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Abstract

This paper describes the HEVS-TUW team sub-
mission to the SemEval-2023 Task 8: Causal
Claims. We participated in two subtasks: (1)
causal claims detection and (2) PIO identifica-
tion. For subtask 1, we experimented with an
ensemble of weakly supervised question detec-
tion and fine-tuned Transformer-based models.
For subtask 2 of PIO frame extraction, we used
a combination of deep representation learning
and a rule-based approach. Our best model
for subtask 1 ranks fourth with an F1-score of
65.77%. It shows moderate benefit from en-
sembling models pre-trained on independent
categories. The results for subtask 2 warrant
further investigation for improvement.

1 Introduction

Identification and verification of causal claims
from unstructured text data is essential for various
decision-making processes, particularly in health-
care. The SemEval-2023 Task 8 (Khetan et al.,
2023) aims to advance the state-of-the-art in this
area by focusing on two subtasks: identification
of causal claims and extraction of Population, In-
tervention, and Outcome (PIO) entities. The first
subtask involves identifying the span of text that
contains one of the four entities: a causal claim, a
personal experience, a personal experience based
on a claim or a question. This can be done at the
sentence level, but only a part of a sentence may
be annotated with one of these categories. The
second subtask involves extracting the PIO frame
related to the identified causal claim in a text snip-
pet. The model utilizes both word-level, including
contextual information and character-level features
capturing different aspects of the data.

† Equal contribution.

For subtask 1, our approach consisted of an en-
semble of pre-trained language models with a rule-
based question classifier. Apart from training multi-
class classification models, with the assumption
that personal experience based on a claim category
can be treated both as an instance of a personal
experience and a causal claim, language models
were also fine-tuned as three independent binary
classifiers. In subtask 2, we experimented with a
system combining a deep learning entity extraction
pipeline incorporating different textual features and
followed by a rule-based approach to combine sep-
arate PIO tokens predictions into a consensus pre-
diction sequence.

Our approach to subtask 1 fared well at rank 4,
with F1-score 32.77% better than the last ranked ap-
proach and 12.7% behind the approach ranked first.
For subtask 2, the approach ranks second last on the
leaderboard, and the system mainly struggles with
identifying the population frame. These subtasks
have potential applications in content moderation,
insurance claim identification, and hypothesis gen-
eration from clinical notes. The shared task will
motivate further research in this direction and lead
to the development of more effective and accurate
methods for causal claim identification and PIO
frame extraction.

2 Background

Causal claims identification in the open domain is
widely researched, but the healthcare domain has
only garnered attention recently (Mueller and Huet-
temann, 2018; Wang et al., 2019; Parveen et al.,
2021; Islam et al., 2021). In the healthcare domain,
large amounts of medical notes, social media posts,
research articles, and patient forums are generated
daily. Manually extracting causal claims and PIO
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frames from such data is time-consuming and error-
prone.

For a decade, PIO extraction was limited to
sentence-level information extraction due to the
unavailability of frame-annotated datasets (Boudin
et al., 2010; Jin and Szolovits, 2018). After the
release of the EBM-PICO corpus, the extraction
efforts moved to span and frame extraction (Nye
et al., 2018). Nonetheless, previous studies on PIO
frame extraction primarily concentrated on extract-
ing them from well-written, peer-reviewed litera-
ture (Brockmeier et al., 2019; Zhang et al., 2020;
Dhrangadhariya et al., 2021). The SemEval-2023
Task 8 overtakes the challenge of extracting these
frames from noisy social media data. The task orga-
nizers provide 597 English-language PIO-labelled
Reddit posts. We approach PIO frame extraction as
binary sequence labelling and use a combination
of deep learning and a rule-based approach that
captures multiple feature representations from the
data, as the dataset is relatively small and noisy.

The SemEval-2023 Task 8 provides an opportu-
nity for researchers to develop novel methods for
causal claim identification and PIO frame extrac-
tion from noisy social media data and to benchmark
their performance against state-of-the-art methods.
We hope that the shared task will lead to the devel-
opment of more effective and accurate methods for
identifying and extracting causal claims and PIO
frames from unstructured text data.

3 System overview

We participated in both subtasks of SemEval-2023
Task 8. In this section we describe our approach.

3.1 Subtask 1
For subtask 1 we implement two components:
weakly supervised question detection and a
Transformers-based supervised classifier. Even
though it would be possible to classify the sen-
tences on a sentence-level, we decided to conduct
more fine-grained token-level classification.

3.1.1 Question detector
We design a weakly supervised question detector
approach (QD). We use a spaCy sentencizer to split
the text into sentences. Next we search for the
occurrences of the question mark token ‘?’ and we
assign it an end token of a question span. To find
the beginning span, we either look for a punctuation
token from ‘.’, ‘!’, ‘?’ or a token in ‘how’, ‘what’,
‘where’, ‘why’.

3.1.2 Supervised classification
We fine-tune five models using a training subset of
the released dataset:

1. RoBERTaA – RoBERTa model (Liu et al.,
2019a) fine-tuned on all entities.

2. distilBERTA – distilBERT model (Sanh et al.,
2019) fine-tuned on all entities.

3. distilBERTq – distilBERT fine-tuned on ex-
tracting only questions.

4. distilBERTpe – distilBERT model fine-tuned
on personal experience entities

5. distilBERTc – distilBERT model fine-tuned
on claim entities

The three last models are trained as a binary clas-
sification. We assumed that personal experience
based on a claim category could be treated both as
an instance of a personal experience and a causal
claim category. Therefore, all personal experience
based on a claim tokens are treated as positive for
both categories when fine-tuning distilBERTpe and
distilBERTc models. This approach allows us to
increase the training dataset size.

3.2 Subtask 2
PIO extraction was a three-part system: a text pre-
processing module, a deep learning entity extrac-
tion pipeline and a rule-based approach to combine
separate PIO predictions.

3.2.1 Preprocessing module
The PIO dataset was processed to parse annota-
tion from the Reddit posts. The empty or partially
deleted samples were removed, leaving 522 sam-
ples. The text tokens were enriched with the part-
of-speech (POS) tags and lemmas using scispaCy1.

3.2.2 Deep learning module
The deep learning system was built on combining
a feature representation (word-level and character-
level) component followed by a linear sequence
labelling layer. We developed our feature repre-
sentation approach based on the work of Aguilar
et al. (2019), but with the difference that we did not
train our system as a multi-task learning system.
Social media text is highly noisy with writing vari-
ations, non-standard abbreviation, spelling errors

1https://spacy.io/universe/project/
scispacy
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and grammatically flawed. Character level repre-
sentations are useful for capturing the finer details
of language, such as spelling variations, unusual
short forms, and other non-standard forms of lan-
guage that are often used in social media. Word
level representations are important for capturing
the overall meaning and context of the language
used in social media.

Word-level features: The word-level features in-
cluded transformer and POS features. Transformer
models, specifically RoBERTa and BioMed-
RoBERTa, were used to extract Td×l dimensional
contextual features from input samples, where d
is the transformer model’s hidden layer dimen-
sion (Liu et al., 2019b; Gururangan et al., 2020).
POS information helps NLP models better un-
derstand the syntactic structure of a sentence.
The POS embeddings were Pdp×512 dimensional
one-hot sparse vectors corresponding to the 18-
dimensional POS features and the maximum tokens
(l = 512) allowed per transformer input. POS fea-
tures were either one-hot encoded or transformed
using a BiLSTM (bidirectional Long short-term
memory) to encode long-term dependencies and
learn a task-specific grammatical structure from the
input samples (Hochreiter and Schmidhuber, 1997).
Transformer and POS features were concatenated
to obtain a word-level representation (see Figure 1).
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Figure 1: Word representation using concatenation of
the POS embeddings (in blue, with or without BiLSTM
transformation) and transformer embeddings (yellow).

Character-level features: To obtain the char-
acter features, input characters are embedded
into a Cdc×wl dimensional one-hot encoded vec-

tor, where dc is the dimension of the features per
character, and wl is the maximum length of char-
acters per word. Orthographic features are the
character-based features Odo×wl that encapsulate
word shape, including letter capitalization, punctu-
ation, and digits, e.g., "SemEval 2023!" encoded
as "CccCccc nnnnp". A maximum of 20 charac-
ters per token (wl) were allowed applying post-
padding on shorter tokens and truncating the longer
ones. Character features are matrices encapsulating
character-level information, including individual al-
phabet and punctuation and are hence sparser than
the orthographic features. Our system either used
the orthographic or the character features, which
were transformed using a 1-dimensional convolu-
tional neural network (1D-CNN) followed by ei-
ther a max pooling (MP) or global average pool-
ing (GAP) operation (Zhou et al., 2016). Next,
the results were fed through a fully-connected (fc)
layer via ReLU (Rectified Linear Unit) to obtain a
character-level representation (see Figure 2). The fi-
nal word- and character-level representations were
concatenated and fed to a linear layer to predict
the entity sequence.
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Figure 2: Character representation was was either ob-
tained using the orthographic encoding (left) or charac-
ter encoding (right) as explained in the system overview.

3.2.3 Rule-based module
The processed word and character representations
were concatenated and the results were fed to a
linear layer to individually predict the PIO entity.
Finally, when multiple predictions were made for
the PIO entities, the most common prediction was
used, with a random choice being made for ties.

4 Experimental setup

This section describes our experimental setup for
subtasks (1) and (2), both of which were evaluated
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using a macro F1-score measure.

4.1 Subtask 1
We train all Transformer-based models for 30
epochs. Following task organizers, we perform
splitting on whitespaces. We use 80% of the dataset
for training models and 20% for validation. We use
Flair 0.11.3 to implement our models (Akbik et al.,
2019).

For subtask 1, we submit four runs, ensembles
of models described in Section 3.1. The runs are
described in Table 1.

Run name Description

Run 1 QD + distilBERTq +
distilBERTA

Run 2 QD + distilBERTq +
distilBERTpe + distilBERTA

Run 3 QD + distilBERTq +
distilBERTpe + RoBERTaA

Run 4 QD + distilBERTq +
distilBERTpe + distilBERTA +
RoBERTaA

Table 1: The table outlining the model architecture uti-
lized in four different runs for the task of causal claims
detection.

We do the majority voting (MV) for non-null
predictions, i.e. whenever at least one model pre-
dicts an entity, we give that prediction higher prece-
dence compared to a zero-class prediction from
other models. Moreover, when at least one model
predicts the ‘claim’ category and at least one pre-
dicts ‘personal experience’ we assign to that token
the ‘claim based on personal experience’ entity. We
did not submit a run with distilBERTc model, as the
model was not able to predict any entity correctly
on a validation set.

4.2 Subtask 2
The experiments were conducted using PyTorch
1.10, scispaCy 0.4.0, and transformers 4.8.2. We
submitted five runs with three training experiments
each for PIO classes using the system components
described in section 3.2. For each PIO run, the
experiments were conducted and averaged over the
three most common Python random seeds: 0, 1 and
42. The dataset was divided into training (80%)
and validation sets (20%). The sequence input
length was 512 tokens across the experiments cor-
responding to the transformer input restriction. The

dimensions for the contextual word embeddings
were T768×512 and for the one-hot POS embed-
dings were P18×512. The dimensions for the or-
thographic character embeddings were O6×20×512

and for the character embeddings were C28×20×512.
The Table 2 describes the architecture for each run.

5 Results and Discussion

5.1 Subtask 1

Results for our submissions in subtask 1 are pre-
sented in Table 3. Adding distilBERTpe to the
ensemble positively impacts Recall and this is the
best of our Runs in terms of the F1-score. Replac-
ing distilBERTA with RoBERTaA model (Run 3)
improves the Precision by almost 4% points, yet
it decreases the overall Recall. When using both
of these models in the ensemble, the scores on all
evaluation measures decreases. We believe that this
was due to the usage of a naive MV approach.

5.2 Subtask 2

Subtask 2 F1-scores for the official SemEval-2023
test set are presented in Table 4. Run 3 had the
best scoring architecture for the mean macro F1
for PIO classes and fared best for intervention and
outcome classes. Run 2 had the best score only for
the population class. Our best F1-score for the task
was placed fifth on the leaderboard, 17.91% points
lower than the approach ranked one and 2.52%
better than the last ranked approach.

For PIO extraction, we conducted preliminary
experiments using a combination of BiLSTM CRF
(Conditional Random Fields), but its linear layer
counterpart consistently outperformed the CRF
layer. We suspect the reason could be using the
IO tagging scheme. In the case of social media en-
tities, the boundaries of these entities may be fuzzy
and not well-defined. In this situation, using the IO
tagging scheme can be more appropriate than the
BIO tagging scheme. The IO tagging scheme only
requires a single tag to mark the beginning of an
entity, and all subsequent words in the entity are
labelled with the same tag. This makes it easier to
encode fuzzy boundaries and reduces the number
of tags required to label the sequence. We used a
linear rather than a CRF layer to model the depen-
dencies between adjacent labels. This decision was
influenced by the fact that the IO tagging scheme
is better suited for a binary sequence labelling task
than a sequence tagging task, better performed by
CRF. Using a linear layer, we can model the depen-
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Run name Model architecture description

Run 1 RoBERTa embeddings extracted from the input tokens were concatenated to BiLSTM-
transformed POS embeddings to obtain a word-level representation. Character-level
orthographic embeddings were CNN transformed, followed by a max pooling opera-
tion to obtain the character representation post an fc layer via ReLU.

Run 2 RoBERTa embeddings extracted from the input tokens were concatenated to one-hot
encoded POS embeddings. Character vectors were CNN transformed, followed by
a max pooling operation to obtain the character representation post an fc layer via
ReLU.

Run 3 RoBERTa embeddings were concatenated to one-hot encoded POS embeddings.
Character-level orthographic embeddings were CNN transformed, followed by a
GAP operation to obtain the character representation post an fc layer via ReLU.

Run 4 RoBERTa embeddings were concatenated to BiLSTM transformed POS embeddings.
Character-level orthographic embeddings were CNN transformed, followed by a GAP
operation to obtain the character representation post an fc layer via ReLU.

Run 5 Three different architectures, each corresponding to PIO classes, were used for the
fifth run. For the population class prediction, the architecture was the same as in run
4, except RoBERTa embeddings were replaced by BioMed-RoBERTa representation.
For the intervention prediction, the architecture was the same as in run 3, except
RoBERTa embeddings were replaced by BioMed-RoBERTa representation. For the
prediction of the outcome, only RoBERTa embeddings were extracted from the input
tokens, followed by a linear layer for class prediction.

Table 2: The table outlining the model architecture utilized in five different runs for the task of PIO extraction.

Run Precision Recall F1-score

1 68.13 61.21 64.48
2 66.81 66.12 66.46
3 70.32 63.38 64.52
4 68.73 62.90 65.70

Table 3: Subtask 1 results on the official SemEval-2023
test set. Bold values indicate highest score overall.

dencies between adjacent labels and still capture
the fuzzy boundaries of social media entities.

6 Conclusion

We participated in both subtasks of SemEval-
2023 Task 8. Our submissions are mainly based
on fine-tuning Transformers-based models and
creating an ensemble of these models. Results
show a positive impact of using independent bi-
nary classification models for each entity type
in subtask 1. Source code is available under
the following URL: https://github.com/
WojciechKusa/pico-semeval2023

Macro F1-acore
Run Pop Int Out Overall

1 12.39 19.43 22.10 17.97
2 21.30 20.05 20.33 20.56
3 17.44 26.39 22.78 22.20
4 11.54 25.63 22.74 19.97
5 08.18 16.47 12.28 12.31

Table 4: Subtask 2 F1-score on the official SemEval-
2023 test set for the Population, Intervention and Out-
come classes over five runs. Note: Pop = population,
Int = intervention, Out = outcome. Bold values indicate
highest score overall.

Limitations

For subtask 2, the rule-based module uses MV to
choose the final prediction. MV selects the final
token label supported by most of the model runs
by equally weighting each run and discounting the
accuracy of each model. The system could benefit
from considering model accuracies and weighting
predictions from each model to support the final
prediction. Additionally, the final prediction ag-
gregation scheme is stringent and selects only the
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label predicted by multiple voters. It could increase
the impact of out-of-the-span labels constituting
the majority class leading to a lower recall and
F1 score. Consider, for example, only one voter
labelling one of the PIO entities and the rest la-
belling out-of-the-span entity. For such cases, the
rule could be adapted for leniency and selecting the
entity in the case at least one voters predict it.
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