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Abstract

In the article, we present the CodeNLP sub-
mission to the SemEval-2023 Task 2: Multi-
CoNER II Multilingual Complex Named En-
tity Recognition. Our approach is based on data
augmentation by combining various strategies
of sequence generation for training. We show
that the extended procedure of fine-tuning a
pre-trained language model can bring improve-
ments compared to any single strategy. On the
development subsets the improvements were
1.7 pp and 3.1 pp of F-measure, for English
and multilingual datasets, respectively. On the
test subsets our models achieved 63.51% and
73.22% of Macro F1, respectively.

1 Introduction

In this study, we address the topic of named entity
recognition from the field of natural language pro-
cessing. The task is to identify sequences of words
in a text that refer to some categories of entities
— people, locations, organizations, objects, events,
etc. There is no one firm definition of what a named
entity is. The definition and the range of categories
may vary from one application to another.

Named entity recognition is a challenging task
due to several factors. One is that many named en-
tities are proper names, and proper names are rigid
designators (Kripke, 1980). Proper names refer to
entities. They do not describe the entities by defini-
tion. This implies that you should know that a given
term is a named entity to identify a named entity.
The set of named entities is unlimited. To make
a model recognize a term as a named entity, you
can train on recognition terms from the annotated
dataset, provide some form of a common-sense
knowledge base about the world, or infer some
characteristics from training data. For instance, in
the sample sentence "Mark works in Xax.", the
term Xax is probably a named entity because it
is capitalized. However, semantic categorization
might require some additional information about

the term, as it might refer to a location (city or
country) or a company name. For example, the fol-
lowing sentence, "He loves this city." might clarify
that Xax is a name of a city. The less information
we have from the input text, the more information
we need in the training dataset or external sources.

In the paper, we deal with the named entity
recognition task called MultiCoNER II (Fetahu
et al., 2023b; Malmasi et al., 2022b). The main
challenges of this task are: a) fine-grained cate-
gories of named entities – 6 main categories and 36
subcategories; b) all texts are lowercase, and c)the
dataset consists of short sentences.

2 Related Work

Current state-of-the-art methods in the field of
named entity recognition are based on either LSTM
networks (Yu et al., 2020; Xu et al., 2021), or pre-
trained language models in a transformers architec-
ture (Ye et al., 2021; Wang et al., 2021b; Yamada
et al., 2020a; Luoma and Pyysalo, 2020).

These methods are characterized by different
approaches to improving performance by dealing
with specific problems. An essential element is
a way in which the processed text is represented.
(Wang et al., 2021a) combines different vector rep-
resentations, while (Ye et al., 2021) propounds an
entirely new approach to delimiting areas repre-
senting entities. In addition, (Yamada et al., 2020b)
proposes an extended presentation of entities in the
context. (Li et al., 2020b) describes the use of a
special loss function for unbalanced data. Instead,
the (Wang et al., 2021b) authors propose to search
for additional contexts for under-represented data
to improve the quality of the system.

The best-performing methods also vary depend-
ing on the dataset on which they are evaluated.
Thus, the current best performing solutions (Li
et al., 2020b; Ye et al., 2021; Yu et al., 2020; Li
et al., 2020a; Xu et al., 2021) on the OntoNotes v5
dataset (Weischedel et al.) are a disjoint set from
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the best performing solutions (Wang et al., 2021b;
Ushio and Camacho-Collados, 2021; Nguyen et al.,
2020; Fu et al., 2021; Mayhew et al., 2020) on the
WNUT 2017 dataset (Derczynski et al., 2017).

The topics solved in this edition of the SemEval
event (Fetahu et al., 2023b) are a continuation of
the topics from the previous edition (Malmasi et al.,
2022c). The main challenge of the previous edition
was to perform the NER task in a small context.

Finally, we decided to use the PolDeepNer2
(Marcińczuk and Radom, 2021) package as the
foundation for our research. It is based on a trans-
former architecture and thus allows the use of pre-
trained language models. It differs from traditional
token classification models in the way of repre-
sentation subject to classification – classification
is done on tokens, which represent single words,
not subwords. In addition to this, it has different
methods for adding a context representation to the
sentence being analyzed.

3 Data

In our research, we used solely the dataset pro-
vided by the shared task organizers (Fetahu et al.,
2023a; Malmasi et al., 2022a). The dataset was
provided in the CoNLL format and was limited
to two columns: the first one contains tokens text
form and the fourth contains tokens label in the
IOB2 format. Samples sentenced are presented in
Figure 1.

# id 309f5b26-951e-472b-948e-47632249862b domain=en
robert _ _ B-OtherPER
gottschalk _ _ I-OtherPER
1939 _ _ O
academy _ _ B-VisualWork
award _ _ I-VisualWork
winner _ _ O
and _ _ O
founder _ _ O
of _ _ O
panavision _ _ B-ORG

# id bb81b9a7-e73d-4977-b6a8-0f7937123dfe domain=en
during _ _ O
the _ _ O
reign _ _ O
of _ _ O
the _ _ O
tongzhi _ _ B-OtherPER
emperor _ _ I-OtherPER
( _ _ O
r _ _ O
. _ _ O
1861 _ _ O
– _ _ O
1875 _ _ O
) _ _ O
: _ _ O

Figure 1: The two first sentences from the English train-
ing subset.

4 Methodology

Our system employs a pre-trained masked language
model and a fully-connected layer performing to-
ken head classification. The classification layer fea-
tures dropout regularization. We used the mLUKE-
large (Yamada et al., 2020a) model as the under-
lying pre-trained masked language model. The
model is trained solely on the data provided by
the organizers for this shared task. We used data
augmentation on the level of sequence representa-
tion using different strategies of feeding data to the
network.

4.1 MLM selection
We considered three existing pre-trained models:

• bert-uncased-large1 (Devlin et al., 2018)
— this is the only tested model that was trained
on uncased texts similar to the shared task
data.

• xlm-roberta-large2 (Conneau et al., 2019)
— this is a widely used model for multilingual
named entity recognition which allows for the
SOTA results.

• mluke-large3 (Ri et al., 2022) — this is
the xlm-roberta-large model fined-tuned
with entity representations using Wikipedia
for 24 languages. Ri et al. (2022) showed
that the fine-tuned model outperformed the
base model in the named entity recognition
for English by 1.5pp.

Model P R F

bert-uncased-large 72.42 75.39 73.88
xlm-roberta-large 69.81 71.37 70.58
mluke-large 70.44 72.07 71.24

Table 1: Comparision of different MLM models

Table 1 compares the results obtained for the
three models for the English development sub-
set using data augmentation presented in this ar-
ticle. The bert-uncased-large model got the
highest F-measure of 73.88% and outperformed
the other two models xlm-roberta-large and
mluke-large. We attribute the better performance

1https://huggingface.co/bert-large-uncased
2https://huggingface.co/xlm-roberta-large
3https://huggingface.co/studio-ousia/

mluke-large
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Figure 2: An overview of the sequence generation strategies

to the fact that bert-uncased-large was trained
on uncased text, while the other two models were
trained on cased texts. MultiCoNER II datasets
were also uncased, leading to better tokenization
and semantic representation. For instance, the first
name christoph is tokenized by mluke-large into
a single token, while the other two models split it
into two subtokens: christ and oph.

Although bert-uncased-large achieved the
highest score, we used the mluke-large, which
is the second-best model. This is due to a misinter-
pretation of our initial results, according to which
the BERT model performed worse than the other
two models.

4.2 Token representation

Each token (text form) is tokenized into a sequence
of subtokens. We take up to six subtokens for each
token. The first subtoken (head) is subjected to
classification. The multi-head attention mechanism
uses the remaining five tokens to calculate the rep-
resentation of each head in the sequence.

We decided to trim subtokens to six elements to
reduce the impact of the over-tokenized words. In
Table 2, we present sample over-tokenized words.

Token Subtokens Count

s.t.a.l.k.e.r. s . t. a . l . k . e . r . 14

81-717/81-714 81 - 71 ##7 / 81 - 71 11
-type ##4 - type

immaculatecon immaculate ##con 9
ceptioncathedral ##ception ##cat
jf131 ##hedral ##j

##f ##13 ##1

Table 2: Sample over-tokenized words from the English
dataset.

4.3 Sequence length
We used the sequence length of 128 subtokens. We
decided to use this length based on the distribution
of sentences’ size in the training dataset. 98% of
sentences contained up to 32 subtokens (see Ta-
ble 3). For 128 subtokens, most vectors could fit
up more than four sentences, which is sufficient for
our setup.

4.4 Data augmentation
We used data augmentation by combining different
strategies of sequence generation (named single,
merged, and context). The strategies are presented
in Figure 2. Each sentence is used three times as
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Figure 3: Distribution of sentence lengths in the training
subset.

a training example. Each time the input sequence
is constructed differently, which affects the vector
representation of the token heads. The representa-
tions of the token head vary due to the multi-head
attention mechanism and differences in the token
context.

Sentence: christoph haberland designed a new marble
pulpit for the church which was built in italy in 1793 .

Contexts:

1. eli lilly founder president of pharmaceutical com-
pany eli lilly and company

2. he was succeeded as chancellor by sir frank kitto

3. a blue balloon dog sculpture created by Koons
broke into tiny shards when a visitor accidentally
kicked its podium, according to the gallery host-
ing the piece .

4. bel-air fine art was displaying the piece at its
booth at Art Wynwood, a contemporary art fair in
miami .

Figure 4: Sample sentences used to demonstrate simi-
larity range for single subwords based on the context.

In Figure 4, we present a sample sentence and
several contexts. We concatenated the context with
the sentence and fed it into the pre-trained language
model for each context. Then, we took subtoken
vector representations and computed the cosine
similarity between the corresponding subtokens
with and without context. In Table 3, we presented
the similarity values for two subtokens: chritoph
and italy. As we can observe, for chritoph, the
similarity varies from 0.948 to 0.764. This indi-

cates that the subtokens’ vectors differ significantly.
Based on this observation, we argue that simple
sentence concatenation with any sentences can aug-
ment training data and improve the performance of
the final model.

Subtoken Similarity (descending order)

christoph 0.948, 0.876, 0.873, 0.764
italy 0.971, 0.974, 0.954, 0.947

Table 3: The similarity between embeddings generated
for the same subtokens in different contexts.

We used three strategies of sequence generation:

• single — a vector contains a single sentence.
In the training dataset, all sentences are shorter
than 128 subtokens.

• merged — a vector contains that many consec-
utive sentences as fit into a sequence of 128
subtokens. The sentences are separated with
a special subtoken. Each token head in the
sequence is subjected to classification.

• context — a vector contains up to 64 subto-
kens subjected to classification, 32 preceding,
and 32 following subtokens as the context.
The subtokens from the context are used only
for embedding calculation by the language
model and are not subjected to classification.

4.5 Training parameters

During training, we modify the weights of the clas-
sification layers and the pre-trained masked model.
The models were trained for 20 epochs, with a
learning rate decay from 5e− 6, a dropout rate of
0.2, and a batch size of 16.

5 Results

In Tables 4 and 5, we present results obtained on
the development subsets for English and multilin-
gual datasets, respectively. To verify our hypothesis
that data augmentation by simple sentence concate-
nation with different sentences can improve per-
formance, we trained the models in two setups —
single and union. In the single setup we trained
the model using single sentences as vectors. In the
union setup we combined all three strategies, i.e.
single, merged, and context.

For English and multilingual datasets, the high-
est score was obtained for the union setup with
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Train Eval P R F

single single 68.38 70.78 69.55

union single 70.44 72.07 71.24

merged 74.83 76.85 75.83
+ shuffle 65.88 66.74 66.31

context 77.26 77.85 77.56
+ shuffle 68.86 68.75 68.80

Table 4: The evaluation results on the English develop-
ment subset.

Train Eval P R F

single single 75.20 77.73 76.44

union single 79.05 79.97 79.51

merged 82.37 83.75 83.05
+ shuffle 71.49 72.59 72.03

context 84.28 85.25 84.77
+ shuffle 75.20 75.84 75.52

Table 5: The evaluation results on the multilingual de-
velopment subset.

context representation on inference. However, in
the context of MultiCoNER II dataset, the evalua-
tion might be unreliable because the consecutive
sentences in the testing dataset might not be related
to each other. To simulate this scenario, we shuf-
fled the sentences and processed them in a random
order (+shuffle). For the single strategy on infer-
ence, we obtained the same result as for the original
order – 71.24% and 79.51% of F-measure, respec-
tively. In the case of both context-aware strategies
(merged and context), the results dropped signifi-
cantly below the score for the single strategy. The
drop was ca. 9-10 pp for both datasets and strate-
gies. The drop might indicate that the order of
sentences in the development set was not fully ran-
domized. Nevertheless, the most reliable strategy
for inference was single, as it was not dependent
on the context and thus on the order of sentences.

The experiments’ results confirmed that com-
bining various strategies for sequence generation
during training can improve the model’s perfor-
mance even when using the single strategy on in-
ference. For English, when we used single strategy
for training and inference, we obtained 69.55% of
F-measure. For the combination of various strate-
gies (union) and single on inference we got 71.24%.

For the multilingual dataset, we obtained an even
greater improvement from 76.44% to 79.51%

On the test datasets, our models got 63.51% and
73.22% of F-measure, respectively, for English and
multilingual datasets.

6 Conclusion

Our experiments showed that we could improve the
performance of a model for named entity recogni-
tion using data augmentation on the sequence gen-
eration level without any additional data sources.
We benefit from training the model with and with-
out context, even when the context was unrelated
to the sentence, and on the inference, we processed
the sentence separately. The presented data aug-
mentation technique helped improve the F-measure
on the English development subset by 1.7 pp and
the multilingual dataset by 3.1 pp.
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