To classify
a given text input as either “sexist” or “not sex-
ist”, we fine-tune all versions of the earlier men-
tioned encoder-only LMs, i. e. the base versions
and both the continued pre-trained versions, first
using an 80:20 split of the shared task training data.
We do so by fine-tuning the pre-trained language
models (PLMs) on the target task with a classifi-
cation head on top of the last output for the [CLS]
token (as opposed to freezing the PLM parame-
ters and only training the classificaiotn head). We
identify the best performing encoder-only language
models according to macro-average F1-score. Fur-
thermore, we also fine-tune two decoder-only LMs,
OPT-350m and OPT-1.3B on the same split of train-
ing data and identify the best-performing one. To
determine the range of hyper-parameters to explore
in our hyper-parameter search, we examine simi-
lar experiments conducted on hate, abusive, bully-
ing and offensive language datasets (Ozler et al.,
2020; Koufakou et al., 2020; Elsafoury et al., 2021;
Verma et al., 2022a,b). For tracking experiments
and selecting the optimal combination of hyper-
parameters, we use Weights & Biases (Biewald,
2020) and conduct a grid-search, iterating over all
possible combinations of hyper-parameters.

Subtask B: Coarse Classification In Subtask B,
the system must classify an input into one of four
categories: threat, derogation, animosity, or preju-
diced discussion. To achieve this, we use a cascad-
ing and voting approach and restrict experiments to
the best performing encoder-only and decoder-only
LMs from Subtask A according to development
set results. The first step of this approach involves
transforming the original multi-class classification
problem into multiple binary one vs. all classifi-
cation problems. This is accomplished by creating
four distinct sets of training and validation data,
with each label being converted into a positive sam-
ple while the other labels are treated as negative
samples (one versus three classification). For the
“threat” model, for example, all instances with the
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label “threat” are positive samples while those with
the labels “derogation,” “animosity” and “preju-
diced discussion” are negative samples. Next, both
the encoder-only and decoder-only are fine-tuned
for each binary classification task. To determine
the best-performing model for each label, the per-
formance of each model is then evaluated for each
label on the respective validation set. This process
results in a reduction of the number of models used
from eight to four. Finally, the best four models are
utilized to assign a probability to each label, and
the label with the highest probability is selected as
the final prediction. This approach enables us to
leverage the most accurate model for each label.

Subtask C: Fine-grained Classification This
subtask increases the number of categories to be
predicted for a given text input to eleven, making
this subtask the most complex and nuanced in this
shared task. We experiment with logistic regression
(LR) and k-nearest neighbor (k-NN) using docu-
ment vectors as features and two types of document
vectors. For the first type of document vectors, we
pool the contextual word embeddings of our best
fine-tuned encoder-only LM for Subtask A. The
second type of document vectors is obtained in the
same way but for the the best fine-tuned decoder-
only LM for Subtask A. We then train LR and
k-NN for each type of document vectors, produc-
ing four predictors. We select the best predictor
according to development data.

4 Experimental Setup

4.1 Internal Training and Development Sets
Since the labels of the official development set
had been withheld for the main part of the devel-
opment phase, we split the official training into
five folds with equal number of training instances
and create five internal training sets as for cross-
validation. However, due to time constraints and
the sufficiently high number of test items in each
fold, we only use the first 80:20 split during devel-
opment, labelled “80:20” below.6 Cross-validation
results labelled “5-fold” below have been obtained
after the competition.

4.2 Pre-processing of In-domain Data
In order to further pre-train encoder-only language
models, we utilize raw textual data as detailed in

6We use a sequential split with no randomisation as an
inspection of the label distribution suggests that the shared
task organisers shuffled the data.

Section 3.2. As usernames and URLs were con-
cealed with the placeholders [user] and [url], re-
spectively, in the original task dataset, we adopted
the same masking technique when preparing in-
domain data for pre-training. Moreover, we elimi-
nated non-ASCII characters7 and retweet markers
in Twitter-derived text datasets.

4.3 Training Details

Continued Pre-training Continued pre-training
(Section 3.3) is performed on a single Nvidia
RTXA6000 GPU. The experiment is tracked us-
ing Weights & Biases (Biewald, 2020). Based on
previous exploration of hyper-parameters (Devlin
et al., 2019; Caselli et al., 2021; Liu et al., 2019),
we set the learning rate to 5× 10−5, weight decay
rate to 0.01, the seed value to ten and batch size to
16, and we train for ten epochs.

Fine-tuning for Subtask A We fine-tune two
pre-trained versions each of the two encoder-
only LMs (BERTnsp+mlm, BERTmlm, and
HateBERTnsp+mlm and HateBERTmlm) on 80%
of the training data. The range of hyper-parameters
and hardware used for training is described in Ap-
pendix A.

The F1-macro scores are observed on the valida-
tion set to identify the top-performing LM among
the four pre-trained LMs. After shortlisting the best
encoder-only pre-trained LM, using the same set
of hyper-parameters we fine-tune two decoder-only
LMs, OPT-1.3B and OPT-350m. This fine-tuning
is conducted on five different subsets of the training
data that are created in the manner of a five-fold
cross-validation.8

Voting in Subtask A After fine-tuning both the
best decoder-only and best encoder-only language
models (LMs) using five training sets, we select the
top five LMs out of the ten LM combinations i. e.
five combinations each for best encoder-only and
decoder-only LM. To generate the final predictions,
we employ a majority voting method by combining
the (hard) predictions from these five classifiers. In
case of a tie in voting, we randomly pick from the
set of labels in the tie.

7Future work should test whether this helps to reduce noise
or helpful information is removed, e. g. from emoticons.

8We do not evaluate on the held-out data but directly on
the shared-task provided development data, except for the first
fold for which we evaluate on both development data and
held-out data.
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Fine-tuning for Subtask B As explained in Sec-
tion 3.4, we address Subtask B by training four
binary classifiers, one for each label, and training
in the context of PLMs means fine-tuning. We fine-
tune both the best-performing encoder-only and
the best-performing decoder-only LMs for the four
binary classification tasks. Subsequently, we assess
the performance of each fine-tuned model using F1-
macro in the binary classification task it was tuned
for. We then pick, for each of the four target labels,
the best model from the available two models that
have been tuned for the binary classification task
for that target label. The selected four models are
then used as described in Section 3.4 to make the
final prediction.

Training for Subtask C For Subtask C, we train
k-NN and LR classifiers on document embeddings
(Section 3.4) for each of our five subsets of 80%
of the training data created in the manner of 5-
fold cross-validation. For LR, we tune the penalty
term of L2 regularization, also known as the ridge
classifier, with a grid-search and cross-validation.

5 Results

In this section, we present results from our devel-
opment steps of building our system.9 All tables
show F1-macro average scores in percentages.

5.1 Continued Pre-training Results

Our results for continued pre-training on in-domain
are depicted in Figures 2 and 3. For continued
pre-training with both NSP and MLM tasks, we
observe a reduction of LM performance in terms
of both LM perplexity (Salazar et al., 2020) and
efficiency in downstream tasks, here Subtask A, in
Figure 3. On the contrary, continued pre-training
with only the MLM task improves the performance
by more than 2% F1-macro score compared to the
base models (Figure 3).

The left-most sub-figures of Figure 2 show that
continued pre-training with only the MLM objec-
tive reduces perplexity, whereas right-most sub-
figures in the same figure show an increase in per-
plexity with epoch progression for the standard
BERT pre-training objective combining MLM and
NSP. This indicates that the combined NSP and
MLM training objective is not suitable for the se-
lected data. We speculate that this is due to the

9Appendix B provides baselines using hand-crafted fea-
tures as a control for errors in training our PLM-based systems.

Type Model Type F1

Encoder-only BERT
base-uncased 81.39
NSP+MLM 80.09
MLM 82.89

Encoder-only HateBERT
base-uncased 82.52
NSP+MLM 81.45
MLM 84.30

Decoder-only OPT 350 M 82.61
1.3 B 84.10

Table 2: Subtask A results on 80:20 split. NSP = Next
Sentence Prediction, MLM = Masked Language Mod-
elling.

Model Type Dev. F1 Test F1
HateBERT MLM 84.30 -
OPT 1.3 B 84.83 -
HateBERT + OPT1.3B Voting 84.91 85.59

Table 3: Subtask A development and test set results.
The HateBERT LM is HateBERTmlm+.

dominance of very short documents in the data not
providing the needed continuity for the NSP task.

Overall, the results shown in Figures 2 and 3 in-
dicate that HateBERTmlm+ is the best performing
encoder-only LMs in our experiment.

5.2 Results for Target Tasks

Subtask A As previously stated in Sections 3.3
and 3.4, we utilize the F1-macro score as a metric
to assess the impact of domain adaptation with con-
tinued pre-training on our classifier’s performance.
Table 2 shows our results obtained on the test set
of our “80:20“ split, thereby revealing the best-
performing LMs for the task among our choice of
encoder-only and decoder-only LMs. We see that
all the models are competitive with comparable
F1-macro scores. However, HateBERTmlm+ and
OPT-1.3B appears to give the overall best perfor-
mance of the encoder-only and decoder-only LMs
respectively. In Table 7 (Appendix C), we pro-
vide the results of both models under 5-fold cross-
validation. In Table 3, we observe that both models
achieve similar F1 scores on the development set
task labels. By applying the voting mechanism dis-
cussed in Section 3.4, we achieve a performance
improvement of nearly 1% on the development set
and an F1 score of 0.8559 on the test set which
places us 16th among the 89 participating teams for
Subtask A.

Subtask B Our strategy for Subtask B involves
assessing the performance of HateBERTmlm+ and
OPT-1.3B for each label on our "80:20" split of
training data, and the results are presented in Ta-
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Figure 2: Perplexity scores of each continued pre-training strategy (from 3rd epoch onwards and y-axes limited to
(0,10) for comparability)

Figure 3: Performance of LMs with both continued
pre-training and fine-tuning of base models based on
F1-macro score grouped by LMs

ble 4. We observe that HateBERTmlm+ outper-
forms OPT-1.3B for each label, indicating that
encoder-only language models are better suited for
our one-vs-all approach than decoder-only LMs,
such as OPT-1.3B. To determine which combina-
tions of language models would improve our one-
vs-all approach for Subtask B, we conducted 5-fold
cross-validation. The results, shown in Table 5,
indicate that our best-performing combination is
with HateBERTmlm+, resulting in an F1-score of
0.54 on the development set and 0.5104 on the test
set. Our approach earned us a ranking of 59th out
of the 69 participating teams for Subtask B.

Label HB OPT
Threats. 85.09 48.14
Derog. 66.77 35.08
Animosity 65.73 38.66
Prejudice. 71.48 47.40

Table 4: F1 scores of the binary classifiers considered as
candidates for the Subtask B system, trained and tested
using our primary 80:20 split. HB = HateBERTmlm+,
OPT = OPT-1.3B, Threats = 1. Threats, plans to harm
and incitement, Derog. = 2. Derogation, Animosity = 3.
Animosity, Prejudice. = 4. Prejudiced Discussions.

Model Dev. F1 Test F1
HateBERT+ 54.00 51.04
OPT-1.3B 24.00 -

Table 5: Subtask B development and test set macro F1
scores for the combination of HateBERT-based classi-
fiers and for the corresponding OPT-1.3B-based classi-
fiers.

LM Trad. ML Dev. F1 Test F1

OPT-1.3B LR 15.35 -
K-NN 15.00 -

HateBERTmlm+
LR 43.16 37.95
K-NN 40.16 -

Table 6: Subtask C results on Development and Test-set
{LM. = Language Model, Trad. ML = Traditional Ma-
chine Learning technique, Dev. F1 = Development set
F1-macro, Test. F1 = Test set F1-macro, LR. = Logisitic
Regression, K-NN = K-Nearest Neighbour}
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Subtask C Our results in Table 6 show
good performance for the encoder-only LM
HateBERTmlm+ with both machine learning meth-
ods, yielding F1-macro scores over 40%. The best
performance is reached with LR, three percentage
points above k-NN. With our decoder-only LM,
however, the F1-macro score is considerably lower,
just over 15%. On the test set, our simple fusion ap-
proach, which involved using HateBERTmlm+ sen-
tence embeddings and Logistic Regression, yields
an F1-macro score of 0.3795, earning our team
a ranking of 38th out of 63 participating teams.
These results indicate the effectiveness of our strat-
egy for Subtask C and suggest the potential for
further exploration of encoder-only LMs in other
natural language processing tasks.

6 Towards “Explainable” Online Sexism
Detection

Taking steps towards “explainable” detection of
sexism, we analysed the decisions made by our
submitted system for Subtask A, where it incor-
rectly classified certain phrases or sentences as ei-
ther “sexist” or “not-sexist” as annotated by (Kirk
et al., 2023). To achieve this, we randomly select
ten samples from the test set that our submitted sys-
tem failed to classify accurately. Next, we calculate
the mean gradient importance scores for our best-
performing encoder-only LM, HateBERT (Verma
et al., 2022b; Elsafoury et al., 2021). These scores
are calculated using the Integrated Gradients al-
gorithm (Sundararajan et al., 2017) for PyTorch
(Kokhlikyan et al., 2020). To provide a zero-shot
comparison with our system, we also use Flan-
T5large (Chung et al., 2022) and ChatGPT.10 In or-
der to extract signals or rationales for the prediction,
we use input prompts as discussed in Appendix D.
Taking an adversarial approach, we hypothesise
that there is a bit of ambiguity in the ground truth
label released by the competition organizer.

In order to validate our hypothesis and provide
an explainable analysis, we recruit three social sci-
entists with expertise in gender studies to manually
assign labels to the selected samples. The task orga-
nizers employed the descriptive approach (Rottger
et al., 2022) for their annotation, but at the time
of our experiment, the annotation guidelines were
not publicly available. Consequently, we utilized

10A chat product based on the work of Ouyang et al.
(2022) made available by OpenAI https://openai.com/
blog/chatgpt

the definition of sexist content provided in the task
description to create our own annotation guidelines
outlined in Appendix E. Our annotation guidelines
provide clear instructions for annotators to follow,
instructing them to, (a) mark if the text is sexist
or not sexist, (b) select words that led to their
decision, and (c) rate their level of agreement with
the generated rationale by Flan-T5 and ChatGPT.

Our findings reveal that the inter-rater reliability
score among the annotators was 0.4821 for (a), cal-
culated using Krippendorff alpha. Furthermore, the
annotators disagreed with the original annotations
in four out of the five phrases that were originally
annotated as “not-sexist”. This suggests that the
ground truth annotations may not have been en-
tirely accurate and that there is a need for more nu-
anced and detailed annotations for phrases marked
as “not-sexist”. Considering how subjective and
emotive a gender-based subject could be, we rec-
ommend that future dataset should be annotated
or at least validated by persons with considerable
expertise in gender-based research.

After the competition, we were able to investi-
gate our hypothesis with the dataset released by
Kirk et al. (2023). Our analysis revealed that there
is ambiguity in the ground truth labels provided by
the competition organisers. For instance, the sen-
tence - id “sexism2022_english-15683”, in the
test split was individually annotated as “sexist”
by all three annotators recruited by the task organ-
isers. Our expert annotators also agreed with this
assessment. However, the aggregated labels shared
by the task organisers classified the sentence as
“not sexist”. Although (Kirk et al., 2023) state
that expert adjudication is reserved for cases with
less than 3/3 agreement (unanimous) in Subtask A,
our findings indicate that there is still some degree
of ambiguity in the ground truth labels provided by
the competition organisers.

7 Conclusion

We experimented with two encoder-only and one
decoder-only language models (LMs) for the
shared-task, including BERT (Devlin et al., 2019),
HateBERT (Caselli et al., 2021), and OPT (Zhang
et al., 2022). We also explored continued pre-
training strategies for encoder-only LMs, namely
BERT and HateBERT. Our observations support
the finding by Liu et al. (2019) that removing the
next sentence prediction task during pre-training
improves the LM’s performance. Our results indi-
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cate that both decoder-only and encoder-only LMs,
namely HateBERTmlm+ and OPT-1.3B, yield sim-
ilar results when fine-tuned by placing a fully con-
nected layer over the [CLS] output for binary clas-
sification. Moreover, we improved Subtask A per-
formance with a simple voting mechanism, build-
ing an ensemble of both the encoder- and decoder-
based classifiers. In Subtask B, we find a surpris-
ingly large performance difference between fine-
tuning HateBERT and fine-tuning OPT in our basic
one-vs-all approach, with OPT having difficulties
in all four binary classification sub-problems. Ad-
ditionally, we found that our approach of fusing
traditional machine learning algorithms for clas-
sification with document representations obtained
with encoder-only LMs works well for Subtask C.
Although this approach is simple, our rank indi-
cates that it can be further improved upon.

Furthermore, our study highlights the impor-
tance of interpretability and explainability in detec-
tion systems, particularly for sensitive issues such
as sexism. By using a combination of methods
such as input prompts, annotator feedback, and gra-
dient importance scores, we may gain a better un-
derstanding of how these systems make decisions
and identify areas for improvement. This can ulti-
mately lead to more reliable and accurate detection
of sexism and other forms of discrimination.

Acknowledgements

We acknowledge and express our sincere gratitude
to the domain expert annotators who generously
dedicated their time and expertise to annotate the
sentences on short notice. The research conducted
in this publication was funded by the Irish Re-
search Council and Google, Ireland, under grant
number EPSPG/2021/161. The second author has
received funding from the European Union’s Hori-
zon 2020 research and innovation programme un-
der the Marie Sklodowska-Curie grant agreement
No. 847402. This research was also conducted with
the financial support of Science Foundation Ire-
land under Grant Agreement No. 13/RC/2106_P2
at the ADAPT SFI Research Centre at Dublin City
University. ADAPT, the SFI Research Centre for
AI-Driven Digital Content Technology, is funded
by Science Foundation Ireland through the SFI
Research Centres Programme. For the purpose
of Open Access, the author has applied a CC BY
public copyright licence to any Author Accepted
Manuscript version arising from this submission.

References
Maja Brandt Andreasen. 2021. ‘rapeable’ and ‘unra-

peable’ women: the portrayal of sexual violence in
internet memes about# metoo. Journal of Gender
Studies, 30(1):102–113.

Lukas Biewald. 2020. Experiment tracking with
weights and biases. Software available from
wandb.com.

Steven Bird and Edward Loper. 2004. NLTK: The natu-
ral language toolkit. In Proceedings of the ACL In-
teractive Poster and Demonstration Sessions, pages
214–217, Barcelona, Spain. Association for Compu-
tational Linguistics.

Steven Bird, Edward Loper, and Ewan Klein. 2009.
Natural Language Processing with Python. O’Reilly
Media Inc.

Tommaso Caselli, Valerio Basile, Jelena Mitrović, and
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A Hyper-parameters & Hardware

We explore the following hyper-parameters for fine-
tuning:

• Learning rate: k × 10−5 with k = 1, 2, 3, 4, 5

• Weight-decay rate: 0.1, 0.01, 0.001

• Batch-size: 8, 16, 32

• Token Maximum Length: 128, 256

• Epochs: 2, 4, 6

We used a single RTXA6000 GPU for fine-
tuning both encoder and decoder-only LMs.

B Baseline System

We train baseline systems with Naïve Bayes, Deci-
sion Trees, Random Forests, Linear support vector
machines and XGBoost using hand-crafted features
described below.

Most of our hand-crafted features are n-gram
features extracted from the text input. For our fea-
ture set, we consider combinations of unigram, bi-
gram and trigram features. We extract both case-
sensitive and case-insensitive n-grams features and

apply a frequency cut-off to exclude n-grams that
are rare in the training data. We try two variants
of n-gram features: (a) binary indicator features
marking the presence of each n-gram and (b) in-
teger features counting the number of times each
n-gram occurs in the input. For all n-gram features,
we considered whether to add n − 1 padding to-
kens at the start and end of each input text. Other
features include n-grams over POS sequences, de-
pendency labels and token-level sentiment predic-
tions, and the number of input tokens that appear
in clusters of domain words (one feature per clus-
ter). To build our word clusters, we first select all
content words from the training items labelled as
sexist with (a) negative and (b) positive sentiment
polarity11 and their in-context word vectors accord-
ing to HateBERT and OPT. The word vectors for
each polarity and PLM are then partitioned into
five clusters of semantically related domain words,
producing 2× 2× 5 = 20 word lists in total.

We compare results for the following four to-
kenisers as the choice of text preprocessing influ-
ences what features are being extracted: simply
splitting at whitespace, NLTK12 (Bird and Loper,
2004; Bird et al., 2009), spaCy13 (Honnibal and
Johnson, 2015) and Gensim14 (Řehůřek and So-
jka, 2010). Gensim in particular has a big impact
on the extracted n-gram features as it deletes all
punctuation.

Dependency Parsing To extract syntactic de-
pendencies within text data, we leverage the
SpaCy library (Honnibal and Johnson, 2015) and
the en_core_web_trf statistical model which in-
cludes Roberta-base features to extract dependency
tags.

Sentiment Prediction Each token in the text is la-
belled with a sentiment polarity (positive, negative
or neutral) using the library NLTK Vader (Hutto
and Gilbert, 2014).

Soft Clipping of Frequency Counts We exper-
iment with raising frequency counts to the power
of α with 0 < α < 1 to obtain feature values.
For α approaching 0 (limα→0), non-zero counts
are mapped close to 1, making the features similar
to binary indicator features. For α approaching
1 (limα→1), the identity function is approximated.

11Annotated with NLTK Vader (Hutto and Gilbert, 2014)
12https://www.nltk.org/
13https://spacy.io
14https://radimrehurek.com/gensim/intro.html
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For α = 0.5, the square root of each frequency
count is used, reducing the magnitude of feature
values.15

Data Augmentation We explore data augmen-
tation using the concatenation of three documents
with the same fine-grained Subtask C label.16

As the concatenation of documents increases
the expected magnitude of our hand-crafted fea-
ture vectors, we experiment with normalisation of
feature vectors before or after clipping frequency
counts to binary presence indicators.

Experimental Setup As the purpose of the base-
line system is only to provide a lower bound that
indicates a problem with a PLM-based system if
the PLM-based system’s performance falls below
the lower bound, we only perform light, unsys-
tematic tuning of hyper-parameters, tuning each
hyper-parameter as the corresponding feature is im-
plemented. We start with comparing a few variants
of Naïve Bayes, including the use of a uniform
prior and a prior set according to the label distribu-
tion in the training data. Then we consider decision
trees and tune the minimum leaf size, and we ex-
tend the approach to random forests. Finally, we
add n-gram features based on POS tags, depen-
dency labels and word-level sentiment polarity, and
add linear support vector machines and XGBoost
as classifiers.

Subtask A Baseline Results Our first baseline
macro F1 for Subtask A was 69.20% with Naive-
Bayes and string.split() as tokeniser, i. e. with-
out separation of punctuation, using our 80:20 split.
Using the gensim tokeniser that skips punctuation,
F1 improves to 69.50%. Switching to decision trees
and tuning the minimum leaf size, F1 further im-
proves to 72.90. Adding POS tag, dependency and
sentiment n-gram features, we improve to 73.70.
However, we find that using more features is not
always better as we get degraded performance of
71.60 when combining tags to complex tags such as
“NOUN:positive” before building n-grams. With
some more feature tuning, including the use of
case-insensitive n-grams, F1 growth to 74.62.

Subtask B Baseline Results Our first Subtask
B baseline macro F1 with XGBoost is 44.12%,

15This transformation has no effect on decision tree learning
as the ranking of feature values is not changed.

16We also tried using the task B label in task B but this did
not perform as well as using the task C label for choosing the
candidate documents for concatenation.

It is not clear from our logs whether this is for
our 80:20 split or on the official development set.
Re-evaluating with the best three Subtask A classi-
fiers and different types of data augmentation, we
find better performance with LinearSVM, data aug-
mentation based on document concatenation and
normalisation of the frequency counts by the num-
ber of documents concatenated: macro F1 49.08%.
However, with document augmentation, we find
that the random seed that influences the random
samples of documents to be concatenated affects
performance a lot. In 25 repetitions with differ-
ent random seeds, macro F1 ranges from 46.51%
to 50.51% (average 48.37%) trained on 80% of
training data but tested on the official development
set.

Training on the full official training data, the de-
velopment macro F1 average over 25 runs drops to
47.32% (range 45.94% to 49.45%). This confirms
our observations with PLMs that adding the last
20% of training data is harmful.

Subtask C Baseline Results Our first Subtask C
baselines macro F1 with XGBoost is 23.01%. As
for Subtask B, it is not clear which development
set was used. Our first Subtask C result training
on the full training set and testing on the official
development data is 23.87%.

Trying to boost this performance with an en-
semble of classifiers, we observe a degradation of
performance. Analysing the predictions of individ-
ual classifiers and the ensemble for cases where
performance drops, we find that for each test item
only a different minority of classifiers matches the
gold label and often the majority is wrong. For
example, if there are three test items and classifier
i predicts the correct label for item i, individual
accuracy will be 1/3 but ensemble accuracy will be
zero. We conclude that a simple majority voting
ensemble should always be evaluated before use as
it cannot be assumed to never harm performance.

With 25 runs, we get an average macro F1 of
23.25% when training on 80% and testing on the of-
ficial development data (range 22.15% to 24.94%).
This mildly improves to 23.58% (range 22.12% to
25.47%) when training on the full training set.

C Cross-validation Results

Table 7 shows cross-validation results in Subtask
A.
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Fold F1-macro-average
HateBERTmlm+ OPT-1.3B

1 83.46 84.83
2 82.45 84.64
3 82.91 84.29
4 84.30 84.07
5 83.62 84.44

Average 83.35 84.45

Table 7: Subtask A results on five-fold cross-validation

D Prompts

D.1 Chat-GPT Prompt
Imagine you are an ethics control officer and would
like to identify sexist comments and provide a ra-
tionale for your prediction. I will be providing you
some text, your task will be to analyse if the text
is sexist or not sexist. You can only predict one of
both categories, either the text is sexist or neutral.
Your second task is to identify any words or signals
in the text which informs your prediction. The third
task is to provide a rationale for your prediction,
i.e., why you think the text is sexist or not. You
should provide your response in a standard json
format. Do you understand the task?

D.2 Flan-T5 Prompt
We use the following prompts for Flan-T5:

• Answer the following question, identify if the
following sentence is “sexist” or “not sexist”,
Sentence: [input sentence]

• Answer the following question, identify
key phrases or words or signals from
the [sexist or not-sexist] sentence
[input sentence]

• Answer the following question, de-
scribe why the following sentence is
[sexist or not-sexist]. Start by writing
I base my decision on. . .

E Annotation Guideline

Step 1

• Start by reading the text, the prediction made
by the two systems, lets call them System-A
and System-B.

• The prediction is either “sexist” or “not sexist”
i.e., whether or not the text has abusive or

negative sentiment directed towards women
or their gender.

• Each text has a unique “ID” which you can
ignore.

• You can find the text in column B, predictions
made by System-A and B in columns C and E
respectively.

Step 2

• After you have read the sentence, the predic-
tions, take some time to evaluate your level
of agreement or disagreement with the predic-
tion of System-A and B.

• You can use a 5-point likert scale to rate your
level of agreement, with 1 meaning strongly
disagree and 5 meaning strongly agree. For
example, if you completely agree with the
prediction and rationale, you would rate it as
a 5-Strongly Agree. If you’re not sure or have
some reservations, you could rate it as a 3-Not
sure.

• You can use the columns D and F in the spread-
sheet to rate your level of agreement with pre-
dictions made by System-A and B.

Step 3

• In addition to rating your agreement level,
we ask you to a) provide your decision if the
text is sexist or not-sexist, and b) identify any
words or phrases in the text which informs
your decision.

• You can use columns G and H in the spread-
sheet to provide your decision and to select
words or phrases which inform the decision,
respectively.

• For example, the text “women are drama
queen”, has a negative sentiment directed to-
wards women hence it can be sexist, and the
words “drama queen”, present in the text in-
form my agreement. So, I will mark the text
as “sexist” in column G and add the words
“drama queen” in column H.

• Please note that the task organisers defined
“sexist” as “any abuse or negative sentiment
that is directed towards women based on their
gender, or based on their gender combined
with one or more other identity attributes
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(e.g. Black women, Muslim women, Trans
women)”. So please refer to this definition
while providing your decision.

Step 4

• Once you’ve completed Step-3, take some
time to go through the columns I and K which
represent the rationale for the decision making
by System-A and System-B.

• You have an option to provide a written expla-
nation of your agreement with the rationale
by System-A and System-B in columns I and
K respectively. You can start by writing “For
instance, I think. . . .”
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