
Proceedings of the The 17th International Workshop on Semantic Evaluation (SemEval-2023), pages 2184–2187
July 13-14, 2023 ©2023 Association for Computational Linguistics

Abstract

In this article, which was prepared for the

sameval2023 competition (task number 2),

information about the implementation

techniques of the transformer model and

the use of the pre-trained BERT model in

order to identify the named entity (NER) in

the English language, has been collected

and also the implementation method is

explained.

Finally, it led to an F1 score of about 57%

for Fine-grained and 72% for Coarse-

grained in the dev data.In the final test data,

F1 score reached 50%.

1 Introduction

The purpose of this competition is to extract

the named entity (Named-Entity Recognition)

within a text.

NER is basically a token classification task

where each token is classified into one or more

predefined categories. For example, persons,

locations, corporations, etc. should be extracted

and classified from within the text. [1]

In this competition, the basis of classification is

divided into two categories: general classification

and partial classification. For example, each

Location category has 4 sub-categories

(subclassifications) including: Facility, OtherLOC,

HumanSettlement, Station, and all classifications

are available and accessible on the competition

dataset page [2].

The total classifications are as follows:

2 Related Work

This article is related to the previous year's

SemEval-2022 Task 11 article [4], which is to

identify the named entity in the general category

[PER, LOC, CORP, GRP, PROD, CW] .

About 55 teams have participated in this task and

the best team achieved the score of F1=0.91 in the

English language that we want. According to what

is mentioned in the article, "most of the teams

have used external databases such as Wikipedia,

Gazetteer. Also, they have been more interested in

the pre-trained XLM-RoBERTa model ."

Azaad@BND at SemEval-2023 Task 2: How to Go from a Simple Transformer

Model to a Better Model to Get Better Results in Natural Language Processing

Reza Ahmadi, Shiva Arefi, Mohammad Jafarabad

Bandar Abbas Islamic Azad University

{ Reza.zx@live.com, Shiva.Arefi@outlook.com, tcsms@yahoo.com }

all_tags={

'PER':['OtherPER','SportsManager','Cleric','Politicia

n','Athlete','Artist','Scientist'],

'LOC':['Facility','OtherLOC','HumanSettlement','Stat

ion'],

'GRP':['MusicalGRP','PublicCorp','PrivateCorp','Oth

erCorp','AerospaceManufacturer','SportsGRP','CarM

anufacturer','TechCORP','ORG'],

'PROD':['OtherPROD','Drink','Food','Vehicle','Clothi

ng'],

'CW':['VisualWork','MusicalWork','WrittenWork','A

rtWork','Software','OtherCW'],

'MED':['Medication/Vaccine','MedicalProcedure','A

natomicalStructure','Symptom','Disease']

}

Table 1 - mapping of the tags

2184

3 Data

The data set used for training and developing the

model is the same data that is provided in the

Dataset section [1] of the competition, which are

labeled with the CoNLL format and the entities

are labeled with the IOB method .

IOB: Inside–outside–beginning (tagging) is a

common tagging for tagging tokens in

computational linguistics .The B- prefix before a

tag specify that the tag is the first of a chunk, and

an I- prefix before a tag specify that the tag is

inside a chunk. The B- tag specify that a tag is

followed by a tag of the same type without O

tokens between them. An O tag shows that a token

belongs to no entity chunk .

After checking, due to the imbalance of the

classes used in the training data, in order for the

machine to understand more about the data and

classifications, techniques such as Oversampling

(increasing data with less density) should be used

on the data in the pre-processing stage of the data.

The balance of the categories could be

maintained .

Also, in order to improve machine learning, we

first calculated the ratio of the number of famous

words to the length of the sentence, and according

to the obtained ratio, we added the sentence to the

dataset several time . Here, experimentally, if

obtained ratio was more than 90%, 6 times were

repeated, if the ratio was more than 80%, 3 times

were repeated, and for a ratio greater than 65%,

one repetition was sufficient .

4 Methodology

4.1 Transformers

Transformers are in many cases replacing

convolutional and recurrent neural networks

(CNN and RNN), which were the most popular

types of deep learning models until five years ago.

Like most neural networks, transformer models

are essentially large encoder/decoder blocks that

process the data .

The structure of an encoder layer in a transformer

layer is such that each encoder consists of two

separate sub-layers, the first layer is the attention

layer and the second layer is a feedforward neural

network .

The structure of a decoder class, like the encoder,

consists of two layers: self-attention and FNN,

with the difference that in the decoder there is an

intermediate layer called encoder-decoder

attention, which helps the machine not focus on

the word being learned. Pay attention to related

words .

The output of the decoder is a vector, so the last

layer of the transformer needs to be a softmax

layer, because this layer divides the values into the

probability distribution that the output of each

element of the vector is in the range of 0 to 1, and

the sum of all these elements must be one .

Transformers use positional encoders to label data

elements entering and leaving the network.

Attention units follow these labels and compute

some sort of algebraic map of how each element

relates to the other elements. Attention queries are

usually executed in parallel by computing a

matrix of equations in what is called multi-headed

attention .

In this project, a simple transformer model was

first used for training based on general

classification, which by increasing the number of

layers of the transformer model and also better

setting things such as the length of tokens, the

number of attention heads, and the number of FFN

layers, led to an F1 score of about 65%. became.

Of course, this model did not give us good results

for partial classification where the number of

categories was about 36 categories. A better

solution is to use a pre-trained esophageal transfer

model such as BERT, RoBERTa, ALBERT, …

4.2 BERT

Bidirectional Encoder Representations from

Transformers (Bidirectional Encoder

Representations from Transformers) or BERT,

which uses transformers, is an attention

mechanism that learns the textual relationships

between words (or subwords) in the text [3] .

The BERT model is actually a group of

transformer model encoders that have been

studied. In the BERT base model, there are 12 like

transformer blocks and 12 attention layers, and in

this base model there are 768 hidden nodes in

FFN. Fine-tuning method is used here to use this

model. In this method, the input of the model is a

2185

list of tokens with a length of 512 tokens. These

tokens are passed through the 12 mentioned layers

and at the end a vector It is returned as output with

a length of 768 .

4.3 Used in this project

In this project, the training was done using the

TFAutoModelForTokenClassification model, and

the keras library and the Adam method with a

learning rate of 0.0001, as well as the loss function

from the SparseCategoricalCrossentropy method

available in the keras library's loss methods, were

used to adjust the optimizer, which is in the next

part of the output results. is brought

During the training learning process, the

batch_size value was set to 40, that is, the machine

divides the data set into 40 groups and updates the

weights after learning each of these groups.

Considering that the total length of the categories

was 17760, the number of categories was equal

to 444.

Also, here the number of rounds of the learning

process was chosen as 3.

The duration of each training process was about

1500 seconds, the specifications of a system on a

virtual machine (VMware Workstation Pro) are:

• OS: Fedora Linux 36 (Workstation Edition)

• Memory: 12 GB

• Processor :11th Gen Intel® Core™ i7-1165G74

• Graphics: SVGA3D; build: RELEASE; LLVM;

5 Results

5.1 Dev data results

The results obtained for the fine-grained section

are with precision=0.64, recall=0.54, F1=0.57,

and also these results for the coarse-grained

section are with precision=0.76, recall=0.68,

F1=0.72 .

Class Precision Recall F1

Facility 0.625 0.7692 0.6897

OtherLOC 0.8333 0.3125 0.4545

HumanSettlement 0.8696 0.7339 0.796

Station 0.75 0.9 0.8182

VisualWork 0.7255 0.6066 0.6607

MusicalWork 0.6923 0.5902 0.6372

WrittenWork 0.8049 0.6111 0.6947

ArtWork 0.2667 0.3077 0.2857

Software 0.6154 0.6154 0.6154

OtherCW 0 0 0

MusicalGRP 0.6944 0.6757 0.6849

PublicCorp 0.5238 0.3929 0.449

PrivateCorp 0.8333 0.4545 0.5882

OtherCorp 0 0 0

AerospaceManufacturer 0.8889 0.8 0.8421

SportsGRP 0.85 0.8293 0.8395

CarManufacturer 0.625 0.7692 0.6897

TechCORP 0 0 0

ORG 0.6849 0.641 0.6623

Scientist 0.3333 0.2667 0.2963

Artist 0.7857 0.7783 0.782

Athlete 0.6739 0.7848 0.7251

Politician 0.6341 0.4906 0.5532

Cleric 0.4167 0.3333 0.3704

SportsManager 0.7778 0.4375 0.56

OtherPER 0.5057 0.4835 0.4944

Clothing 0.5 0.5 0.5

Vehicle 0.5789 0.55 0.5641

Food 0.5 0.4211 0.4571

Drink 0.7273 0.7273 0.7273

OtherPROD 0.5882 0.4082 0.4819

Medication/Vaccine 0.4444 0.6667 0.5333

MedicalProcedure 0.6667 0.4615 0.5455

AnatomicalStructure 0.375 0.3529 0.3636

Symptom 1 0.1 0.1818

Disease 0.4 0.2222 0.2857

Macro Average Performance 0.6421 0.5453 0.5706

Table 2 - dev data fine-grained Performance

Class Precision Recall F1

LOC 0.8387 0.7919 0.8146

Medicine 0.619 0.5132 0.5612

PER 0.9266 0.8919 0.9089

PROD 0.6556 0.5413 0.593

CW 0.7676 0.6605 0.71

GRP 0.791 0.7294 0.7589

Macro Average Performance 0.7664 0.688 0.7244

Table 3 - dev data coarse-grained Performance

5.2 Test data results

The results obtained for the fine-grained section

are with precision=0.53, recall=0.44, F1=0.47,

and also these results for the coarse-grained

section are with precision=0.73, recall=0.62,

F1=0.67 .

The results obtained according to the match log

show that both on the Dev data and on the Test

data, the best performance of the machine is PER

and LOC classification, and the highest score is

on the Medicine and PROD categories .

2186

Class Precision Recall F1

Facility 0.6138 0.5884 0.6008

OtherLOC 0.6049 0.2626 0.3662

HumanSettlement 0.8142 0.8361 0.825

Station 0.7384 0.6347 0.6826

VisualWork 0.6829 0.5121 0.5853

MusicalWork 0.7325 0.6444 0.6856

WrittenWork 0.5941 0.4928 0.5387

ArtWork 0.3786 0.2307 0.2867

Software 0.6728 0.5227 0.5883

MusicalGRP 0.5853 0.5773 0.5813

PublicCorp 0.5075 0.5149 0.5112

PrivateCorp 0.0264 0.0296 0.0279

AerospaceManufacturer 0.2597 0.3547 0.2999

SportsGRP 0.7593 0.7965 0.7775

CarManufacturer 0.436 0.307 0.3603

ORG 0.6009 0.5642 0.5819

Scientist 0.4428 0.3636 0.3993

Artist 0.7245 0.7637 0.7436

Athlete 0.7544 0.769 0.7617

Politician 0.6256 0.4957 0.5531

Cleric 0.5129 0.3857 0.4403

SportsManager 0.6479 0.6315 0.6396

OtherPER 0.4195 0.3885 0.4034

Clothing 0.5266 0.3788 0.4406

Vehicle 0.3937 0.2034 0.2682

Food 0.5852 0.2152 0.3146

Drink 0.2263 0.0467 0.0775

OtherPROD 0.4341 0.312 0.3631

Medication/Vaccine 0.6194 0.4311 0.5084

MedicalProcedure 0.5366 0.253 0.3439

AnatomicalStructure 0.5861 0.5406 0.5624

Symptom 0.0156 0.0102 0.0124

Disease 0.5797 0.4652 0.5162

Macro Average Performance 0.5345 0.4401 0.4742

Table 4 - Test data Fine-grained Performance

Class Precision Recall F1

CW 0.7527 0.6056 0.6712

LOC 0.8096 0.7735 0.7911

GRP 0.6904 0.6763 0.6833

PER 0.8992 0.8762 0.8875

Medicine 0.6628 0.4903 0.5637

PROD 0.5897 0.3337 0.4262

Macro Average Performance 0.7341 0.626 0.6705

Table 5 - Test data coarse-grained Performance

6 Conclusion

Conclusion Using pre-trained models such as

BERT can give us much better output (prediction)

about an NLP problem, you just need to fine-tune

the model and do a good pre-processing on the

data to be closer to the final goal. Let's become

and the work will go better. Of course, in the

future, we plan to implement these tests on the

BERT-large model, which requires more

computing time .

References

[1] Besnik Fetahu, Sudipta Kar, Zhiyu Chen, Oleg

Rokhlenko, and Shervin Malmasi. 2023b.

SemEval2023 Task 2: Fine-grained Multilingual

Named Entity Recognition (MultiCoNER 2). In

Proceedings of the 17th International Workshop

on Semantic Evaluation (SemEval-2023).

Association for Computational Linguistics.

[2] Besnik Fetahu, Zhiyu Chen, Sudipta Kar, Oleg

Rokhlenko, and Shervin Malmasi. 2023a.

MultiCoNER v2: a Large Multilingual dataset for

Finegrained and Noisy Named Entity

Recognition.

[3] Deep Learning with Python 1st Edition -

Francois Chollet – 2017.

[4] Shervin Malmasi, Anjie Fang, Besnik Fetahu,

Sudipta Kar, and Oleg Rokhlenko. 2022.

SemEval-2022 task 11: Multilingual complex

named entity recognition (MultiCoNER). In

Proceedings of the 16th International Workshop

on Semantic Evaluation (SemEval-2022), pages

1412–1437, Seattle, United States. Association

for Computational Linguistics.

2187

