@inproceedings{indurthi-varma-2023-francis,
title = "{F}rancis Wilde at {S}em{E}val-2023 Task 5: Clickbait Spoiler Type Identification with Transformers",
author = "Indurthi, Vijayasaradhi and
Varma, Vasudeva",
editor = {Ojha, Atul Kr. and
Do{\u{g}}ru{\"o}z, A. Seza and
Da San Martino, Giovanni and
Tayyar Madabushi, Harish and
Kumar, Ritesh and
Sartori, Elisa},
booktitle = "Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.semeval-1.260",
doi = "10.18653/v1/2023.semeval-1.260",
pages = "1890--1893",
abstract = "Clickbait is the text or a thumbnail image that entices the user to click the accompanying link. Clickbaits employ strategies while deliberately hiding the critical elements of the article and revealing partial information in the title, which arouses sufficient curiosity and motivates the user to click the link. In this work, we identify the kind of spoiler given a clickbait title. We formulate this as a text classification problem. We finetune pretrained transformer models on the title of the post and build models for theclickbait-spoiler classification. We achieve a balanced accuracy of 0.70 which is close to the baseline.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="indurthi-varma-2023-francis">
<titleInfo>
<title>Francis Wilde at SemEval-2023 Task 5: Clickbait Spoiler Type Identification with Transformers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Vijayasaradhi</namePart>
<namePart type="family">Indurthi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vasudeva</namePart>
<namePart type="family">Varma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Atul</namePart>
<namePart type="given">Kr.</namePart>
<namePart type="family">Ojha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="given">Seza</namePart>
<namePart type="family">Doğruöz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giovanni</namePart>
<namePart type="family">Da San Martino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Harish</namePart>
<namePart type="family">Tayyar Madabushi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ritesh</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elisa</namePart>
<namePart type="family">Sartori</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Clickbait is the text or a thumbnail image that entices the user to click the accompanying link. Clickbaits employ strategies while deliberately hiding the critical elements of the article and revealing partial information in the title, which arouses sufficient curiosity and motivates the user to click the link. In this work, we identify the kind of spoiler given a clickbait title. We formulate this as a text classification problem. We finetune pretrained transformer models on the title of the post and build models for theclickbait-spoiler classification. We achieve a balanced accuracy of 0.70 which is close to the baseline.</abstract>
<identifier type="citekey">indurthi-varma-2023-francis</identifier>
<identifier type="doi">10.18653/v1/2023.semeval-1.260</identifier>
<location>
<url>https://aclanthology.org/2023.semeval-1.260</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>1890</start>
<end>1893</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Francis Wilde at SemEval-2023 Task 5: Clickbait Spoiler Type Identification with Transformers
%A Indurthi, Vijayasaradhi
%A Varma, Vasudeva
%Y Ojha, Atul Kr.
%Y Doğruöz, A. Seza
%Y Da San Martino, Giovanni
%Y Tayyar Madabushi, Harish
%Y Kumar, Ritesh
%Y Sartori, Elisa
%S Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F indurthi-varma-2023-francis
%X Clickbait is the text or a thumbnail image that entices the user to click the accompanying link. Clickbaits employ strategies while deliberately hiding the critical elements of the article and revealing partial information in the title, which arouses sufficient curiosity and motivates the user to click the link. In this work, we identify the kind of spoiler given a clickbait title. We formulate this as a text classification problem. We finetune pretrained transformer models on the title of the post and build models for theclickbait-spoiler classification. We achieve a balanced accuracy of 0.70 which is close to the baseline.
%R 10.18653/v1/2023.semeval-1.260
%U https://aclanthology.org/2023.semeval-1.260
%U https://doi.org/10.18653/v1/2023.semeval-1.260
%P 1890-1893
Markdown (Informal)
[Francis Wilde at SemEval-2023 Task 5: Clickbait Spoiler Type Identification with Transformers](https://aclanthology.org/2023.semeval-1.260) (Indurthi & Varma, SemEval 2023)
ACL