@inproceedings{aziz-etal-2023-csecu,
title = "{CSECU}-{DSG} at {S}em{E}val-2023 Task 4: Fine-tuning {D}e{BERT}a Transformer Model with Cross-fold Training and Multi-sample Dropout for Human Values Identification",
author = "Aziz, Abdul and
Hossain, Md. Akram and
Chy, Abu Nowshed",
editor = {Ojha, Atul Kr. and
Do{\u{g}}ru{\"o}z, A. Seza and
Da San Martino, Giovanni and
Tayyar Madabushi, Harish and
Kumar, Ritesh and
Sartori, Elisa},
booktitle = "Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.semeval-1.274",
doi = "10.18653/v1/2023.semeval-1.274",
pages = "1988--1994",
abstract = "Human values identification from a set of argument is becoming a prominent area of research in argument mining. Among some options, values convey what may be the most desirable and widely accepted answer. The diversity of human beliefs, random texture and implicit meaning within the arguments makes it more difficult to identify human values from the arguments. To address these challenges, SemEval-2023 Task 4 introduced a shared task ValueEval focusing on identifying human values categories based on given arguments. This paper presents our participation in this task where we propose a finetuned DeBERTa transformers-based classification approach to identify the desire human value category. We utilize different training strategy with the finetuned DeBERTa model to enhance contextual representation on this downstream task. Our proposed method achieved competitive performance among the participants{'} methods.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="aziz-etal-2023-csecu">
<titleInfo>
<title>CSECU-DSG at SemEval-2023 Task 4: Fine-tuning DeBERTa Transformer Model with Cross-fold Training and Multi-sample Dropout for Human Values Identification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Abdul</namePart>
<namePart type="family">Aziz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Md.</namePart>
<namePart type="given">Akram</namePart>
<namePart type="family">Hossain</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Abu</namePart>
<namePart type="given">Nowshed</namePart>
<namePart type="family">Chy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Atul</namePart>
<namePart type="given">Kr.</namePart>
<namePart type="family">Ojha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="given">Seza</namePart>
<namePart type="family">Doğruöz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giovanni</namePart>
<namePart type="family">Da San Martino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Harish</namePart>
<namePart type="family">Tayyar Madabushi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ritesh</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elisa</namePart>
<namePart type="family">Sartori</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Human values identification from a set of argument is becoming a prominent area of research in argument mining. Among some options, values convey what may be the most desirable and widely accepted answer. The diversity of human beliefs, random texture and implicit meaning within the arguments makes it more difficult to identify human values from the arguments. To address these challenges, SemEval-2023 Task 4 introduced a shared task ValueEval focusing on identifying human values categories based on given arguments. This paper presents our participation in this task where we propose a finetuned DeBERTa transformers-based classification approach to identify the desire human value category. We utilize different training strategy with the finetuned DeBERTa model to enhance contextual representation on this downstream task. Our proposed method achieved competitive performance among the participants’ methods.</abstract>
<identifier type="citekey">aziz-etal-2023-csecu</identifier>
<identifier type="doi">10.18653/v1/2023.semeval-1.274</identifier>
<location>
<url>https://aclanthology.org/2023.semeval-1.274</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>1988</start>
<end>1994</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CSECU-DSG at SemEval-2023 Task 4: Fine-tuning DeBERTa Transformer Model with Cross-fold Training and Multi-sample Dropout for Human Values Identification
%A Aziz, Abdul
%A Hossain, Md. Akram
%A Chy, Abu Nowshed
%Y Ojha, Atul Kr.
%Y Doğruöz, A. Seza
%Y Da San Martino, Giovanni
%Y Tayyar Madabushi, Harish
%Y Kumar, Ritesh
%Y Sartori, Elisa
%S Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F aziz-etal-2023-csecu
%X Human values identification from a set of argument is becoming a prominent area of research in argument mining. Among some options, values convey what may be the most desirable and widely accepted answer. The diversity of human beliefs, random texture and implicit meaning within the arguments makes it more difficult to identify human values from the arguments. To address these challenges, SemEval-2023 Task 4 introduced a shared task ValueEval focusing on identifying human values categories based on given arguments. This paper presents our participation in this task where we propose a finetuned DeBERTa transformers-based classification approach to identify the desire human value category. We utilize different training strategy with the finetuned DeBERTa model to enhance contextual representation on this downstream task. Our proposed method achieved competitive performance among the participants’ methods.
%R 10.18653/v1/2023.semeval-1.274
%U https://aclanthology.org/2023.semeval-1.274
%U https://doi.org/10.18653/v1/2023.semeval-1.274
%P 1988-1994
Markdown (Informal)
[CSECU-DSG at SemEval-2023 Task 4: Fine-tuning DeBERTa Transformer Model with Cross-fold Training and Multi-sample Dropout for Human Values Identification](https://aclanthology.org/2023.semeval-1.274) (Aziz et al., SemEval 2023)
ACL