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Abstract

We present the system proposed by the Mi-
laNLP team for the Explainable Detection of
Online Sexism (EDOS) shared task. We pro-
pose an ensemble modeling approach to com-
bine different classifiers trained with domain
adaptation objectives and standard fine-tuning.
Our results show that the ensemble is more
robust than individual models and that regular-
ized models generate more “conservative” pre-
dictions, mitigating the effects of lexical over-
fitting.1 However, our error analysis also finds
that many of the misclassified instances are de-
batable, raising questions about the objective
annotatability of hate speech data.

Warning: This paper contains examples of lan-
guage that some people may find offensive.

1 Introduction

Sexism and misogyny are ever-present in online
spaces, creating a hostile environment which can
prevent women from enjoying the benefits brought
about by the internet (Jane, 2017). Because of its
ubiquity, tackling sexism manually has proven in-
effective, redirecting efforts towards automatic de-
tection of this phenomenon using natural language
processing.

Kirk et al. (2023) presented a novel corpus for
the classification of sexist content from Gab and
Reddit in English using fine-grained labels. The
hierarchical classification of sexism permits the de-
velopment of classifiers that are both more accurate
and explicable. In the Explainable Detection of
Online Sexism (EDOS) shared task, systems are re-
quired to detect sexist content. The task is divided
into three sub-tasks that refer to different levels of
granularity (see §2).

In this paper, we propose an ensemble modeling
approach to combine different fine-tuned language
models. Although ensemble modeling has been

1Code available at https://github.com/MilaNLProc/
milanlp-at-edos.

shown to be beneficial for various tasks in NLP
(Garmash and Monz, 2016; Nozza et al., 2016;
Fadel et al., 2019; Bashmal and AlZeer, 2021), its
potential for hate speech detection has only been
explored in a small number of papers (Zimmerman
et al., 2018; Plaza-del Arco et al., 2019; Ramakrish-
nan et al., 2019; Nozza, 2022). Our results confirm
that ensemble learning improves robustness and
classification performance and we find that regu-
larized fine-tuning leads to higher uncertainty in
sexism prediction. The resulting “conservative”
models reduce both false positives and false nega-
tives when included in the ensemble. Our system
ranked 9th for the binary sexism detection task,
with a macro F1-score of 0.8616 (-0.013 compared
to the winning team).

Moreover, through a deeper analysis on test in-
stances, we find that many examples in the aggre-
gated dataset are likely mislabelled – showing how
to best annotate sexism (and other subjective lan-
guage phenomena) remains an open question.

2 Task Overview

The EDOS shared task (Kirk et al., 2023) requires
participants to build and test automatic models for
sexism detection for social media posts. The chal-
lenge is framed as a classification task and divided
into three hierarchical sub-tasks:

A Binary Sexism detection: The goal of the task
is to identify whether the post is sexist or not;

B Multiclass Sexism Categorization: Systems
are required to assign every sexist post from
phase one of four categories: threats, deroga-
tion, animosity, prejudiced discussions;

C Fine-grained Sexism Categorization: Simi-
larly to B, systems are required to identify
categories, but now among 11 distinct vectors
of sexism, e.g., threat of harms, immutable
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gender stereotypes, or supporting system dis-
crimination.

This paper presents a system trained to solve
task A. Although we did not address tasks B and
C specifically, we provide insights into how errors
are distributed across their fine-grained categories
(§4.1).

3 Methodology

Our proposed method is an ensemble of four fine-
tuned classifiers. We built each classifier under
different training regimes, e.g., using a simple fine-
tuned model or running domain adaptation, or en-
abling regularisation. See §4 for further discussion
on the performance of individual models and the
benefits of ensembling them.

To produce a single classification label, we aver-
age every model’s prediction and use a .5 threshold
to assign the SEXIST label.

3.1 Models

We fine-tuned two classes of models: RoBERTa
(Liu et al., 2019) and DeBERTa (He et al., 2021).
We chose them based on their generalization capa-
bilities (Choshen et al., 2022) and low hurtful sen-
tence completion score (Nozza et al., 2021, 2022).
We used HuggingFace model weights, tokenizers,
and code implementation (Wolf et al., 2020).

We did not use any additional data and used the
same training and hyperparameter search budget
for all the models.

3.2 Fine-Tuning vs. Domain Adaptation

We fine-tuned a pre-trained RoBERTa (ROB) as
our initial baseline.2

Recent evidence has shown that further pre-
training on in-domain data leads to higher trans-
fer learning capabilities (Gururangan et al., 2020).
This approach, commonly referred to as Domain
Adaptation, uses data from the same downstream
task domain.

We ran domain adaptation using the unlabeled
Reddit corpus (1M posts) provided by the task orga-
nizers (Kirk et al., 2023) and the Gab Hate Corpus
(87K posts) (Kennedy et al., 2022). After con-
catenating and shuffling the two datasets, we held
out 5% as validation data, stratifying on the data
source. Our final training dataset counted around
20M words. We used an equivalent batch size of

2https://huggingface.co/roberta-large

1,024, weight decay of 10−2, and a learning rate of
10−5 with a linear warmup across the initial 10%
steps for a total of six epochs. We monitored the
validation loss every 200 steps and used the best
checkpoint at the end.

We adapted only DeBERTa (DEBMLM) as it out-
performed RoBERTa in our first tests, using the
largest checkpoint available.3 We release PyTorch
weights to encourage future research.4

3.3 Regularization

Motivated by recent insights on regularization as
a way to improve generalization, we tested two
recent techniques that add a regularization term to
the classification loss.

Entropy-based Attention Regularization (EAR)
(Attanasio et al., 2022b) introduces a penalization
term function of how attention weights are dis-
tributed. Roughly, the term penalizes the network
whenever a token’s self-attention weights have a
low-entropy distribution. Intuitively, by forcing a
higher entropy, EAR forces a stronger contextual-
ization of token representations.

Robust Representations through Regularized
Finetuning (R3F) (Aghajanyan et al., 2020) lever-
ages the intuition that fine-tuning procedures
should “move” pre-trained representations much
to preserve representational and transferability ca-
pabilities. In practice, R3F adds a symmetrical
Kullback-Leibler penalty term to the classification
loss.

We used EAR and R3F to fine-tune RoBERTa
(RoBEAR and RoBR3F, respectively).

3.4 Hyperparameter Setup

We used Optuna (Akiba et al., 2019) to optimize
learning rate, weight decay, and EAR and R3F reg-
ularization strengths (α and λ, respectively) for
a maximum of 20 trials using the Tree-structured
Parzen Estimator (TPE) algorithm. Table 1 reports
both fixed and variable hyperparameters. We held
out 5% of the training set as validation, stratify-
ing over class labels, and early stop training with
patience equal to 3.

We repeated each fine-tuning setup (including
hyperparameter tuning) with five different initial-
ization seeds.

3https://huggingface.co/microsoft/
deberta-v3-large

4https://huggingface.co/MilaNLProc/
deberta-v3-large-mlm-reddit-gab/
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Hyper-parameter Value

Maximum sequence length 512
Equivalent batch size 512
Weight decay ∈ {10−4, 10−1}
Peak learning rate ∈ {10−6, 10−3}
Learning rate scheduler Linear decay
Max training epochs 20
Evaluation steps 50
Warmup steps 10%
Float precision fp16
Monitored metric F1 (macro)
EAR α ∈ {10−4, 1}
R3F λ ∈ {10−2, 10}
R3F Noise Sampler U [−10−5, 10−5]

Table 1: Fine-tuning hyperparameter values and opti-
mization ranges.

4 Results

We compare the results of each of the models on the
provided test set. In addition, we experiment with
a series of ensemble models: ROB, RoBR3F, and
DEBMLM in combination with RoBEAR as well as
an ensemble of all the above models. Overall, our
ensemble achieves an F1 score of .862. Full results
per model are shown in Table 2.

Although RoBEAR was the worst-performing
model, it offers modest gains in performance in
combination with other models. The best per-
forming model was the ensemble of DEBMLM +
RoBEAR.

4.1 Error Analysis
We manually inspected the false positives (FP) and
false negatives (FN) of our ensemble model. Con-
sidering the false positives and false negatives only,
we can see that the majority are centered around
dating advice and sexual relationships. A lot of the
examples use incel-speech like “alpha/beta male”,
“femoid”, “roasties”, “cucks”, etc. This overlap
may have introduced noise in the data as several
utterances annotated non-sexist were in fact sex-
ist and vice-versa. In particular, many examples
where other forms of hate speech were present were
labelled not-sexist.

Confidence Score Analysis Given the similarity
between the false positives and negatives, we in-
tuit that they may be closer to the 0.5 confidence
threshold. We note that the false negatives and false
positives generally have a lower confidence score

Model Macro F1

RoBEAR 0.847
ROB 0.859
ROB + RoBEAR 0.855
RoBR3F 0.856
RoBR3F + RoBEAR 0.859
DEBMLM 0.8655
DEBMLM + RoBEAR 0.868
Ensemble 0.862*

Table 2: Macro F1 results for each model alone as well
as paired with RoBEAR and for the full submitted en-
semble (*). Best model in bold.

closer to the 0.5 threshold than the true positives
and negatives (see Figure 1). We analyse the confi-
dence scores for each category and model and find
that the models produce lower confidence scores
for false positives than true positives, and higher
for false negatives than true ones.

In particular, RoBEAR produces more conserva-
tive scores (closer to 0.5) across the board. This
makes intuitive sense: RoBEAR avoids overfitting
on particular words. Although on its own it was the
worst-performing model, we leverage its conser-
vative nature by testing ensembles with RoBEAR
and the other models (shown in Table 2). Although
we find modest improvements in F1 score, the two-
model ensemble with DEBMLM +RoBEAR outper-
forms our all-model ensemble. Table 4 shows ex-
amples that were misclassified by a single model
but correctly classified when RoBEAR is taken into
account. We note that many of these include incel
speech and other keywords.

Category We next consider whether some types
of sexism (task B) are more difficult to model than
others. We expect that, if all categories are equally
difficult, we will find a similar distribution of la-
bels in the misclassified examples as we do overall.
Table 3 shows our models accuracy in predicting
sexist/not sexist for each category. We use accuracy
instead of F1 as a metric because the truth labels
here are always positive. Prejudiced discussion (e.g.

“I’d be willing to end the 19th Amendment to stop
that Emily in her tracks.”) seems to be the most
difficult category for the models, possibly because
it is more scarce than the other categories (94 ex-
amples) and it requires more understanding of the
world. Similarly, in terms of Task C, backhanded
gendered compliments (e.g., “Bet she’d be hot if
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Category Accuracy

Threats, plans to harm and
incitement 0.741
Derogation 0.795
Animosity 0.777
Prejudiced discussions 0.606

Descriptive attacks 0.780
Dehumanising attacks &
overt sexual objectification 0.614
Incitement and encouragement
of harm 0.767
Threats of harm 0.625
Supporting systemic discrimination 0.658
Backhanded gendered compliments 0.222
Supporting mistreatment of
individual women 0.428
Condescending explanations or
unwelcome advice 0.785

Table 3: Model performance (accuracy) in task A per
category B (above) and task C (below) for our best
performing model.

she lost all the fat.”) and supporting mistreatment
of individual women (e.g., “If she ever reports a
man for sexual harrassment, it should be immedi-
ately disregarded.”) are rarer in the dataset despite
their diversity, with only 18 and 21 examples re-
spectively.

Figure 1: Confidence scores for each example in the test
set, color-coded according to the confusion matrix of
our model.

4.2 A Note on Data Labelling

While examining errors we noticed that there were
many examples that were (in the authors’ opinions)
likely mislabelled. For example, “Greek authorities
move 400 ’asylum seekers’ out of crowded Lesbos

camp: [URL]” was labelled sexist likely because
of the reference to the Greek island of Lesbos, also
commonly used as a slur for lesbians. In contrast,
“Jane will marry some sucker, cheat on him, get
divorced, ride the CC, and end up fat, miserable
and probably a single mother. You are going to be
free, happy and successful!" was labelled ‘not sex-
ist’ despite clearly leaning into gendered tropes and
showing prejudice and animosity towards women.

This highlights the oft-discussed issue of the dif-
ficulty in obtaining reliable annotations for certain
phenomena, particularly phenomena that are as per-
vasive as sexism. Noisy labels can be attributed to
annotator disagreement – particularly for subjective
phenomena – and sexism has been shown to have
the lowest agreement among annotators (Waseem
and Hovy, 2016; Cercas Curry et al., 2021). Al-
though the full annotated dataset (without aggrega-
tion) has been published, only aggregated labels are
considered during evaluation. Without knowing the
exact annotation guidelines and process and who
the annotators are, we cannot comment further on
this but we note that noisy annotations only make
modelling a phenomenon harder.

5 Related Work

Hate speech detection has received a lot of interest
in Natural Language Processing in recent years but
despite the large number of works in the field, only
a small subset focuses on the problem of sexism
and misogyny detection. Nozza (2021) demon-
strates that hate speech detection techniques do not
transfer across diverse hate speech targets, high-
lighting the necessity for ad-hoc sexism and misog-
yny detection methodologies and datasets. Indeed,
the corpora that were made accessible as a part
of shared tasks (Fersini et al., 2018, 2020b, 2022;
Basile et al., 2019; Mulki and Ghanem, 2021) made
it possible for a range of NLP techniques to be
taken towards the challenge of automatically de-
tecting instances of sexism and misogyny on Twit-
ter messages (Indurthi et al., 2019; Fersini et al.,
2020a; Attanasio and Pastor, 2020; Lees et al.,
2020; Attanasio et al., 2022a, among others).

6 Conclusion

We addressed Task A of the EDOS shared task
(Kirk et al., 2023) on sexism detection. We com-
pare domain adaptation to a fine-tuned baseline
and tested two regularization techniques. We lever-
aged the capabilities of each model in an ensemble
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Model Example

ROB FP F*ck off you annoying pinkoid mayocel and go get yourself an In-
donesian bride.
Damn ugly she-ape!
I wish men would stop asking girls out altogether just so they can
get an appreciation of their privilege. Unfortunately, most men value
banging a girl over their own dignity.

FN probably from 4 different dudes too. You have to be a f*cking pathetic
cuck to get into anything with a single mother.
There’s a reason for gender roles. Men don’t lust over butch girls, and
women don’t want soft, metrosexual hipsters. I totally agree.
either you worship women or you’re a misogynist.

RoBR3F FP If she loves rapefugees so much let her go spend a week alone in a
camp with some of them. After they remove the coke bottles from
her orifices they should ask her again how much she loves refugees
Absolutely. You hit the nail on the head, stop validating women that
are not even invested. She probaby has 5 beta orbitters that like every
f*cking BS she posts on social media.
If you are bleeding from your vagina, you are a woman...period.
[URL]

FN The little Nazi twerp deserved to get his girl ass fucked while he was
away being a tool of imperialism. Would have been extra funny if it
was a black dude banging her.
Women who live with the baby-daddy are *always* f*cking the baby-
daddy or he would have kicked her to the curb already.
Feminine traits in men can be exploited for gain, comfort, being in
control; what kind of sexual benefit (the kind that men are generally
interested in) can be gained from an androgynous woman?

DEBMLM FP The mormans have female cucks. We literally outlawed it because it’s
bad for scociety.
Don’t support her or pay her way or you be come beta bux
The argument “I can’t change my height” is a bad one. You are
assuming women gaf about what is in your control. When a 7/10 has
a plethora of guys to choose from, some will be tall, and she will
choose accordingly. Supply and demand

FN Even femcels+the hambeats on IT admitt that they could easily get
sex if they wanted. Theres nothing you have to do to get sex as female.
You dont even have to be female, even transwomen are enough in
2k18
reeeeee wimminz are ivel
White knighting got him torched. Hope his burns have taught him
something important about female nature. But then again, manginas
and simps rarely learn.

Table 4: Examples misclassified by models which were correctly classified when ensembled with RoBEAR.

that outperformed each of the individual models.
We show that EAR regularization improves perfor-
mance on edge cases when used in an ensemble
with other models. Our system ranked 9th for the

binary sexism detection task.
Based on our findings, future work should exper-

iment with how best to combine adaptation and reg-
ularization for robustness, and continue to investi-
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gate how best to collect, annotate and model sexism
by e.g., modelling annotator disagreement based
on unaggregated labels, following the guidelines
set out in the Perspectivist Data Manifesto.5 Ad-
ditionally, interpretability tools must be developed
and integrated into models to improve transparency,
accountability, and fairness (Attanasio et al., 2022c,
2023).
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