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Abstract
In this paper, we introduce our submission in
the task of visual word sense disambiguation
(V-WSD). Our proposed solution operates by
deriving quasi-symbolic semantic categories
from the hidden representations of multi-modal
text-image encoders. Our results are mixed,
as we manage to achieve a substantial boost
in performance when evaluating on a valida-
tion set, however, we experienced detrimen-
tal effects during evaluation on the actual test
set. Our positive results on the validation set
confirms the validity of the quasi-symbolic fea-
tures, whereas our results on the test set re-
vealed that the proposed technique was not able
to cope with the sufficiently different distribu-
tion of the test data.

1 Introduction

Multi-modal text-image encoders, such as CLIP
(Radford et al., 2021) have a demonstrated capa-
bility of performing zero-shot image classification
tasks over diverse benchmark datasets. The con-
trastive learning objective applied during the pre-
training of such models make them a natural choice
for the V-WSD shared task (Raganato et al., 2023),
where the goal is to choose from a set of candidate
images the one which suits the best some query
expression including a potentially ambiguous term.
That is, the shared task problem can be framed as
an image retrieval task, for where the transfer learn-
ing capabilities of CLIP can be arguably exploited.

The kind of continuous hidden representations
produced by neural models, including CLIP, are
limited by their lack of translucency from a hu-
man perspective. Our earlier work demonstrated
that by using an unsupervised technique relying
on sparse coding, it becomes possible to connect
static word embedding representations with human
interpretable concepts and properties (Balogh et al.,
2020). In (Berend et al., 2018), we successfully em-
ployed these representations for hypernym discov-
ery (Camacho-Collados et al., 2018), surpassing

the performance obtained by relying on traditional
and less interpretable dense word embeddings. In
(Berend, 2020), we demonstrated that the technique
can be extended to contextualized word represen-
tations, substantially improving the performance
in classic unimodal, text-only word sense disam-
biguation.

Our approach for inducing implicit semantic in-
formation to words within their context built on
the observation that performing sparse coding over
the contextual representations of pre-trained lan-
guage models result in representations that align
well with semantic categories. With our shared task
participation, our goal was to investigate if similar
benefits that we saw for the classic uni-modal, text-
only WSD task can be observed for multi-modal
CLIP-based representations in V-WSD.

Our experiments delivered mixed results, as the
sparse multi-modal representations provided sub-
stantial performance gain during the development
phase, when evaluation was carried out on a held-
out part of the training set, but the same quasi-
symbolic features proved to be detrimental for the
unseen test set with a distribution shift relative to
the training set.

2 Our approach

We first introduce our notation (§2.1), then de-
scribe our methodology for determining multi-
modal quasi-symbolic representations of texts and
images (§2.2). Finally, we reveal how we incorpo-
rated those during ranking (§2.3).

2.1 Problem setting

We are given a short query text snippet t containing
an ambiguous word and a collection of 10 candi-
date images for that text snippet It = {i1, . . . , i10},
and the task is to find the image ip ∈ It, such that
the semantic overlap between the input expression
t and image ip (p ∈ {1 . . . 10}) is maximal.
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2.2 Obtaining quasi-symbolic representations
CLIP-style multi-modal encoders determine a vec-
tor representation of images and texts in a shared
latent space, where images and corresponding texts
describing them are supposed to be encoded by
similar vectors. We shall refer to the vector repre-
sentation of some input object with e(·), i.e., e(t)
is the embedded representation of the query text t
from the text encoder part of CLIP, whereas e(i)
refers to that from the image encoder for image i.

The way we introduced our quasi-symbolic rep-
resentations is similar to (Berend, 2020). That is,
we turn the dense continuous latent representations
produced by some neural encoder into a sparse vec-
tor by performing sparse coding over them. This
results in alternative representations, that have a
high fraction of coefficients being precisely 0.

The sparse vectors that we determine can be nat-
urally interpreted in a quasi-symbolic way, i.e., one
can assign the original dense input symbol belong-
ing to those discrete categories – each represented
by a latent dimension in the transformed space – for
which a particular sparse representation contains a
non-zero coefficient. Moreover, as demonstrated
in (Balogh et al., 2020; Berend, 2020), these new
dimensions are often interpretable by humans. In
Section 3.3, we shall illustrate this property of our
quasi-symbolic properties for the image domain.

Upon the determination of the quasi-symbolic
multi-modal representations, we first perform dic-
tionary learning (Mairal et al., 2009), during which
we solve

min
D,αi∈Rk

≥0

N∑

i=1

1

2
∥hi −Dαi∥22 + λ∥αi∥1, (1)

with D ∈ Rd×k being a dictionary matrix, the
column norms of which do not exceed 1, αi ∈ Rk

is a sparse vector of coefficients that indicate the
extent to which the components of D are used for
the reconstruction of hi ∈ Rd, which is the unit-
normalized continuous hidden representation of
some image i. λ is a regularization coefficient for
controlling the sparsity of αi.

For determining D, we relied only on the im-
ages of the training set of the shared task. That
is, we did not use the latent representations corre-
sponding to the textual inputs for obtaining D. The
reason for not treating the e(t) hidden representa-
tions as potential placeholders for hi upon solving
(1) is that when we did otherwise, the quality of
the dictionary matrix D dropped. The utility of

D was likely inferior in that case as different col-
umn vectors from D specialized for either taking
part in the reconstruction of text or image input
representations. With different latent dimensions
specializing towards different modalities, the idea
of a joint latent quasi-symbolic space would have
been corrupted.

Determining a sparse, quasi-symbolic represen-
tation of some CLIP-encoded (image or text) in-
put hj – once the dictionary matrix D from the
first phase has been completed – corresponds to
solving a LASSO optimization on the hidden rep-
resentation of the input object in the joint latent
multi-modal space hj as

min
αj∈Rk

≥0

1

2
∥hj −Dαj∥22 + λ∥αj∥1. (2)

In contrast to (1), where a hidden vector hi re-
fer to some image encoding produced by a CLIP
model, in (2) hj could refer to the encoding of
some text or image modality produced by the same
CLIP model D was determined for. We obtain a
sparse k-dimensional vector representation of a text
snippet or an image by replacing hj by either e(t)
or e(i), respectively, and solving (2). We shall de-
note the sparse representations produced by (2) for
a given text or image input as s(e(t)) and s(e(i)),
respectively.

The way we determine the discrete quasi-
symbolic representations out of the sparse vec-
tors is by determining the set of coordinates for
which they have a non-zero coefficient. That is,
we define the set of latent symbols describing an
image i with a sparse representation s(e(i)) as
S(i) = {m|s(e(i))[m] > 0, ∀m ∈ {1, . . . , k}},
i.e., its coordinates for which the coefficient deter-
mined by (2) is greater than zero. S(t), the set of
quasi-symbolic representation for a text snippet t,
can be obtained in an analogous way to S(i) by
using the neural encoding of t originating from a
CLIP model.

2.3 Ranking framework
Given that our goal was to base our ranking on
features that are quasi-symbolic and more human
interpretable, we decided to employ a simple and
intrinsically interpretable linear model for perform-
ing the ranking of candidate images It for a given
query term t. As such, we employed a logistic re-
gression classifier from scikit-learn (Pedregosa
et al., 2011) the training of which we describe in
the followings.
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For a given input tuple (t, It), with one of the im-
ages ip ∈ It being the image expected to be ranked
first, we determined a feature vector ϕ(t, i) for all
i ∈ It and a corresponding class label y, which was
considered to take up the label Negative for It\ip,
i.e., for all the candidate images apart from ip,
while treating the class label corresponding to the
expected image ip as Positive. With this model,
we could rank the images in It according to their
predicted probability of belonging to the Positive
class, which gave our ranking for the test cases.

We next define the kind of features that we de-
termined for a (text, image) input pair (t, i) based
on their original CLIP-based representations e(t)
and e(i), and their corresponding sparse represen-
tations, the determination of which we discussed
earlier in §2.2.

The most trivial feature to be induced by ϕ(t, i)
is the cosine similarity of their original CLIP-
derived embeddings e(t) and e(i). We considered
the model that used this only feature as our base-
line. The behavior of the ranking obtained by a
model that was trained using this unique feature
is essentially the same as if we performed ranking
based on a simple nearest-neighbor search among
the candidate images for some input term t. Notice,
that this was the kind of baseline the shared task
organizers also proposed.

There was an extended baseline solution we
gave, which used as features not only the cosine
similarity between the unit-normalized embeddings
e(t) and e(i), but also their dimensionwise product
of coordinates. This means that for e(t), e(i) ∈ Rd,
we defined d distinct features to be induced by
ϕ(t, i), each corresponding to the elementwise
product of the two vectors. Notice that these fea-
tures can be regarded as a generalization of the
cosine similarity feature, because when all the el-
ementwise products are taken into consideration
with weight one, the sum of these features is able
to reconstruct the cosine similarity feature. By
treating the individual dimensions separately, it
becomes possible to weight the various latent di-
mensions differently.

The features introduced so far did not make use
of the quasi-symbolic representations that we in-
troduced in §2.2, so we introduce those next. Two
additional features corresponded to (i) the sum of
elementwise products of the sparse embeddings
s(e(t)) and s(e(i)) and the Jaccard similarity be-
tween the sets of quasi-symbolic representations

S(e(t)) and S(e(i)). Up until d+ 1 features have
been introduced based on the original dense CLIP-
based representations, and 2 additional features
that were based on the representations introduced
in § 2.2.

Finally, we introduce k further features intro-
duced by ϕ(t, i) as the sparse representations
s(e(t)), s(e(i)) ∈ Rk. The k individual features
reflected by

• a value of +1 if a particular dimension had
a nonzero coefficient for both s(e(t)) and
s(e(i)),

• a value of −1 if a particular dimension had
a nonzero coefficient for precisely one of
s(e(t)) and s(e(i)),

• and 0 otherwise.

From the perspective of the set representation of
the text and image inputs, these feature values in-
dicated if a particular quasi-semantic property was
in the intersection of both (value +1), or in their
symmetric difference (value −1), or neither (value
0). The idea for learning a separate weight for
each such latent semantic properties was that ar-
guably the different latent aspects of words and
images play a different role in the determination
of the fitness of an image to a query expression,
and this could be learned by the logistic regression
classifier.

3 Experiments

In the following subsections, we first introduce
the datasets (§3.1) and report our quantitative and
qualitative results (§3.2 and 3.3).

3.1 Dataset

The training dataset included 12, 869 instances of
text query and candidate image set pairs, (t, It)
where the text inputs were exclusively written in
English. As there was no dedicated development
set released, we split these 12, 869 instances into
two disjoint parts, i.e., a reduced training set of
10,000 instances and a development set of the re-
maining 2, 869 instances. For better comparability
between the development and test set results, we
report all our figures for the case when only the
reduced training set consisting of 10,000 instances
were used for training the logistic regression model
as described in §2.3.

1967



Baseline Extended baseline
Hit rate MRR Hit rate MRR

Dev. set 0.829 0.890 0.840 0.898
Test set 0.700 0.809 0.702 0.812

Table 1: Evaluation performance of the baseline ap-
proaches not utilizing the quasi-symbolic features over
the development set and the official test set.

The test set contained three languages, i.e., En-
glish (en), Farsi (fa) and Italian (it), each having
a corresponding number of 463, 200 and 305 in-
stances. Here, we primarily focus on the English
test, as this is the language we can compare the
results with our development set results. The two
metrics used during evaluation were the hit rate
(proportion of test cases, where the expected gold
image was ranked first), and mean reciprocal rank
(MRR).

3.2 Quantitative results

We relied on the CLIP model (Radford et al., 2021)
that uses XLM RoBERTa large (Conneau et al.,
2020) as the text encoder, using the OpenClip (Il-
harco et al., 2021) implementation1. The model
was pre-trained over the LAION 5B dataset (Schuh-
mann et al., 2022), made accessible via the Hug-
gingFace transformers library (Wolf et al., 2020).

In Table 1, we report those performance met-
rics that we obtained when either using the sin-
gle feature of the cosine similarity of the CLIP-
based encodings of texts and candidate images
(Baseline), or additionally their coordinatewise
products as well (Extended baseline). Compar-
ing the two baselines we can see, that deriving
features from the individual coordinates in of the
dense CLIP-representations gave approximately 1
point improvement over the development set, and
a marginal one in case if the test instances.

We report next in Table 2 those performance
metrics that we obtained when extending our fea-
ture space with the quasi-symbolic features that
we described in §2.3. As the dictionary learning
component for deriving the quasi-symbolic repre-
sentations involves two hyperparameters (k for the
number of symbols introduced and λ controlling
the strength of the regularization), we also investi-
gated the effects of choosing them differently in the
range of {1000, 2000, 3000} × {0.05, 0.1, 0.2}.

1https://huggingface.co/laion/CLIP-ViT-H-14-f
rozen-xlm-roberta-large-laion5B-s13B-b90k

(a) Top-coefficient images for the category ranked 1

(b) Top-coefficient images for the category ranked 2

(c) Top-coefficient images for the category ranked 3

Figure 1: Top-coefficient training set images of quasi-
symbolic categories ranked by the weights of the logistic
regression model trained over the first 10K training data.

By comparing the figures in Table 1 and Table 2,
we can see that over the development set, we can
see a large improvement in both metrics (irrespec-
tive of the hyperparameters used for deriving the
quasi-symbolic representations), whereas for the
test set, our added features caused the performance
measures to drop substantially compared to our
baseline approaches. The most likely explanation
for this drop in performance is that the training set
(and the development set that we created from it)
had a different distribution of images.

Table 3 provides supportive evidence towards
this explanation, in which table we report the corre-
lation coefficients between such logistic regression
models that we trained over the reduced training
set (not overlapping with the development set), the
development set and the test set. We can see that
the models learned for the test set behave rather dif-
ferently, suggesting that different quasi-symbolic
features are important for giving the right answer
for those instances in the test set.

3.3 Illustrating the quasi-symbolic properties

We next provide an illustration of the human inter-
pretable clusters that our ranking models consid-
ered to be the most relevant according to the learned
weights for those quasi-symbolic categories. We
ranked the categories according to a model that was
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λ
k 0.05 0.1 0.2

1000 0.884 0.887 0.887
2000 0.885 0.881 0.886
3000 0.884 0.876 0.878

(a) Hit rate on English development set

λ
k 0.05 0.1 0.2

1000 0.930 0.932 0.932
2000 0.931 0.929 0.931
3000 0.930 0.925 0.927

(b) MRR on English development set

λ
k 0.05 0.1 0.2

1000 0.672 0.644 0.644
2000 0.616 0.637 0.646
3000 0.588 0.607 0.592

(c) Hit rate on English test set

λ
k 0.05 0.1 0.2

1000 0.787 0.773 0.768
2000 0.757 0.766 0.769
3000 0.739 0.747 0.740

(d) MRR on English test set

Table 2: Performance of the nearest-neighbor baseline on the development set and the official test set.

train dev test

train 1.00 0.90 0.37
dev 0.23 1.00 0.36
test 0.02 0.06 1.00

Table 3: Correlation coefficient between the model
weights of the models trained over different datasets.
Values above and under the main diagonal refer to Pear-
son and Spearman correlation coefficients, respectively.

(a) Top-ranked images of quasi-symbolic category rank 1

(b) Top-ranked images of quasi-symbolic category rank 2

(c) Top-ranked images of quasi-symbolic category rank 3

Figure 2: Top-coefficient training set images of quasi-
symbolic categories ranked by the weights of the logistic
regression model trained over the English test data.

en fa it

Hit rate 0.678 0.350 0.561
MRR 0.800 0.561 0.711

Table 4: The official results of our final submission.

learned over the 10,000 element reduced training
set and the 463 element test set. Figure 1 and Fig-
ure 2 provides the top-3 images having the highest
coefficient in their s(e(i)) representation along the
top-3 categories that received the highest logistic
regression weights for the model trained over the
reduced training set and the test set, respectively.

Looking at the images we can see that the im-
ages with the highest non-zero coefficients along
a certain dimension in s(e(i)) are indeed seman-
tically coherent. Besides that, we can also notice
that the most important semantic categories for the
training set (as depicted in Figure 1) and the test set
(as depicted in Figure 2) are rather different, con-
firming our hypothesis why the introduced features
proved to be harmful during testing.

3.4 Final results

We report our official evaluation scores in Table 4.
These results were obtained by the predictions of a
classifier which was an ensemble over all the 9 hy-
perparameter combinations of k and λ values that
we experimented with. The models were trained
differently from the ones analyzed earlier, i.e., we
utilized all the official training instances instead of
relying on the first 10K instances.
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4 Conclusion

In this paper, we have investigated the use of
quasi-symbolic representations derived from the
latent representations produced by multi-modal,
text-image encoders. Our qualitative evaluation
suggests that the individual latent representations
that we derived from the original representations
have translucency from a human point of view.
Additionally, the features that we extracted from
these quasi-symbolic representations were helpful
in boosting V-WSD performance when the distri-
bution of the inputs was closer to that of the data
that we used for training our ranking module with.
On the negative side, our test scores dropped sub-
stantially compared to the ones we observed on
the development data. The test set performance
could be improved if more diverse training data
was used, perhaps, from alternative sources such
as MS COCO (Lin et al., 2014) or GCC (Sharma
et al., 2018), something we consider as a poten-
tial future research direction. Our source code for
replicating our experiments can be accessed via
https://github.com/szegedai/vwsd/.
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