@inproceedings{mohammed-afzal-nakov-2023-team,
title = "Team {T}he{S}yllogist at {S}em{E}val-2023 Task 3: Language-Agnostic Framing Detection in Multi-Lingual Online News: A Zero-Shot Transfer Approach",
author = "Mohammed Afzal, Osama and
Nakov, Preslav",
editor = {Ojha, Atul Kr. and
Do{\u{g}}ru{\"o}z, A. Seza and
Da San Martino, Giovanni and
Tayyar Madabushi, Harish and
Kumar, Ritesh and
Sartori, Elisa},
booktitle = "Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.semeval-1.283",
doi = "10.18653/v1/2023.semeval-1.283",
pages = "2058--2061",
abstract = "We describe our system for SemEval-2022 Task 3 subtask 2 which on detecting the frames used in a news article in a multi-lingual setup. We propose a multi-lingual approach based on machine translation of the input, followed by an English prediction model. Our system demonstrated good zero-shot transfer capability, achieving micro-F1 scores of 53{\%} for Greek (4th on the leaderboard) and 56.1{\%} for Georgian (3rd on the leaderboard), without any prior training on translated data for these languages. Moreover, our system achieved comparable performance on seven other languages, including German, English, French, Russian, Italian, Polish, and Spanish. Our results demonstrate the feasibility of creating a language-agnostic model for automatic framing detection in online news.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mohammed-afzal-nakov-2023-team">
<titleInfo>
<title>Team TheSyllogist at SemEval-2023 Task 3: Language-Agnostic Framing Detection in Multi-Lingual Online News: A Zero-Shot Transfer Approach</title>
</titleInfo>
<name type="personal">
<namePart type="given">Osama</namePart>
<namePart type="family">Mohammed Afzal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Atul</namePart>
<namePart type="given">Kr.</namePart>
<namePart type="family">Ojha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="given">Seza</namePart>
<namePart type="family">Doğruöz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giovanni</namePart>
<namePart type="family">Da San Martino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Harish</namePart>
<namePart type="family">Tayyar Madabushi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ritesh</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elisa</namePart>
<namePart type="family">Sartori</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We describe our system for SemEval-2022 Task 3 subtask 2 which on detecting the frames used in a news article in a multi-lingual setup. We propose a multi-lingual approach based on machine translation of the input, followed by an English prediction model. Our system demonstrated good zero-shot transfer capability, achieving micro-F1 scores of 53% for Greek (4th on the leaderboard) and 56.1% for Georgian (3rd on the leaderboard), without any prior training on translated data for these languages. Moreover, our system achieved comparable performance on seven other languages, including German, English, French, Russian, Italian, Polish, and Spanish. Our results demonstrate the feasibility of creating a language-agnostic model for automatic framing detection in online news.</abstract>
<identifier type="citekey">mohammed-afzal-nakov-2023-team</identifier>
<identifier type="doi">10.18653/v1/2023.semeval-1.283</identifier>
<location>
<url>https://aclanthology.org/2023.semeval-1.283</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>2058</start>
<end>2061</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Team TheSyllogist at SemEval-2023 Task 3: Language-Agnostic Framing Detection in Multi-Lingual Online News: A Zero-Shot Transfer Approach
%A Mohammed Afzal, Osama
%A Nakov, Preslav
%Y Ojha, Atul Kr.
%Y Doğruöz, A. Seza
%Y Da San Martino, Giovanni
%Y Tayyar Madabushi, Harish
%Y Kumar, Ritesh
%Y Sartori, Elisa
%S Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F mohammed-afzal-nakov-2023-team
%X We describe our system for SemEval-2022 Task 3 subtask 2 which on detecting the frames used in a news article in a multi-lingual setup. We propose a multi-lingual approach based on machine translation of the input, followed by an English prediction model. Our system demonstrated good zero-shot transfer capability, achieving micro-F1 scores of 53% for Greek (4th on the leaderboard) and 56.1% for Georgian (3rd on the leaderboard), without any prior training on translated data for these languages. Moreover, our system achieved comparable performance on seven other languages, including German, English, French, Russian, Italian, Polish, and Spanish. Our results demonstrate the feasibility of creating a language-agnostic model for automatic framing detection in online news.
%R 10.18653/v1/2023.semeval-1.283
%U https://aclanthology.org/2023.semeval-1.283
%U https://doi.org/10.18653/v1/2023.semeval-1.283
%P 2058-2061
Markdown (Informal)
[Team TheSyllogist at SemEval-2023 Task 3: Language-Agnostic Framing Detection in Multi-Lingual Online News: A Zero-Shot Transfer Approach](https://aclanthology.org/2023.semeval-1.283) (Mohammed Afzal & Nakov, SemEval 2023)
ACL