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Abstract

This paper presents our systems and findings
for SemEval-2023 Task 12: AfriSenti-SemEval:
Sentiment Analysis for Low-resource African
Languages. The main objective of this task was
to determine the polarity of a tweet (positive,
negative, or neutral). Our submitted models
(highest rank is 1 and lowest rank is 21 de-
pending on the target Track) consist of various
Transformer-based approaches.

1 Introduction

Sentiment analysis is a branch of natural language
processing that involves the use of computational
techniques to identify and extract subjective infor-
mation from textual data. It involves the classifica-
tion of text based on the writer’s attitude, emotions,
and opinions toward a particular subject or topic.

In recent years, there has been a growing in-
terest in sentiment analysis for African languages.
This is because African languages are some of the
most widely spoken languages in the world, yet
they are often underrepresented in natural language
processing research. However, sentiment analysis
for African languages presents unique challenges
due to the linguistic and cultural diversity of the
continent.

One of the main challenges of sentiment analysis
for African languages is the lack of annotated data.
Annotated data is essential for training machine
learning models for sentiment analysis, but there
is a limited amount of annotated data available for
many African languages. Additionally, African lan-
guages often have complex grammatical structures
and a wide range of dialects, making it difficult to
develop effective sentiment analysis models.

Despite these challenges, there have been some
recent advances in sentiment analysis for African
languages. Researchers have used transfer learn-
ing and cross-lingual models to develop sentiment
analysis models for African languages, which can

leverage existing data from other languages to im-
prove performance. There have also been efforts to
create annotated datasets specifically for African
languages.

This paper presents our findings on SemEval-
2023 Task 12: AfriSenti-SemEval: Sentiment Anal-
ysis for Low-resource African Languages (Muham-
mad et al., 2023b). Our method consists of fine-
tuning various transformer-based (Vaswani et al.,
2017) models.

The rest of the paper is structured in the follow-
ing manner: Section 2 provides the main objective
of each sub-task. Section 3 describes the employed
models. Section 4 details the experiments. And
finally, Section 5 concludes this paper.

2 Task Description

The AfriSenti-SemEval Shared Task 12 is based
on a collection of Twitter datasets in 14 African
languages for sentiment classification. It consists
of three sub-tasks:

• Task A: Monolingual Sentiment Classifica-
tion: The objective of this task is to determine
the polarity (positive, negative, or neutral) of
a tweet in a specific language, using training
data in that language. If a tweet expresses both
positive and negative sentiments, the stronger
sentiment should be selected. There are 12
tracks in this sub-task, each for a different
language: Track 1 for Hausa, Track 2 for
Yoruba, Track 3 for Igbo, Track 4 for Nige-
rian Pidgin, Track 5 for Amharic, Track 6 for
Algerian Arabic, Track 7 for Moroccan Ara-
bic/Darija, Track 8 for Swahili, Track 9 for
Kinyarwanda, Track 10 for Twi, Track 11 for
Mozambican Portuguese, and Track 12 for
Xitsonga (Mozambique Dialect).

• Task B: Multilingual Sentiment Classifi-
cation: Given combined training data from
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Task-A (Track 1 to 12), determine the polar-
ity of a tweet in the target language (positive,
negative, or neutral). This sub-task has only
one track with 12 languages (Hausa, Yoruba,
Igbo, Nigerian Pidgin, Amharic, Algerian Ara-
bic, Moroccan Arabic/Darija, Swahili, Kin-
yarwanda, Twi, Mozambican Portuguese, and
Xitsonga (Mozambique Dialect)), Track 16:
12 languages in Task A.

• Task C: Zero-Shot Sentiment Classification:
Given unlabelled tweets in two African lan-
guages (Tigrinya and Oromo), leverage any or
all of the available training datasets (in Task:A
) to determine the sentiment of a tweet in the
two target languages. This task has two (2)
tracks, Track 17: Zero-Shot on Tigrinya, and
Track 18: Zero-Shot on Oromo.

3 System Description

To tackle AfriSenti-SemEval Shared Task 12, sev-
eral transformer-based models have been used de-
pending on each Track:

• Hausa: we have fine-tuned xlm-roberta-
base-finetuned-hausa1 which is: "a Hausa
RoBERTa (Liu et al., 2019) model obtained by
fine-tuning xlm-roberta-base (Conneau et al.,
2020) model on Hausa language texts. It
provides better performance than the XLM-
RoBERTa on text classification and named
entity recognition datasets".

• Yoruba: we have fine-tuned xlm-roberta-
base-finetuned-yoruba2 which is a: "Yoruba
RoBERTa model obtained by fine-tuning xlm-
roberta-base model on Yorùbá language texts.
It provides better performance than the XLM-
RoBERTa on text classification and named
entity recognition datasets".

• Igbo: we have fine-tuned xlm-roberta-
base-finetuned-igbo3 which is: "an Igbo
RoBERTa model obtained by fine-tuning
xlm-roberta-base model on Hausa language
texts. It provides better performance than the
XLM-RoBERTa on named entity recognition
datasets".

1https://huggingface.co/Davlan/
xlm-roberta-base-finetuned-hausa

2https://huggingface.co/Davlan/
xlm-roberta-base-finetuned-yoruba

3https://huggingface.co/Davlan/
xlm-roberta-base-finetuned-igbo

• Nigerian Pidgin, Amharic, Morrocan Dar-
ija, Mozambican Portuguese, Xitsonga, and
Multilingual: we have fine-tuned mdeberta-
v3-base4 (He et al., 2021a,b) which is: "a
multilingual version of DeBERTa that use the
same structure as DeBERTa and was trained
with CC100 multilingual data. The mDe-
BERTa V3 base model comes with 12 layers
and a hidden size of 768. It has 86M back-
bone parameters with a vocabulary containing
250K tokens which introduces 190M parame-
ters in the Embedding layer".

• Algerian Arabic: we have fine-tuned DziriB-
ERT5 (Abdaoui et al., 2021) which is: "the
first Transformer-based Language Model that
has been pre-trained specifically for the Alge-
rian Dialect. It handles Algerian text contents
written using both Arabic and Latin charac-
ters. It sets new state-of-the-art results on
Algerian text classification datasets, even if
it has been pre-trained on much less data ( 1
million tweets)".

• Swahili: we have fine-tuned xlm-roberta-
base-finetuned-swahili6 which is: "a Swahili
RoBERTa model obtained by fine-tuning xlm-
roberta-base model on Swahili language texts.
It provides better performance than the XLM-
RoBERTa on text classification and named
entity recognition datasets".

• Kinyarwanda: we have fine-tuned xlm-
roberta-base-finetuned-kinyarwanda7 which
is: "a Kinyarwanda RoBERTa model obtained
by fine-tuning xlm-roberta-base model on Kin-
yarwanda language texts. It provides bet-
ter performance than the XLM-RoBERTa on
named entity recognition datasets".

• Twi, Zero-Shot Tigrinya, and Zero-Shot
Oromo: we have fine-tuned AfriBERTa
large8 (Ogueji et al., 2021) which is: "a
pre-trained multilingual language model with
around 126 million parameters. The model

4https://huggingface.co/microsoft/
mdeberta-v3-base

5https://huggingface.co/alger-ia/
dziribert

6https://huggingface.co/Davlan/
xlm-roberta-base-finetuned-swahili

7https://huggingface.co/Davlan/
xlm-roberta-base-finetuned-kinyarwanda

8https://huggingface.co/castorini/
afriberta_large
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has 10 layers, 6 attention heads, and 768
hidden units. The model was pretrained on
11 African languages namely - Afaan Oro-
moo (also called Oromo), Amharic, Gahuza
(a mixed language containing Kinyarwanda
and Kirundi), Hausa, Igbo, Nigerian Pidgin,
Somali, Swahili, Tigrinya, and Yorùbá. The
model has been shown to obtain competitive
downstream performances on text classifica-
tion and Named Entity Recognition on several
African languages, including those it was not
pretrained on".

xlm-roberta-base, DziriBERT, and AfriBERTa
were fine-tuned on the merge of training and dev
sets related to each Track (for example, DziriBERT
was fine-tuned on the merge of Algerian Arabic
training and dev sets provided by the organizers
to handle Track 6: Algerian Arabic, xlm-roberta-
base-finetuned-hausa was fine-tuned on the merge
of Hausa training and dev sets provided by the orga-
nizers to handle Track 1: Hausa, and xlm-roberta-
base-finetuned-kinyarwanda was fine-tuned on the
merge of Kinyarwanda training and dev sets pro-
vided by the organizers to handle Track 9: Kin-
yarwanda), with the exception of Zero-Shot Tracks
where no training set is provided, therefore, AfriB-
ERTa large was fine-tuned on the dev set only for
Tigrinya and Oromo.

mDeBERTa V3 base was fine-tuned on the
merge of training and dev sets of all the first 12
tracks (Task A) along with the dev set of Track 16
(Task B: Multilingual Sentiment Classification).

4 Experimental Results

The experiments have been conducted in Google
Colab environment9, The following libraries:
Transformers - Hugging Face10 (Wolf et al., 2020),
and Keras11 were used to fine-tune and to assess
the performance of our models.

4.1 Datasets
The dataset (Muhammad et al., 2023a) involves
tweets labeled with three sentiment classes (pos-
itive, negative, neutral) in 14 African languages.
Each tweet is annotated by three annotators fol-
lowing the annotation guidelines in (Mohammad,
2016). Figure 1 represents a sample of the Moroc-
can Arabic/Darija training set.

9https://colab.research.google.com/
10https://huggingface.co/docs/transformers/index
11https://keras.io/

Figure 1: Sample of the Moroccan Arabic/Darija train-
ing set

The datasets are available via GitHub12

4.2 Evaluation Metric

To evaluate the performance of the submitted re-
sults, the organizers adopted the F1 score as the
main metric. The F1 score is computed in the fol-
lowing manner where P and R are respectively
the precision and recall, and TP , TN , FP , and
FN are respectively the true positive, true negative,
false positive, and false negative.

P =
TP

TP + FP
(1)

R =
TP

TP + FN
(2)

F1 =
2× P ×R

P +R
(3)

4.3 Experimental Settings

During the fine-tuning phase, each model was fine-
tuned with different hyperparameters depending on
the Track:

• Hausa: we have fine-tuned xlm-roberta-base-
finetuned-hausa using a batch size of 8 and 5
epochs.

• Yoruba: we have fine-tuned xlm-roberta-
base-finetuned-yoruba using a batch size of 8
and 4 epochs.

• Igbo: we have fine-tuned xlm-roberta-base-
finetuned-igbo using a batch size of 16 and 5
epochs.

• Nigerian Pidgin, Amharic, Morrocan Dar-
ija, Mozambican Portuguese, Xitsonga, and
Multilingual: we have fine-tuned mdeberta-
v3-base using a batch size of 32 and 4 epochs.

12https://github.com/afrisenti-semeval/
afrisent-semeval-2023

201

https://github.com/afrisenti-semeval/afrisent-semeval-2023
https://github.com/afrisenti-semeval/afrisent-semeval-2023


• Algerian Arabic: we have fine-tuned DziriB-
ERT using a batch size of 8 and 4 epochs.

• Swahili: we have fine-tuned xlm-roberta-
base-finetuned-swahili using a batch size of 8
and 6 epochs.

• Kinyarwanda: we have fine-tuned xlm-
roberta-base-finetuned-kinyarwanda using a
batch size of 16 and 7 epochs.

• Twi: we have fine-tuned AfriBERTa large us-
ing a batch size of 8 and 5 epochs.

• Zero-Shot Tigrinya: we have fine-tuned
AfriBERTa large using a batch size of 8 and 6
epochs.

• Zero-Shot Oromo: we have fine-tuned AfriB-
ERTa large using a batch size of 8 and 8
epochs.

Table 1 summarizes the hyperparameters settings
used during the fine-tuning.

Hyperparameters Settings
Learning rate 5e− 05

Optimizer
Adam
(Kingma and Ba, 2015)

Loss Cross-Entropy

Table 1: Hyperparameters settings for the models in the
experiments

4.4 System Performance
Table 2 depicts the results of our proposed ap-
proaches on SemEval-2023 Task 12: AfriSenti-
SemEval: Sentiment Analysis for Low-resource
African Languages. We can see that DziriBERT
performs well on the Algerian Arabic test set
by achieving first place. For Morrocan Darija,
mDeBERTa V3 base secures third place and out-
performs DarijaBERT13 (around 0.51 average F1
score) even if it was pre-trained on a total of ∼3
Million sequences of Darija dialect representing
691MB of text or a total of 100M tokens. For
Zero-Shot Tracks, AfriBERTa large achieves poor
results on Tigrinya, and average results on Oromo
despite being pre-trained on both languages. XLM-
RoBERTa (base-sized model) yields average re-
sults for Hausa, Yoruba, Igbo, and poor results for
Swahili and Kinyarwanda. mDeBERTa V3 base

13https://github.com/AIOXLABS/DBert

secures 17th place out of 33 in Track 16: Multilin-
gual by achieving an average F1 score of 67.30%
with a margin of 7.76% from the top score (75.06%
F1 score).

5 Conclusion

In this paper, we described our approach for tack-
ling SemEval 2023 Task 12: AfriSenti-SemEval:
Sentiment Analysis for Low-resource African Lan-
guages (Muhammad et al., 2023b). Our proposed
approach consisted of various Transformer-based
models. We secured 1st position in Track 6: Alge-
rian Arabic, and 3rd position in Track 7: Moroccan
Arabic/Darija.

Future studies will focus on improving the ob-
tained results by (1) incorporating external re-
sources including sentiment corpus (Muhammad
et al., 2022; Yimam et al., 2020; Mabokela and
Schlippe, 2022) and lexicons for African Lan-
guages, and (2) fine-tuning other Transformer-
based models (Devlin et al., 2019) pretrained on
African Languages 14 (Martin et al., 2022).
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