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Abstract

Many nations and organizations have begun
collecting and storing clinical trial records for
storage and analytical purposes so that medi-
cal and clinical practitioners can refer to them
on a centralized database over the internet and
stay updated with the current clinical informa-
tion. Clinical trial records have increased sig-
nificantly, making it difficult for many medi-
cal and clinical practitioners to stay updated
with the latest information. To help and sup-
port medical and clinical practitioners, there
is a need to build intelligent systems that can
update them with the latest information in a
byte-sized condensed format and, at the same
time, leverage their understanding capabilities
to help them make decisions. This paper de-
scribes our contribution to SemEval 2023 Task
7: Multi-evidence Natural Language Inference
for Clinical Trial Data (NLI4CT). Our results
show that there is still a need to build domain-
specific models as smaller transformer-based
models can be finetuned on that data and outper-
form foundational large language models like
GPT-3.5. We also demonstrate how the per-
formance of GPT-3.5 can be increased using
few-shot prompting by leveraging the semantic
similarity of the text samples and the few-shot
train snippets. We will also release our code
and models on open-source hosting platforms,
GitHub and HuggingFace.

1 Introduction

The Multi-evidence Natural Language Inference
for Clinical Trial Data (NLI4CT) shared task (Jul-
lien et al., 2023) aims at building clinical support
systems on top of clinical trial reports to help clini-
cal professionals. Clinical Trials are studies where
the researchers test new ways to prevent, diagnose
or treat a disease/disorder or find newer ways to im-
prove the quality of life for people with chronic dis-
eases. These studies are available as Clinical Trial
Reports ( CTRs ), providing detailed study meth-
ods and results. Clinical decision support systems

can aid clinical and medical professionals in their
day-to-day tasks and provide meaningful insights
to complement their productivity. Clinical decision
support systems consist of common frameworks
and analytical software built on EHRs(Electronic
health reports). However, the growth and devel-
opment in AI and NLP opens new doors and op-
portunities which entrepreneurs, researchers, and
engineers can leverage to build next-gen intelligent
systems which can leverage the contextual informa-
tion of EHRs and CTRs. Nevertheless, one must be
vigilant and take extra precautions while building
intelligent systems for clinical domains, as it is a
complex domain (Sutton et al., 2020).

Recently many researchers have started building
domain-specific versions of famous transformer
architectures like BERT, GPT, and T5. Alsentzer
et al. (2019) demonstrate how domain-specific Clin-
ical BERT, Clinical BioBERT outperform standard
BERT model on MedNLI natural language infer-
ence task (Romanov and Shivade, 2018). However,
there are certain limitations that such models face,
which are primarily due to the data such domain-
specific models are trained on. As the data to train
clinical models is usually small and usually be-
longs to a single institution, group of institutions,
or a single region, it cannot generalize to the dif-
ferences in clinical practice in other institutions
and regions. There is a need for creating more
datasets in the clinical NLP domain and also for
consideration to be given to including data from
different regions and institutions. Creating large
multi-lingual datasets containing clinical data of
multiple geographies can help create more robust
and generalized models.

Many researchers also believe that more stress
should be given to building generalized large lan-
guage models trained on a large corpus of open data
that performs well in the clinical domain instead of
pre-training and fine-tuning domain-specific mod-
els. After the release of GPT-3 (Brown et al., 2020),
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many researchers have also tried to experiment and
observe whether GPT-3 can be used for clinical
systems and how it might benefit clinical practition-
ers and patients (Korngiebel and Mooney, 2021).
The most significant pitfalls they find are the inter-
pretability and hallucination in generative models.

Many countries have also realized why it is nec-
essary to have clinical datasets and store clinical
trial records digitally that can represent the exper-
iments on diseases and illnesses more relevant to
their population.1 The NLI4CT shared task also
uses one such database by the U.S. National Li-
brary of Medicine with clinical trial records of clin-
ical investigations carried out globally by private
and public entities.2 The organizers of the task
have created a set of breast cancer clinical trial
records, statements, explanations, and labels that
have been annotated by experts who belong to the
clinical field. The NLI4CT shared task consists of
two subtasks, subtask 1 is a textual entailment task,
whereas subtask 2 is a retrieval-based task.

We participate in subtask 1 only and demonstrate
how cross-encoder models fine-tuned on small
training datasets can outperform GPT-3.5 (Ouyang
et al., 2022) in zero-shot settings. We fine-tune
several models based on sentence transformer and
cross-encoder architecture for sentence pair mod-
eling. We also compare our models with GPT-3.5
Davinci (text-davinci-003 according to the OpenAI
platform) in zero-shot and few-shot settings. We
also show the effect freezing of base transformer
layers has while training cross-encoders and on
their performance. We will release all our code on
GitHub 3 and fine-tuned models on HuggingFace.4

2 Dataset Description

The primary dataset consists of a set of
CTRs(clinical trial reports) condensed into 4 sec-
tions. The subtask-specific dataset for subtask 1
consists of a set of statements which are sentences
that act as the premise and are based on the hy-
pothesis, which consists of information present in
a particular section of 1 CTR or a comparison of
2 CTRs. The subtask 1 dataset also provides a la-
bel whether a given statement-hypothesis pair is an
entailment or contradiction.

1https://ctri.nic.in/Clinicaltrials/
login.php

2https://clinicaltrials.gov/ct2/home
3https://github.com/bp-high/

NLI4CT-Shared-Task-BpHigh
4https://huggingface.co/bpHigh

We explain the 4 sections present in the primary
dataset below with the help of the clinical trial
report with id- NCT00003782 :-

1. Eligibility Criteria:- It acts as a guard which
decides which subjects to enroll in the study
based on its shoulder angels the inclusion and
exclusion criteria. The inclusion criteria – lays
down statements, and volunteers who fit in
those statements are chosen for the study. The
exclusion criteria – provide statements that, if
present, eliminate the volunteers from partici-
pating in the study.

For example, in the above-mentioned report,
the following inclusion criteria are used- "No
ulceration, erythema, infiltration of the skin
or underlying chest wall (complete fixation),
peau d’orange, or skin edema of any mag-
nitude(Tethering or dimpling of the skin or
nipple inversion allowed ) " Suppose the vol-
unteer is found to have ulceration /erythema/
infiltration/ edema/ peau d’ orange over skin
or chest wall infiltration. In that case, the
Breast cancer is no longer Stage III A and has
already progressed to Stage III B or a higher
stage. Dimpling of the skin or nipple inver-
sion is allowed as it is not considered skin
involvement and hence will not change the
staging.

2. Intervention:- This is the active interference
done by the researcher, which can be in the
form of giving a drug / carrying out a pro-
cedure, or implementing preventive measure-
ments.

For example, in the above-mentioned report,
intervention is done by giving chemother-
apy using drugs like Doxorubicin, Cyclophos-
phamide, and Docetaxel. These anticancer
drugs act during different stages of cell divi-
sion to stop cancer cells from proliferating.
Doxorubicin and Cyclophosphamide act by
destabilizing DNA structure. Docetaxel af-
fects the microtubular system in cells, which
helps in equal DNA distribution during cell
division.

3. Result:- This is the outcome the study in-
tended to achieve through intervention. Due
to the different interventions received by the
study subjects, different Results were ob-
tained. These are extensively analyzed to de-
termine their Significance. The significant
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results are used for further practical purposes,
and the best methods of Interventions are
adapted for medical practice.

For example, in the above-mentioned report,
the 8-year survival was maximum ( 83 % )
in subjects who received Doxorubicin with
Cyclophosphamide followed by Docetaxel as
chemotherapy.

4. Adverse Events:- These are usually the un-
wanted changes that can occur in a subject’s
health or lab reports during the study time-
frame, which may or may not be directly re-
lated to the study and study intervention.

For example, serious adverse effects like
Febrile Neutropenia, thromboembolic events,
etc., were reported in the above-mentioned re-
port. Febrile Neutropenia is Fever with lab re-
ports suggestive of reduced neutrophil counts,
cells protecting the body against infections.
Thromboembolic events include blood clot
formation in deep veins and complications
that may arise due to it.

3 Related Work

Romanov and Shivade (2018) published the
MedNLI natural language inference task which
kick-started modern research in medical/clinical
NLI domain. The dataset consists of the medical
history of patients, which has been annotated for
NLI tasks by experts in the clinical domain. The au-
thors also present methods to leverage other open-
domain NLI datasets and how to incorporate do-
main knowledge from other external open-domain
data. They also developed a baseline model, which
achieved an accuracy of 73.5% on the test dataset
of the task. The paper also illustrates how base-
line model performance can be boosted by using
domain-specific word embeddings. In addition,
they also introduce a technique to incorporate do-
main ontologies during the training process of mod-
els.

Reimers and Gurevych (2019) released a paper
defining Sentence BERT architecture which was
built by modifying BERT. The approach involves
utilizing Siamese and triplet network structures on
top of BERT network to generate sentence embed-
dings that carry significant semantic information.
These embeddings can be compared using cosine
similarity. This significantly reduced the run-time

while maintaining similar accuracy for sentence-
pair regression tasks.

Lewis et al. (2020) conducted a large scale study
that covers a wide range of 18 established biomedi-
cal and clinical NLP tasks, aiming to identify the ef-
fectiveness of various commonly used open-source
biomedical and clinical NLP models in diverse
settings. They also present their own pre-trained
models based on RoBERTa-base and RoBERTa-
large where they used a domain-specific vocabulary.
Their domain-specific vocabulary is a BPE(Byte-
pair encoding) dictionary learned over the pre-
training corpus from PubMed. They demonstrated
that although their models could not outperform
BioBERT (Lee et al., 2019) on biomedical tasks
but they were able to beat it on clinical tasks.

4 Methodology

This section discusses our approaches for tackling
subtask 1 of the NLI4CT task. For all further
references, whenever we refer to a model which
has been fine-tuned by using the NLI4CT sub-
task 1 training dataset, we prepend ’NLI4CT-’ to
the pretrained model’s name. Using the Sentence
Transformers package 5, we fine-tune one sentence-
transformer model and multiple cross-encoder mod-
els. We also compare the performance of our fine-
tuned models with GPT-3.5 Davinci (text-davinci-
003 according to the OpenAI platform) in zero-shot
and few-shot settings.

4.1 Sentence Transformers based approach
We finetune the BioSimCSE-BioLinkBERT-BASE
(Kanakarajan et al., 2022)6 sentence-transformers
model on NLI4CT subtask 1 train dataset and name
it NLI4CT-BioSimCSE-BioLinkBERT-BASE. We
use this pretrained model as it is a SOTA(state
of the art) model on semantic textual similar-
ity tasks. We notice that the training data pro-
vided to us is relatively small and thus fine-tuning
sentence-transformer models might not be the right
choice and we could leverage pretrained cross-
encoders which often achieve higher performance
on sentence-pair classification tasks. (Thakur et al.,
2021) Figure 1 shows how sentence-transformers
can be used for sentence-pair classification tasks.
The hyperparameters for this approach are detailed
in Appendix A.

5https://github.com/UKPLab/
sentence-transformers

6https://huggingface.co/kamalkraj/
BioSimCSE-BioLinkBERT-BASE
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Figure 1: Sentence Transformer

4.2 Cross-Encoders based approach
We train 6 cross-encoder models on NLI4CT sub-
task 1 train data using two approaches and based on
three pretrained models. We utilise the following
pretrained models:-

1. BiomedNLP-PubMedBERT-base-uncased-
abstract-fulltext (Gu et al., 2021) 7

2. BiomedNLP-PubMedBERT-large-
uncased-abstract (Gu et al., 2021) 8

3. BioLM-RoBERTa-base-PM-M3-Voc-
distill-align (Lewis et al., 2020) 9

We train these cross-encoders using two ap-
proaches. In the first approach, the models are
trained with no layers of the cross-encoder frozen.
In the second approach, we freeze all the layers ex-
cept the cross-encoder pooler and classifier layers.
Figure 2 shows how cross-encoders can be lever-
aged for sentence-pair classification tasks. The
hyperparameters for this approach are detailed in
Appendix B.

4.3 GPT-3.5 Davinci
We use two approaches while checking the per-
formance of the GPT-3.5 Davinci model(text-

7https://huggingface.co/microsoft/
8https://huggingface.co/microsoft/
9https://github.com/facebookresearch

Figure 2: Cross-Encoders

Figure 3: Format of the zero-shot prompt for NLI4CT
subtask 1

davinci-003).

In the first zero-shot approach, we formulate our
test dataset’s statement and hypothesis as an NLI
question and an instruction to be sent to the model
as prompt input through OpenAI API. Figure 3
shows how the zero-shot prompt looks.

In the few-shot approach, we first modify all our
train dataset samples into the snippet format, as
shown in Figure 4. Then we encode all modified
train snippets using the BioSimCSE-BioLinkBERT-
BASE sentence transformer model and covert them
into embeddings to create an embedding dataset.
Now for every test sample, we first find the top
two train snippets most semantically similar to the
statement in the test sample by calculating the co-
sine similarity between the embedding vectors of
the test sample and all candidate train snippets. We
then convert the whole snippets plus the test sample
into the few-shot prompt format shown in Figure
5. Appendix C contains more details about the
instructions, train snippet format, answer format.

Figure 4: Format of the train snippets to be created for
few shot samples
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Figure 5: Format of the few-shot prompt

Approach Macro F1-score Dev Macro F1-score Test
NLI4CT-BioSimCSE-BioLinkBERT-BASE 0.613 0.595

NLI4CT-BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext(Unfrozen) 0.669 0.655

NLI4CT-BioLM-RoBERTa-base-PM-M3-Voc-distill-align(Unfrozen) 0.694 0.679

NLI4CT-BiomedNLP-PubMedBERT-large-uncased-abstract(Unfrozen) 0.719 0.690

NLI4CT-BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext(layers frozen) 0.661 0.646

NLI4CT-BioLM-RoBERTa-base-PM-M3-Voc-distill-align(layers frozen) 0.632 0.615

NLI4CT-BiomedNLP-PubMedBERT-large-uncased-abstract(layers frozen) 0.659 0.637

GPT-3.5 Davinci(text-davinci-003) Zero Shot 0.685 0.664

GPT-3.5 Davinci(text-davinci-003) Few Shot 0.708 0.694

Table 1: Results of all the approaches on test and dev dataset

5 Results

The results for all approaches on the Dev and Test
dataset are presented in Table 1. The evaluation
metric for NLI4CT subtask 1 is the Macro-F1 score.
Although the GPT-3.5 Davinci model outperforms
our finetuned cross-encoders in a few-shot setting,
it is beaten by our finetuned models in a zero-shot
setting. We also observe that our approach for
choosing semantically similar few-shot train snip-
pets gives a significant performance boost over
the zero-shot approach. Another interesting ob-
servation comes in the form of the general trend of
performance drop when cross-encoder models are
trained after freezing the layers. Although freezing
the transformer layers and leaving just the classi-
fier and pooler layers unfrozen gives an excellent
boost to training time and reduces memory usage,
it does not give any performance-based benefits
even after training for a good range of iterations
and optimizing hyperparameters.

6 Conclusion

We map the textual entailment task as a sentence-
pair classification task, and we study the literature
to find all approaches that can be used to solve this
task. We also study clinical literature to grasp our
dataset and understand the definition of whereas
properties properly. We also try to find pretrained
models already trained on some clinical or biomed-

ical domain that can be finetuned further for our
task. We agree on specific approaches/pretrained
models and finetune our models based on those
pretrained models. To get a good grasp of the per-
formance of our models, we leverage very large
language models and compare performance with
GPT-3.5 Davinci state-of-the-art models in zero-
shot and few-shot settings. We devise a few-shot
strategy based on semantic similarity to find the top
two few-shot train snippets for each test sample.

We observe that finetuned cross-encoders per-
form well compared to zero-shot GPT-3.5, and
some models also perform comparably to the
few-shot GPT-3.5. We also observe that freez-
ing the base transformers’ layers while training
cross-encoders considerably affects model perfor-
mance on downstream tasks. Further, we would
explore how to increase our model performance
and achieve similar performances as unfrozen mod-
els by freezing specific layers while training cross-
encoders to see their effects. We would also exper-
iment to train cross-encoders based on more pre-
trained models like BioLinkBERT(Yasunaga et al.,
2022).
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function (Hadsell et al., 2006), the evaluator used
is the EmbeddingSimilarityEvaluator10 and the hy-
perparameters are present in table 2.

10https://www.sbert.net
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MODEL PARAMETERS VALUE
Fixed Parameters

Scheduler WarmupLinear
Optimizer AdamW

Weight Decay 0.01
Tuned Parameters

Num Epochs 5
Warmup Steps 427
Learning Rate 0.0001

Batch Size 2

Table 2: Hyperparameters for Sentence Transformer Approach

B Training details for the Cross-Encoders
based approach

We fine-tune all the cross encoder models using
the CEBinaryClassificationEvaluator11 as it maxi-
mizes the F1 and use the Binary cross-entropy with
logits loss function. The hyperparameters of the
respective models are detailed in table 3.

C Details related to zero-shot and
few-shot prompt format of GPT 3.5

We present a detailed sample of the zero-shot
prompt in Figure 6 along with the respective seg-
ments mentioned alongside it.

We also present a sample example train snippet
in Figure 7.

The Few-Shot prompt in format is formed by
combining the top 2 train snippets, which would be
of similar formats as represented in Figure 7, and
the test example in the form shown in the zero-shot
sample in Figure 6.

11https://www.sbert.net/docs
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MODEL PARAMETERS VALUE
Fixed Parameters

Scheduler WarmupLinear
Optimizer AdamW

Weight Decay 0.01
Tuned Parameters

NLI4CT-BiomedNLP-PubMedBERT-base(Unfrozen)
Num Epochs 5

Warmup Steps 427
Learning Rate 2e-05

Batch Size 2
NLI4CT-BiomedNLP-PubMedBERT-large(Unfrozen)

Num Epochs 4
Warmup Steps 342
Learning Rate 1e-04

Batch Size 2

NLI4CT-BioLM-RoBERTa-base(Unfrozen)
Num Epochs 6

Warmup Steps 512
Learning Rate 2e-04

Batch Size 2
NLI4CT-BiomedNLP-PubMedBERT-base(frozen)

Num Epochs 5
Warmup Steps 427
Learning Rate 1e-05

Batch Size 2
NLI4CT-BiomedNLP-PubMedBERT-large(frozen)

Num Epochs 10
Warmup Steps 854
Learning Rate 5e-05

Batch Size 5

NLI4CT-BioLM-RoBERTa-base(frozen)
Num Epochs 8

Warmup Steps 684
Learning Rate 2e-05

Batch Size 2

Table 3: Hyperparameters for Cross-Encoder Approach
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Figure 6: A sample of the zero-shot prompt for NLI4CT subtask 1

Figure 7: A sample train snippet
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