
Proceedings of the The 17th International Workshop on Semantic Evaluation (SemEval-2023), pages 1769–1775
July 13-14, 2023 ©2023 Association for Computational Linguistics

Stanford MLab at SemEval 2023 Task 7:
Neural Methods for Clinical Trial Report NLI

Conner Takehana, Dylan Lim, Emirhan Kurtulus, Ramya Iyer, Ellie Tanimura,
Pankhuri Aggarwal, Molly Cantillon, Alfred Yu, Sarosh Khan,

Nathan Chi∗, and Ryan A. Chi∗
Stanford University

{conner7, dylanlim, emirhank, ramya.iyer, etanim,
pankhuri, mcan, ayu1001, skhan44, nchi1, ryanchi} @stanford.edu

Abstract

We present a system for natural language in-
ference in breast cancer clinical trial reports,
as framed by SemEval 2023 Task 7: Multi-
evidence Natural Language Inference for Clini-
cal Trial Data. In particular, we propose a suite
of techniques for two related inference sub-
tasks: entailment and evidence retrieval. The
purpose of the textual entailment identification
subtask is to determine the inference relation
(either entailment or contradiction) between
given statement pairs, while the goal of the ev-
idence retrieval task is to identify a set of sen-
tences that support this inference relation. To
this end, we propose fine-tuning Bio+Clinical
BERT, a BERT-based model pre-trained on clin-
ical data. Along with presenting our system,
we analyze our architectural decisions in the
context of our model’s accuracy and conduct
an error analysis. Overall, our system ranked
20 / 40 on the entailment subtask.

1 Introduction

Clinical trial reports (CTRs) detail the treatments
and reactions that patients undergo over the course
of a clinical study. The growing corpus of CTRs,
coupled with a lack of adequate analytical tools,
makes it increasingly difficult for clinical practition-
ers to provide up-to-date, personalized, evidence-
based care (DeYoung et al., 2020). Improvements
in the reliability of CTRs have not been accompa-
nied by developments in the ability to analyze and
compare them, leading to a substantial disparity be-
tween the quality of CTRs and physicians’ abilities
to capitalize on them. (Butcher et al., 2019).

While natural language inference (NLI) mod-
els demonstrate impressive capabilities in inferring
logical relationships between texts, applications in
the medical domain come with a unique set of chal-
lenges (Percha et al., 2021). One issue is that ac-
curately inferring relationships between entities in

∗Co-senior authors.

clinical data requires knowledge of domain-specific
jargon (Sushil et al., 2021). Additionally, because
scientific communication can be highly variable in
its technical language, abbreviations, and format-
ting, successful NLI systems must be trained on a
large representative corpus of varied data. Finally,
it can be difficult for NLI systems to distinguish
between non-entailed subsequences like "John be-
lieves Martha is sick" and "John believes Martha"
(McCoy and Linzen, 2018).

The precise interpretation and extraction of ev-
idence from CTRs could drastically diminish the
current disconnect between research findings and
clinical practices, as it will be much easier for clin-
icians to parse new publications and stay updated
on the most effective treatment practices (?). In
this paper, we experiment with a variety of mod-
ern and traditional machine learning approaches
to accomplish this task. Ultimately, we find that
Bio+Clinical BERT and BioBERT achieve the high-
est performance, obtaining an F1 score of 0.662 on
the evaluation set.

2 Background

2.1 Task Overview

Data for this task is made available through Se-
mEval Task 7 (Jullien et al., 2023). The 2400
statements for the dataset are collected by clini-
cal trial organizers, domain experts, and research
oncologists from the Cancer Research UK Manch-
ester Institute and the Digital Experimental Cancer
Medicine Team.

Each CTR contains four main sections:

• Eligibility Criteria describes the required
conditions of patients in the clinical trial.

• Intervention explains the treatment type,
quantity, frequency, and duration used in the
trial.
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• Results reports the number of participants
and outcome details including measures, units,
and results.

• Adverse Events outlines the signs and symp-
toms observed during the course of the trial.
For Task 1, the dataset consists of a pair of
CTRs, a statement, a section marker, and an
entailment/contradiction label.

2.2 Prior Work

Previous work considered using NLI for the ad-
jacent task of clinical registry curation tested the
performance of five models, the highest performing
of which was a BERT-based model (Percha et al.,
2021). Given the limited size of training corpora,
BERT-based transfer learning approaches are gen-
erally very well suited for the biomedical domain
(Kanakarajan et al., 2021).

For biomedical text-related tasks, the domain-
specific fine-tuned Bio BERT model outperforms
BERT and previous state-of-the-art models (Lee
et al., 2020). On small training sets, Med-BERT
has been shown to improve prediction accuracy
(Rasmy et al., 2021). For text in clinical trials,
a domain-specific language model PubMedBERT
outperformed BERT and its variants for NER but
the difference amongst models was small demon-
strating that domain-specific BERT trained on clin-
ical breast radiology reports resulted in increased
performance in NLP text sequence classification
tasks over generic BERT embeddings such as clas-
sic BERT fine-tuned to the same tasks (Li et al.,
2022; Kuling et al., 2022). With CancerBERT, an
oncological domain-specific language model, Zhou
et al. (2022) demonstrated that increased granular-
ity and specificity in the training set further im-
proves the performance of domain-specific BERT
models in clinical NLP tasks (Zhou et al., 2022).

Gu found that domain-specific pre-training from
scratch, as opposed to BERT models that gener-
ate their vocabulary only partially from biomedical
text, yielded more accuracy in evidence-based med-
ical information extraction and relation extraction
NLP tasks (Gu et al., 2021). At various natural lan-
guage tasks like NLI and relation extraction in the
biomedical domain, BioELECTRA, a fine-tuned
ELECTRA-based model, outperformed BERT and
ALBERT (Kanakarajan et al., 2021).

3 System Overview

3.1 Task 1: Learning Models
• Bio+Clinical BERT (Alsentzer et al., 2019) is

a BERT-based model trained on all notes and
articles from the MIMIC-III clinical database
(roughly 880M words). The model uses a fine-
grained tokenization approach that is able to
identify and separate subword units, which is
particularly useful for handling long and com-
plex medical terms. The model was trained
using two pre-training tasks: masked language
modeling and next-sentence prediction.

• RoBERTa (Liu et al., 2019) is a BERT-based
transformers model, that was pre-trained us-
ing masked language modeling and dynamic
masking. The model randomly masks 15% of
the words in a sentence, then processes the
entire masked sentence and predicts the miss-
ing words. This enables the model to hold a
bidirectional representation of the sentence.

• DistilBERT Base Uncased Finetuned SST-2
English (Sanh et al., 2019) is a BERT-based
model that was fine-tuned on the Stanford Sen-
timent Treebank (SST-2) dataset for sentiment
analysis.

• ELECTRA Small Discriminator (Clark
et al., 2020) is a model that utilizes discrimi-
native pre-training to improve efficiency and
reduce computational resources. The model
holds a small size and number of parameters
in comparison to other pre-trained language
models, making it more computationally effi-
cient and faster to fine-tune downstream tasks.

• BioBERT v1.1 (Lee et al., 2020) is a pre-
trained language model based on BERT Ar-
chitecture, fine-tuned on various biomedical
tasks, including named entity recognition, re-
lation extraction, and biomedical question an-
swering.

• BioMed NLP PubMedBERT Base Uncased
(Gu et al., 2021) is a pre-trained language
model that seeks to improve the discrepan-
cies in BERT by pre-training the model from
scratch results rather than general domain cor-
pora.

• Bio Discharge Summary BERT (Alsentzer
et al., 2019) is a BERT-based model which
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was specifically trained on discharge sum-
maries from MIMIC-III. The model is fine-
tuned for various clinical natural language
processing tasks, such as named entity recog-
nition and relation extraction.

• BioBERT Diseases NER (Lee et al., 2020)
is a BERT-based pre-trained named entity
recognition model designed to identify dis-
ease entities. The model was fine-tuned in the
NER task with BC5CDR-diseases and NCBI-
diseases corpus.

• MedBERT Breast Cancer (Rasmy et al.,
2021) is a pre-trained language model specif-
ically designed for processing clinical notes
related to breast cancer.

• GloVe (Pennington et al., 2014) is a model for
distributed word representations. We use bag-
of-wards GloVe embeddings as input to our
random forest and support vector classifiers.

3.2 Task 1: Data Augmentation
As a small quantity of training data was given (1700
CTRs for test and 200 for evaluation), data aug-
mentation is performed using the methods detailed
below.

3.2.1 Back Translation
We apply back translation to generate new data.
This method involves translating data to a foreign
language and then back to the starting language.
This allows for new CTRs to be created with differ-
ent syntactic and semantic structures. By increas-
ing the quantity of data and diversity of languages,
the model can better generalize to unseen test data.

Using Google Translate, we back translate and
add 1700 additional CTR data points to our training
set. All 1700 data points were used to train the
model.

3.2.2 Synonym Replacement
We also explore using synonym replacement as
a form of data augmentation. Synonym replace-
ment creates new data points by replacing words
or phrases in a text with their synonyms while pre-
serving the overall meaning of the original text.

We perform synonym replacement using NLTK
(Bird and Loper, 2004). Through NLTK, WordNet,
a large lexical database for English, is used to gen-
erate lists of synonyms for given words in CTRs.
To create new data points, words in CTRs are re-
placed with synonyms with high similarity. These

synonyms are chosen through pre-trained word
embeddings from BioWordVec and BioSentVec.
Word embeddings are vectors in high-dimensional
space that capture the semantic relationships be-
tween words based on their co-occurrence patterns
in text. BioWordVec and BioSentVec are trained
by PubMed articles and clinical notes from the
MIMIC-III Clinical Database. We create 1700 ad-
ditional CTRs through synonym replacement.

3.2.3 Random Perturbation

Random insertions, deletions, and swapping of
words are also performed. Random insertions add
noise to help models better understand relevant
points of the text. Random deletions can prevent
overfitting on specific words and phrases. Random
swaps allow models to learn different syntactical
arrangements without corrupting the meaning of
the CTR. We apply all three augmentations to our
training set with custom-made algorithms.

Insertions are performed by dividing the text into
75-word segments, randomly choosing phrases that
have a maximum of two words in each segment,
and then randomly inserting them back into the seg-
ment. Deletions are randomly applied at intervals
of 1 deletion for every 25 words. Swapping is done
by randomly selecting and swapping 2 words for
every 30 words. We create 1700 additional data-
points through random insertions, deletions, and
swapping.

3.3 Task 1: Hyperparameters

3.3.1 Optimizers

We use two optimizers for our models: cross-
entropy loss and Sharpness-Aware Minimization
(SAM). We use cross-entropy loss beacuse it is the
standard optimizer for classification problems. The
Sharpness-Aware Minimization (SAM) optimizer
takes into account the sharpness of the loss function
during optimization to find flatter minima. We test
the SAM optimizer sharpness-awareness metric,
sam_rho, for values ranging from 0.01 to 0.05.

3.3.2 Learning Rates

Given that many models during pilot testing only
exhibited random guessing, we explore a variety of
learning rates. We assume that random guessing
is the result of large learning rates overshooting
minima or small learning rates failing to converge.
Therefore, we test learning rates ranging from 10−2

to 10−6.
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Data Augmentation Original Text Augmented Text
Back Translation The human epidermal growth factor

receptor 2 (HER2) status of the tumor
will be used to stratify patients.

Human epidermal growth factor re-
ceptor 2 (HER2) tumor status will be
used to stratify patients.

Synonym
Replacement

Patients must have histologically or
cytologically confirmed breast cancer
with metastatic disease.

Patients must have microscopically
or cytologically confirmed breast can-
cer with disseminated disease.

Random
Perturbation

Prior Therapy: Patients must not
have received prior chemotherapy in
the metastatic breast setting.

Prior Therapy: Patients must not
have received prior received in the
metastatic chemotherapy breast set-
ting.

Table 1: Examples of the three data augmentations applied to different sentences.

3.4 Task 1: Ensembling
After all individual models are tested, we train the
top five highest-performing models twice, each on
different seeds. We use the 10 subsequent models
to create a single model through voting ensembling.
We perform voting ensembling by taking the out-
puts of all 10 models and choosing the output with
the most ‘votes.’ This adjusts for models that con-
sistently underperform on specific classification
inferences, which other models could make up for.

3.5 Task 2: Evidence Retrieval
To justify the label predicted in Task 1, we aimed
to extract the supporting facts from a CTR premise
to substantiate the decision and analyze the effec-
tiveness of the BM25 evidence retrieval baseline
for the task.

To achieve this goal, we used a dataset consist-
ing of CTR premises and corresponding statements
along with manually annotated supporting facts.
We implemented the BM25Okapi algorithm to re-
trieve the relevant evidence from the primary and
secondary sections of the CTR premise. We set
a threshold of 1 to retain only the evidence with
BM25 scores above this value.

The dataset was randomly split into training and
development sets, and we trained the BM25 model
on the training set. We then evaluated the model
on the development set using standard evaluation
metrics – precision, recall, and F1 score.

4 Experimental Setup

4.1 Task 1
For the subtask, we utilized the provided train and
validation split in our experimental setup. Other

than tokenization, we did not perform substantial
preprocessing on the data. GloVe, in conjunction
with, traditional ML methods (random forest clas-
sifier and support vector classifier) is used as a
baseline for other models.

During the phase of tuning hyperparameters, we
assessed models by means of the token-level F1
score, which we computed using PyTorch’s met-
rics module to generate a classification report. As
a result of the iteration constraint, hyperparame-
ters were tuned by hand. We found main success
through the implementation of varying optimizers
and learning rates.

Two optimizers were used for our models: The
cross-entropy loss and Sharpness-Aware Minimiza-
tion (SAM) optimizer. Cross-entropy loss was
used as it is the standard optimizer for classifica-
tion problems. The Sharpness-Aware Minimiza-
tion (SAM) optimizer takes into account the sharp-
ness of the loss function during optimization to
find flatter minima. The SAM optimizer sharpness-
awareness metric, sam_rho, was tested for values
ranging from 0.01 to 0.05.

Learning rates were a large subject of conversa-
tion due to many models’ classification never learn-
ing beyond random guessing. Therefore, learning
rates ranging from 10−2 to 10−6 were tested. We
found that the learning rate of 10−4 was most suc-
cessful.

4.2 Task 2

The data is first preprocessed into its components:
statement, type, primary evidence id, section id,
and optionally a secondary evidence id. Then,
we load the BERTForSequenceClassification
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model and train it on a large corpus of text. The
tokenizer used was BERTTokenizer, which helped
fine tune the model on the training data.

We first retrieve the primary and secondary evi-
dence from the JSON files using the provided ids.
If the trial type is "Comparison", then secondary ev-
idence is also retrieved. The statement, primary ev-
idence, and secondary evidence (if present) are con-
catenated into one string. The combined text is then
tokenized using the BERTTokenizer and encoded
using the encode_plus function. The encoded
input_ids and attention_masks are then passed
through the BERTForSequenceClassification
model to obtain the logits.

The cosine similarity between the logits of the
statement and the logits of the concatenated text
is then computed using the functional module in
PyTorch. If the cosine similarity is greater than a
pre-defined threshold, the trial is considered to have
a match. The threshold used in this experiment is
set to 0.80.

The results are then stored in a dictionary where
the key is the index of the trial in the dev set and the
value is the cosine similarity between the statement
and the combined text. The trials that have a cosine
similarity greater than the threshold are then filtered
and stored in a list of tuples. Each tuple contains
the index of the trial and its cosine similarity.

5 Results

5.1 Task 1: Individual Model Performance

From table 2, we see that the top 5 performing
models are PubMedBert (F1 = 0.660), RoBERTa
Base (F1 = 0.658), BioBERT Disease (F1 = 0.648),
Bio+Clinical BERT (F1 = 0.648), BioBERT Dis-
ease (F1 = 0.655), and ELECTRA Small (.639).

We find that BERT-based models such as
PubMedBERT and Bio+Clinical BERT have the
strongest performance. Additionally, the models
trained on medical data generally outperform other
models. We also find that Cross-entropy loss out-
performs the SAM optimizer by 11.5 accuracy per-
centage points. Overall, the SAM optimizer was
not able to outperform random classification.

Furthermore, we see that all best-performing
models have learning rates of 10−4. However,
when models fail to learn, smaller and bigger learn-
ing rates allow for non-random classification. For
example, PubMedBERT is not able to learn with a
learning rate of 10−4. But with a learning rate of
10−6, an F1 score of 0.503 and accuracy of 59.5%

are achieved.

5.2 Task 1: Voting Ensembling

The 5 models listed in 5.1 trained twice each and
undergo voting ensembling. The voting ensem-
bling produces the final outputs for submission.
This ensembling produces an F1 score of 0.662,
higher than any of the F1 scores from individual
models. This placed us as the 20th out of 30 sub-
missions to Task 1.

5.3 Task 2: Evidence Retrieval Evaluation

Our model obtains the results shown below, from
the evaluation of the BM25 evidence retrieval base-
line on the development set.

These results demonstrate that the BM25 evi-
dence retrieval baseline is somewhat effective in re-
trieving relevant evidence from the CTR premise to
justify the label predicted in Task 1. The precision
and recall scores suggest that the model is able to
retrieve the majority of the relevant evidence while
avoiding irrelevant information. However, there
is potential for model performance to improve, in
terms of the F1 score.

6 Conclusion

In this paper, we evaluate a variety of BERT-based
and other models for two inference sub-tasks: en-
tailment and evidence retrieval. The models are
compared on their accuracies and F1 scores. Clin-
ical trial reports from SemEval Task 7 dataset are
used for the task. Due to the small training dataset
size, we use back translation, synonym replace-
ment, and random perturbation to augment our
training data.

The top 5 performing models for Task 1 are
Bio+Clinical BERT, DistilBERT, BioBERT, ELEC-
TRA Small, and Bio Discharge Summary BERT.
Each of these has a learning rate of 10−4. These
models are used to create a single voting ensem-
ble model. The ensembling model results in an F1
score of 0.662 and outperforms other models. For
the BM25 evidence retrieval baseline, our model
is able to retrieve the majority of the relevant ev-
idence. We use the voting ensembling model to
make our final predictions.

7 Concerns, Limitations, and Extensions

The data augmentation performed in this paper
combined synthesized augmented clinical trial data
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Model Learning Rate F1 Score Accuracy
Bio+Clinical BERT 10−2 .601 50.0%
Bio+Clinical BERT 10−4 .648 62.0%
Bio+Clinical BERT 10−6 .532 53.5%
RoBERTa Base 10−4 .648 50%
RoBERTa Base 10−6 .658 50%
DistilBERT Base 10−4 .608 64.5%
DistilBERT Base 10−6 .570 55.5%
ELECTRA Small 10−4 .639 62.5%
ELECTRA Small 10−6 .592 52.5%
BioBERT v1.1 10−4 .637 59.5%
BioBERT v1.1 10−6 .592 52.5%
PubMedBERT 10−4 .660 50.0%
PubMedBERT 10−6 .503 59.5%
Bio Discharge BERT 10−4 .592 62.5%
Bio Discharge BERT 10−6 .359 53.5%
Biomedical NER 10−4 .610 58.5%
BioBERT Diseases NER 10−4 .655 61.0%
BioBERT Diseases NER 10−6 .648 54.0%
MedBERT Breast Cancer 10−4 .314 56.5%
GloVe + Random Forest – .601 57.5%
GloVe + Support Vector – .628 58.5%

Table 2: Model performances based on their learning rates, evaluated by F1 and normal accuracy percentages.

Model F1 Score Precision Score Recall Score
Ensembled models .662 .575 .780

Table 3: The ensembled model is created by training the top 5 performing models outlined in 5.1 twice, and
performing voting ensembling.

Optimizer sam_rho Accuracy
Cross-entropy loss - 62.0%
SAM 0.01 49.0%
SAM 0.03 50.5%
SAM 0.05 50.0%

Table 4: Comparison of Cross-entropy loss and SAM
optimizer used on the Bio+Clinical BERT model.

and combined it with the originally provided clini-
cal data. As no strict regulation was performed
on screening the augmented data, the question
is brought up of its accuracy. Merging the two
datasets together and utilizing them as one may
have led to the development of skewed results.

For Task 1, we were only able to perform one run
with a 10−2 learning rate. Furthermore, we only
tested the SAM optimizer with our Bio+Clinical
BERT model. Further testing of these hyperparam-
eters would be appropriate. In addition, another
possible extension would be to generate word em-

Metric Score
Precision 0.522748
Recall 0.622034
F1 0.461280

Table 5: Model performance on Task 2, evaluated by F1,
precision and recall.

beddings with the BioWordVec machine learning
model and compare it to the accuracy achieved by
the GloVe model.

There are no ethical concerns with out work.
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