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Abstract

We present the first Africentric SemEval
Shared task, Sentiment Analysis for African
Languages (AfriSenti-SemEval)1. AfriSenti-
SemEval is a sentiment classification challenge
in 14 African languages (Amharic, Algerian
Arabic, Hausa, Igbo, Kinyarwanda, Moroc-
can Arabic, Mozambican Portuguese, Nigerian
Pidgin, Oromo, Swahili, Tigrinya, Twi, Xit-
songa, and Yorùbá) (Muhammad et al., 2023),
using data labeled with 3 sentiment classes. We
present three subtasks: (1) Task A: monolin-
gual classification, which received 44 submis-
sions; (2) Task B: multilingual classification,
which received 32 submissions; and (3) Task C:
zero-shot classification, which received 34 sub-
missions. The best performance for tasks A and
B was achieved by NLNDE team with 71.31
and 75.06 weighted F1, respectively. UCAS-
IIE-NLP achieved the best average score for
task C with 58.15 weighted F1. We describe
the various approaches adopted by the top 10
systems and their approaches.

1 Introduction

Sentiment Analysis is a prominent sub-field of Nat-
ural Language Processing that focuses on the au-
tomatic identification of sentiments or opinions
expressed through online content, such as social
media posts, blogs, or reviews (Liu, 2020; Moham-
mad, 2021; Nakov et al., 2016). Example applica-
tions are the computational analysis of emotions in
language, which has been applied to literary analy-
sis and culturonomics (Mohammad, 2011; Reagan
et al., 2016; Hamilton et al., 2016); commercial
use (e.g., tracking opinions towards products); and
research in psychology and social science (Dodds
et al., 2015; Mohammad et al., 2016). Despite
tremendous amount of work in sentiment analysis

1The dataset is available at https://github.com/
afrisenti-semeval/afrisent-semeval-2023.
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Figure 1: The AfriSenti-SemEval 2023 Shared Task
tracks.

over the last two decades, little work has been con-
ducted on under-represented languages in general
and African languages in particular.

Africa has a long and rich linguistic history, ex-
periencing language contact, language expansion,
development of trade languages, language shift,
and language death, on several occasions. The con-
tinent is incredibly linguistically diverse and home
to over 2000 languages. This includes 75 languages
with at least one million speakers each. Africa has a
rich tradition of storytelling, poems, songs, and lit-
erature (Carter-Black, 2007; Banks-Wallace, 2002).
Yet, it is only in recent years that there is nascent
interest in NLP research for African languages,
including Named Entity Recognition (NER; Ade-
lani et al., 2021, 2022c; Jibril and Tantuğ, 2023),
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  2013

Sentiment Analysis in
Twitter

(Nakov et al., 2013)

  2014   2015   2018  2016   2017   2021  2019   2020   2022

Sentiment Analysis of
Figurative Language in

Twitter
(Ghosh et al., 2015)

Fine-grained Sentiment
Analysis

(Bethard et al., 2017)

EmoContext: Contextual
Emotion Detection in Text 
(Chatterjee et al., 2019)

HaHackathon: Detecting
and Rating Humor and

Offense
(Meaney et al., 2021)

Aspect Based Sentiment
Analysis

(Pontiki et al., 2014)

Sentiment Analysis in
Twitter

(Nakov et al., 2016)

Affect in Tweets
(Mohammad et al., 2018)

Sentiment Analysis of
Code-Mixed Tweets
(Patwa et al., 2020)

Structured Sentiment
Analysis

(Barnes et al., 2022)

Figure 2: A timeline of SemEval Shared Tasks from 2013 to 2022 with examples of sentiment analysis tasks.

Machine Translation (MT; Nekoto et al., 2020; Ab-
dulmumin et al., 2022; Adelani et al., 2022b; Belay
et al., 2022), and Language Identification (LID) for
African languages (Adebara et al., 2022a). How-
ever, African sentiment analysis has not yet re-
ceived comparable attention. Similarly, although
sentiment analysis is a common task in SemEval
(see tasks examples in Figure 2), previous tasks
have mainly focused on high-resource languages.

To this end, we present the AfriSenti-SemEval,
a shared task in the 2023 edition of the Semantic
Evaluation workshop (Ojha et al., 2023). AfriSenti-
SemEval targets sentiment analysis in low-resource
African languages. We provide researchers inter-
ested in African NLP with 110K sentiment-labeled
tweets that were collected using the Twitter API.
These tweets are in 14 languages (Amharic, Alge-
rian Arabic, Hausa, Igbo, Kinyarwanda, Moroc-
can Arabic, Mozambican Portuguese, Nigerian Pid-
gin, Oromo, Swahili, Tigrinya, Twi, Xitsonga, and
Yoruba) from four language families (Afro-Asiatic,
English Creole, Indo-European and Niger-Congo).
The annotations were conducted by native speakers
of the respective languages. Besides making the
annotated dataset public, we also share sentiment
lexicons in most of the languages.

AfriSenti-SemEval 2023 consists of 15 tracks
from three sub-tasks on the 14 collected datasets
as illustrated in Figure 1. We received submis-
sions from 44 teams, with 29 submitting a system
description paper. The top-ranked teams for the
different subtasks used pre-trained language mod-
els (PLMs). In particular, AfroXLMR (Alabi et al.,
2022), an Africa-centric model, was the best per-
forming model in both Tasks A (monolingual) and
B (multilingual) with an average weighted F1 score
of 71.30% and 75.06% respectively. For Task C,
sentiment lexicons were used to build a lexicon-
based multilingual BERT, which performed best in
this setting with an average weighted F1 of 58.15%.

2 Background and Related Tasks

Early work in sentiment analysis relied on lexicon-
based approaches (Turney, 2002; Taboada et al.,
2011; Mohammad et al., 2013). Subsequent work
employed more advanced machine learning (Agar-
wal and Mittal, 2016; Le and Nguyen, 2020),
deep learning (Zhang et al., 2018; Yadav and
Vishwakarma, 2020), and hybrid approaches that
combine lexicon and machine learning-based ap-
proaches (Gupta and Joshi, 2020; Kaur et al., 2022).
Nowadays, pre-trained language models (PLMs),
such as XLM-R (Conneau et al., 2020), mDeBER-
TaV3 (He et al., 2021), AfriBERTa (Ogueji et al.,
2021), AfroXLMR (Alabi et al., 2022) and XLM-
T (Barbieri et al., 2022) provide state-of-the-art
performance for sentiment classification in differ-
ent languages.

Recent work in sentiment analysis focused
on sub-tasks that tackle new challenges, in-
cluding aspect-based (Chen et al., 2022), multi-
modal (Liang et al., 2022), explainable (Cambria
et al., 2022), and multilingual sentiment analysis
(Muhammad et al., 2022). On the other hand, stan-
dard sentiment analysis sub-tasks such as polar-
ity classification (positive, negative, neutral) are
widely considered saturated and almost solved (Po-
ria et al., 2020), with an accuracy of 97.5% in cer-
tain domains (Raffel et al., 2020; Jiang et al., 2020).
However, while this may be true for high-resource
languages in relatively clean, long-form text do-
mains such as movie reviews, noisy user-generated
data in low-resource languages still presents a chal-
lenge (Yimam et al., 2020). Additionally, African
languages exhibit new challenges for sentiment
analysis such as dealing with tone, code-switching,
and digraphia (Adebara and Abdul-Mageed, 2022).
Thus, further research is necessary to assess the
efficacy of existing NLP techniques and present so-
lutions that can solve language-specific challenges
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in African contexts. SemEval, with its widespread
recognition and popularity, is an ideal venue to con-
duct a shared task in sentiment analysis in African
languages.

The SemEval competition has become the de
facto venue for sentiment analysis shared tasks,
featuring at least one task per year as shown in
Figure 2. Some tasks focused on three-way senti-
ment classification—positive, negative, or neutral—
while others explored more fine-grained aspect-
based sentiment analysis (ABSA; Rosenthal et al.,
2014, 2015; Nakov et al., 2016; Patwa et al., 2020).
Additionally, there are other closely related tasks,
including the Affect in Tweets task, which involves
inferring perceived emotional states of a person
from their tweet (Mohammad et al., 2018) and
stance detection (Mohammad et al., 2016), which
refers to the automatic identification of stance of an
author towards a target from text, where the stance
can be in favor, against, or neutral. Finally, struc-
tured sentiment analysis requires participants to
predict the sentiment graphs present in a text. Each
sentiment graph comprises a sentiment holder, a
target, an expression, and a polarity (Barnes et al.,
2022).

3 Task Description and Settings

The AfriSenti-SemEval shared task consists of
three sub-tasks: A) monolingual sentiment classi-
fication, B) multilingual sentiment classification,
and C) zero-shot sentiment classification. As
shown in Figure 1, each sub-task also includes
one or more tracks depending on the languages
involved. Participants were free to participate in
one or more sub-tasks and one or more tracks for
each chosen subtask.

Task A: Monolingual Sentiment Classification
Given a training set in a language, determine
the polarity (positive/negative/neutral) of
tweets in the same language. If a tweet
conveys both positive and negative senti-
ments, the strongest sentiment should be
chosen. This sub-task involves 12 tracks (all
languages except Oromo and Tigrinya), with
one track per language.

Task B: Multilingual Sentiment Classification
Given the combined training sets from
Task A, determine the polarity (posi-
tive/negative/neutral) of tweets in the test sets
of the languages. This subtask has only one
track with tweets from 12 languages (Hausa,

Yoruba, Igbo, Nigerian_Pidgin, Amharic,
Algerian Arabic, Moroccan Arabic Darija,
Swahili, Kinyarwanda, Twi, Mozambican
Portuguese, and Xitsonga).

Task C: Zero-Shot Sentiment Classification
Given unlabelled tweets in two African
languages (Tigrinya and Oromo), use any of
the training datasets of Task A to determine
the sentiment of a tweet in the two target
languages. This sub-task has two tracks
(Tigrinya and Oromo).

3.1 Pilot Dataset
We released the pilot datasets for our SemEval
shared task one month before the start of the shared
task. The pilot datasets allowed the participants
to have a better understanding of the shared task
(i.e., the datasets, the languages involved, and the
labels).

3.2 Task Settings
The AfriSenti-SemEval shared task consisted of
two phases: (1) the development phase and (2) the
evaluation phase. In the development phase, we
released a training set with gold labels and a devel-
opment set without gold labels. Participants trained
their models on the training set, tested on the devel-
opment set, and submitted their predictions on the
CodaLab competition page for evaluation. The task
offers a prize to the best-performing team in each
of the three sub-tasks (A, B, and C) based on the
following criteria2: (1) African League—for teams
with at least one African member to encourage
African participation; (2) Students League—for
Master’s and Undergraduate students only; and (3)
Worldwide League—open to all participants.

4 Dataset and Lexicon

The AfriSenti collection covers 14 African lan-
guages, each with unique linguistic characteris-
tics, writing systems, and language families, as
shown in Table 1. The dataset covers four of
the five African sub-regions and includes the top
three languages with the largest number of speak-
ers in Africa (Swahili, Amharic, and Hausa). The
datasets include tweets collected using location-
based and vocabulary-based (i.e., stopwords, senti-
ment lexicons, or language-specific terms) heuris-
tics. Figure 3 shows the label distribution for the

2https://github.com/afrisenti-semeval/
afrisent-semeval-2023
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Language Subregion Script Dataset Manual
LexiconTrain Dev Test

Amharic(amh) East Africa Ethiopic 5,985 1,498 2,000 ✓
Algerian Arabic/Darja (arq) North Africa Arabic 1,652 415 959 ✗
Hausa (hau) West Africa Latin 14,173 2,678 5,304 ✓
Igbo (ibo) West Africa Latin 10,193 1,842 3,683 ✓
Kinyarwanda (kin) East Africa Latin 3,303 828 1,027 ✗
Moroccan Arabic/Darija (ary) North Africa Arabic/Latin 5,584 1,216 2,962 ✗
Mozambican Portuguese (pt-MZ) Southeast Africa Latin 3,064 768 3,663 ✗
Nigerian Pidgin (pcm) West Africa Latin 5,122 1,282 4,155 ✓
Oromo (orm) East Africa Latin - 397 2,096 ✓
Swahili (swa) East Africa Latin 1,198 454 749 ✗
Tigrinya (tir) East Africa Ethiopic - 399 2,001 ✓
Twi (twi) West Africa Latin 3,482 389 950 ✗
Xitsonga (tso) South Africa Latin 805 204 255 ✓
Yorùbá (yor) West Africa Latin 8,523 2,091 4,516 ✓

Table 1: African languages included in our study (Lewis, 2009; Muhammad et al., 2023).
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Figure 3: Label distributions for the AfriSenti datasets.

different languages in the AfriSenti dataset. For
more information on the AfriSenti dataset collec-
tion, annotation, and linguistic challenges, please
refer to the AfriSenti dataset paper (Muhammad
et al., 2023).

Early work on sentiment analysis in SemEval
showed that sentiment lexicons can be leveraged
and combined with training data and machine learn-
ing algorithms to obtain marked improvements in
accuracy (Mohammad et al., 2013; Kiritchenko
et al., 2014). Therefore, we also provide manu-
ally annotated sentiment lexicons in African lan-
guages3. For languages that do not have manually
curated lexicons, we translated existing lexicons
into the target languages. Table 1 provides details
on the sentiment lexicons in AfriSenti and indicates
whether they were manually created or translated.

3Dataset, scripts, lexicons available here:
https://github.com/afrisenti-semeval/
afrisent-semeval-2023

5 Evaluation

All three tasks in the AfriSenti-SemEval shared
task required participants to perform a sentiment
(negative, neutral, positive) classification. To eval-
uate the performance of the systems submitted by
the participating teams, we used weighted F1 as
the evaluation metric. For each label, weighted
F1 measure its performance and weight it by the
number of actual instances it has. This adjusts the
‘macro’ method to deal with uneven labels. We also
provided the evaluation script to the participants to
ensure consistency in the evaluation process.

We also created baseline systems for all three
sub-tasks using multilingual pre-trained language
models (PLMs). The baseline systems are: (1)
monolingual baseline models based on multilingual
PLMs for the 12 AfriSenti languages with training
data; (2) models with multilingual training on all
12 languages, and evaluation on the combined test
data of all 12 languages; and (3) zero-shot transfer
of models to Oromo (orm) and Tigrinya (tir) from
any of the 12 languages with available training data.
Our best baseline model is shown in Table 2 and
is based on fine-tuning AfroXLMR-large4 (Alabi
et al., 2022) in all the three sub-tasks. For more
information on the baseline experimental results,
please refer to the AfriSenti dataset paper (Muham-
mad et al., 2023).

4https://huggingface.co/Davlan/
afro-xlmr-large
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Sub-task A (monolingual) Sub-task B (multilingual) Sub-task C (zero-shot)

# Team F1 Team F1 Team F1

* AfriSenti baseline 67.20 AfriSenti baseline 71.20 AfriSenti baseline 57.90

1 NLNDE 71.31 NLNDE 75.06 UCAS-IIE-NLP 58.15
2 PALI 70.28 DN 72.55 NLNDE 57.92
3 UM6P 69.54 UM6P 71.95 UM6P 57.40
4 NLP-LISAC 67.93 GMNLP 71.24 DN 55.19
5 GMNLP 67.65 Masakhane-Afrisenti 70.34 GMNLP 51.70
6 ABCD Team 67.51 UCAS-IIE-NLP 70.25 ABCD Team 51.59
7 UCAS-IIE-NLP 64.48 Witcherses 69.56 Masakhane-Afrisenti 50.04
8 HausaNLP 66.31 HausaNLP 69.54 UBC-DLNLP 49.41
9 UIO 65.41 ABCD Team 69.22 NLP-LISAC 47.33
10 Masakhane-AfriSenti 65.27 NLP-LISAC 67.30 FIT BUT 45.33

Table 2: Top 10 submissions for Tasks A, B and C. We only ranked systems with corresponding paper submissions.
See Table 6 in Appendix C for paper information and teams’ affliations. * show the baseline result from the AfriSenti
dataset paper (Muhammad et al., 2023).

6 Participating Systems and Results

The AfriSenti-SemEval competition had 213 regis-
tered participants on the CodaLab competition web-
site. Of these, 44 teams submitted their systems
during the evaluation phase. Out of the 44 sub-
missions, 29 submitted system-description papers.
As participants could participate in one or more
tasks, certain tasks received more submissions than
others. Specifically, Task A (monolingual classifi-
cation) had the highest number of participants with
44 submissions from different teams, followed by
Task C (zero-shot classification) with 34 submis-
sions and Task B (multilingual classification) with
33 submissions from different teams.

The majority of the teams participated in all
tracks of each task, with 24 teams participating
in at least 13 out of 15 tracks. For example, team
NLNDE participated in all 12 tracks in Task A, one
track in Task B, and two tracks in Task C. To rank
the best-performing teams in each task and pro-
vide a comparison for future work, we rank each
of the top-10 teams that participated in all tracks
in a given task based on their average performance,
as shown in Table 2.

Table 3, Table 4, and Table 5 present the overall
results of participating systems for Task A (Mono-
lingual), Task B (Multilingual), and Task C (Zero-
shot), respectively. Table 6 in Appendix C presents
information regarding the teams and their affilia-
tions. In the following sections, we describe the
best systems in each subtask.

6.1 Subtask A: Monolingual Sentiment
Classification Systems

We describe the top-10 teams that submitted system
description papers as highlighted in Table 2.

NLNDE (Wang et al., 2023) used language adap-
tive pre-training (LAPT) and task adaptive pre-
training (TAPT) as an additional pre-training step
on AfroXLMR-large. The LAPT approach in-
volved continued pre-training of the PLM on the
monolingual portion of the Leipzig Corpus Collec-
tion (Goldhahn et al., 2012) (covering Wikipedia,
Community, Web, and News corpora) for the target
language. TAPT involved continued pre-training
on the AfriSenti training data of the target lan-
guage. By leveraging LAPT followed by TAPT,
they achieved significant improvements over fine-
tuning AfroXLMR-large directly. NLNDE ranked
first in 7 out of 12 languages, and first in sub-
task A.

PALI (Jin et al., 2023) used weighted fusion
of several PLMs such as naija-twitter-sentiment-
afriberta-large5, an AfriBERTa PLM trained on
the NaijaSenti dataset (Muhammad et al., 2022),
TwHIN-BERT (Zhang et al., 2022), and mDeBER-
TaV3 (He et al., 2021) trained on AfriSenti cor-
pora translated to English. The performance of
the PLMs varied across different languages. For
example, AfriBERTa fine-tuned on NaijaSenti pro-

5https://huggingface.co/Davlan/
naija-twitter-sentiment-afriberta-large
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# Team ama arq ary hau ibo kin pcm pt-MZ swa tso twi yor Avg.

1 NLNDE 64.04 69.99 64.83 82.62 82.96 72.63 71.94 72.90 65.68 60.67 67.51 79.95 71.31
2 PALI 65.56 72.62 55.92 81.10 81.30 69.61 75.16 73.83 64.37 56.26 67.58 80.06 70.28
3 king001 69.77 73.00 57.94 81.11 81.39 60.26 75.75 73.53 64.89 56.26 68.28 80.16 70.20
4 stce 65.56 71.72 55.42 80.99 81.37 69.61 75.30 73.57 64.37 56.26 67.58 80.08 70.15
5 UM6P 72.18 72.02 60.15 82.04 81.51 70.71 69.14 67.35 60.26 56.13 66.98 76.01 69.54
6 mitchelldehaven 60.83 69.64 63.54 78.75 78.99 72.48 69.17 72.28 63.01 60.32 65.98 77.25 69.35
7 ymf924 69.83 67.83 57.12 75.88 72.49 70.88 72.48 73.80 64.23 55.38 62.56 75.94 68.20
8 NLP-LISAC 64.71 74.20 62.11 79.74 79.66 65.59 68.00 65.90 59.69 53.72 66.38 75.42 67.93
9 GMNLP 78.42 67.99 55.23 79.56 75.34 71.80 68.84 71.90 63.70 51.67 56.46 70.84 67.65

10 ABCD Team 58.05 63.50 61.54 81.50 82.28 67.36 66.30 67.21 63.10 53.92 65.61 79.73 67.51
11 tmn 63.11 70.54 57.22 72.93 72.66 69.82 69.63 73.09 61.66 53.66 67.06 75.08 67.21

* AfriSenti paper baseline 61.60 68.30 56.60 80.70 79.50 70.60 68.70 71.60 63.40 47.30 64.30 74.10 67.20

12 PA14 64.52 72.01 55.34 77.17 80.29 61.16 75.53 74.98 61.73 50.46 67.39 65.65 67.19
13 UCAS-IIE-NLP 67.45 63.31 55.36 80.79 78.51 71.47 66.63 65.13 60.73 51.09 60.15 77.13 66.48
14 HausaNLP 57.30 65.12 58.49 80.97 76.96 70.61 68.48 68.37 63.23 50.27 64.07 71.88 66.31
15 UIO 56.86 69.21 57.46 74.53 77.58 61.66 67.08 71.64 56.69 60.07 65.02 66.99 65.40
16 Masakhane-Afrisenti 68.85 64.35 55.50 73.12 73.75 64.14 66.88 70.26 60.24 54.33 62.83 68.98 65.27
17 DN 57.34 65.81 57.20 81.09 74.51 71.91 64.89 69.09 62.51 46.62 55.53 72.07 64.88
18 UMUTeam 55.39 68.52 54.75 73.92 76.78 65.03 65.55 71.14 60.52 54.89 63.01 66.10 64.63
19 Howard University CS 61.68 62.49 47.34 77.68 78.02 66.50 66.12 67.72 52.31 48.80 62.84 74.72 63.85
20 FIT BUT 65.10 62.15 52.08 72.56 75.64 67.25 65.00 63.54 57.90 52.86 63.41 67.93 63.79
21 UBC-DLNLP 56.88 64.02 53.06 79.37 77.52 62.02 65.57 61.98 58.60 45.49 65.14 71.02 63.39
22 Witcherses 39.09 57.55 50.68 79.65 80.87 62.69 64.44 65.03 58.91 52.82 66.47 78.44 63.05
23 Sefamerve 70.18 71.74 52.54 78.59 73.24 63.15 63.67 67.94 63.94 48.27 65.66 25.33 62.02
24 FUOYENLP 54.25 68.14 52.78 73.17 72.22 54.20 68.01 72.88 54.31 51.38 57.94 64.31 61.97
25 efrat4050 31.99 55.40 54.43 75.65 76.28 59.56 53.17 62.75 51.76 54.10 64.18 72.76 59.34
26 JCT 53.76 24.59 43.95 79.50 77.08 58.22 62.52 62.96 58.98 54.10 61.82 69.98 58.96
27 JacobLevy248 21.55 54.71 46.32 73.38 78.14 57.92 57.47 62.67 55.97 51.26 64.06 64.83 57.36
28 jacklight971 53.76 24.59 43.95 79.57 75.79 51.41 62.17 55.65 58.98 42.74 60.37 63.96 56.08
29 MaChAmp 2.26 32.87 12.79 17.02 26.91 17.79 40.20 51.17 44.22 26.01 20.17 18.87 25.86
NR TechSSN - - - 80.32 - - - - - - - - 80.32
NR KINLP - - - - - 72.50 - - - - - - 72.50
NR afrisenti23kb - - - - - 71.00 - - - - - - 71.00
NR foul - 70.36 - - - - - - - - - - 70.36
NR Bhattacharya_Lab - - - - - 47.10 75.96 - - - - 79.86 67.64
NR uid - - 55.29 80.45 78.51 70.99 - - - 46.91 59.63 76.98 66.97
NR TBS - - 55.29 80.67 78.47 70.98 - - - 49.40 55.11 76.57 66.64
NR DuluthNLP - - - - - - 65.85 - - - 64.29 - 65.07
NR Uppsala University - - - - - - 64.69 - - - - - 64.69
NR Seals_Lab 54.67 - - 80.85 80.82 - - 52.43 52.18 - - - 64.19
NR NLP-LTU - - 60.27 - - - - - - - - - 60.27
NR Trinity - - - 76.53 - - - - 47.55 - - 50.00 58.03
NR ronaharo 14.98 - 39.72 72.84 73.21 57.87 62.52 - 53.35 - - - 53.50
NR GunadarmaxBRIN - - - - - - - - - 50.11 - - 50.11
NR aptxaaaa - - 51.01 - - - - - - 48.97 - - 49.99

Table 3: Task A Results. The ranking is based on the average of the scores. Partial submissions were not included in
the final ranking. (NR - No Ranking.)

vided better results on Nigerian languages. PALI
ranked first in 2 out of 12 languages, and second
for sub-task A.

UM6P (El Mahdaouy et al., 2023) combined
MARBERT (Abdul-Mageed et al., 2021) and an
adapted AfroXLMR using a projection and a resid-
ual layer. First, AfroXLMR was first fine-tuned
on the AfriSenti training data and web resources
like MAFAND-MT (Adelani et al., 2022a) and We-
bCrawl African multilingual parallel corpora (Vegi
et al., 2022) using a whole-word masking objec-
tive (Cui et al., 2021). It was then fine-tuned on
the labeled AfriSenti training data and combined
with MARBERT. The UM6P team ranked 5th for
sub-task A.

NLP-LISAC (Benlahbib and Boumhidi, 2023)
used different PLMs for different languages. For

Hausa, Yoruba, Igbo, Swahili, and Kinyarwanda,
they used mBERT (Devlin et al., 2019) that was
adapted to African languages with continued pre-
training. The checkpoints6 were based on models
released by Adelani et al. (2021). For Mozambi-
can Portuguese, Xitsonga, Nigerian-Pidgin, and
Amharic, they used mDeBERTaV3. They used
DziriBERT (Abdaoui et al., 2021), a model specifi-
cally trained for the Algerian dialect, for Algerian
Arabic and AfriBERTa-large for Twi. NLP-LISAC
ranked first for Algerian Arabic.

GMNLP (Alam et al., 2023) used phylogeny-
based adapter-tuning (Faisal and Anastasopoulos,
2022) of AfroXLMR-large. They used a dictionary
and machine translation-based data augmentation

6https://huggingface.co/models?search=davlan/
xlm-roberta-base-finetuned
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strategies to increase the amount of training data.
The dictionary approach used PanLex (Kamholz
et al., 2014) while the MT approach was based
on the WMT Shared task model (Alam and Anas-
tasopoulos, 2022). However, this excluded some
languages (Twi, Mozambican Portuguese, Nige-
rian Pidgin, Moroccan Arabic, and Algerian Ara-
bic). Their findings suggest that using phylogeny
adapters (language adapter, genus adapter, and
family adapter) can lead to better performance.
For example, on Amharic, Hausa, Kinyarwanda,
Nigerian-Pidgin, and Xitsonga, all the phylogeny
adapters were useful. GMNLP ranked first for
Amharic.

ABCD Team (Thin et al., 2023) used soft voting
ensemble of three PLMs: AfroXLMR, AfriBERTa,
and LaBSE – a multilingual sentence transformer
model that supports over 100 languages, and is also
popular for mining parallel corpus for machine
translation. The ABCD team ranked 10th in the
sub-task A competition.

UCAS-IIE-NLP (Hu et al., 2023) used a
lexicon-based multilingual transformer model
based on AfroXLMR-base to facilitate language
adaptation and sentiment-aware representation
learning. Additionally, they applied a supervised
adversarial contrastive learning strategy to improve
the sentiment-spread representations and enhance
model generalization. On average, their approach
was worse than the AfriSenti baseline likely be-
cause they used AfroXLMR-base rather than the
large version. Interestingly, they achieved much
better results than the baseline on Amharic, Xit-
songa, and Yorùbá by over 3 F1 points.

HausaNLP (Salahudeen et al., 2023) used two
BERT-based models: AfroXLMR-large and an Ara-
bic BERT (Inoue et al., 2021) fine-tuned on a senti-
ment corpus7. They used AfroXLMR-large for all
languages except the Arabic dialects. On average
across 12 languages, the HausaNLP system ranked
lower than the AfriSenti paper baseline.

UIO (Rønningstad, 2023) compared four dif-
ferent PLMs: AfroXLMR-mini8 (based on lan-
guage adaptation of MiniLMv2 (Wang et al., 2021),
a compressed XLM-R-large model), mpnet-base-
v2 sentence transformer (Reimers and Gurevych,

7https://huggingface.co/CAMeL-Lab/
bert-base-arabic-camelbert-da-sentiment

8https://huggingface.co/Davlan/afro-xlmr-mini

2019), and XLM-T (Barbieri et al., 2022) and
XLM-T fine-tuned on a multilingual sentiment cor-
pus9. They chose the latter as the best model since
it was pre-trained both on the Twitter domain and
a sentiment classification task. This aligns with the
findings of (Muhammad et al., 2023) where XLM-
T was the second-best model because of in-domain
pre-training. However, UIO’s system underper-
formed the AfriSenti baseline as making use of a
large Afro-centric PLM like AfroXLMR-large out-
performs the use of domain and task-specific data
with smaller models.

Masakhane-AfriSenti (Azime et al., 2023) used
five PLMs: LabSE, AfriBERTa, AfroXLMR-base,
XLM-T, and Bernice (DeLucia et al., 2022), a
multilingual Twitter RoBERTa model. The per-
formance of their best systems varied by language.
For example, they reported AfroXLMR-base to be
better for Hausa and Swahili, while LaBSE gave
better results for Kinyarwanda and Mozambique
Portuguese. In general, their best systems ranked
lower than the AfriSenti baseline.

Apart from the top-10 teams that submitted
their papers, there were other teams that only
worked on one or few languages, and achieved
excellent rankings. For instance, KINLP (Nzeyi-
mana, 2023) only attempted the task for the Kin-
yarwanda language. Their approach was based on
KinyaBERT (Nzeyimana and Niyongabo Rubungo,
2022), a Kinyarwanda PLM that incorporates mor-
phological features of the language during pre-
training. KINLP ranked second for Kinyarwanda.
Bhattacharya_Lab (Hughes et al., 2023) only
worked on Nigerian-Pidgin and Yorùbá. They
pre-trained a RoBERTa-style (Liu et al., 2019)
transformer-based architecture jointly on the two
languages using the AfriBERTa training corpus and
AfriSenti data. Bhattacharya_Lab ranked first
for Nigerian-Pidgin, and fifth for Yorùbá.

6.2 Subtask B: Multilingual Sentiment
Classification Systems

Most teams used the same model as in sub-task
A for sub-task B with minor changes. We high-
light here the teams that used strategies apart from
jointly training a PLM on the concatenation of all
12 sub-task A languages. We describe the top-10
teams with corresponding system description pa-
pers as shown in Table 2. The complete results for

9https://huggingface.co/cardiffnlp/
twitter-xlm-roberta-base-sentiment
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# Team F1

1 NLNDE 75.06
2 king001 74.96
3 DN 72.55
4 ymf924 72.34
5 mitchelldehaven 72.33
6 UM6P 71.95
7 GMNLP 71.24

* AfriSenti baseline 71.20

8 PA14 70.81
9 Masakhane-Afrisenti 70.34

10 UCAS-IIE-NLP 70.25
11 tmn 70.05
12 Witcherses 69.56
13 HausaNLP 69.54
14 ABCD Team 69.22
15 iREL 68.23
16 BERT 4EVER 67.46
17 NLP-LISAC 67.30
18 Howard University CS 66.60
19 ISCL_WINTER 66.38
20 UIO 66.29
21 FIT BUT 66.02
22 FUOYENLP 65.51
23 UMUTeam 65.47
24 GunadarmaxBRIN 65.23
25 saroyehun 64.34
26 JacobLevy248 64.04
27 efrat4050 63.85
28 Sefamerve 63.40
29 DuluthNLP 61.49
30 jacklight971 59.75
31 JCT 59.50
32 Hercules 59.35
33 ronaharo 57.79

Table 4: AfriSenti-SemEval Task B results.

this sub-task are shown in Table 4.

NLNDE For each target language, they first
chose the best source languages for multilingual
training to prevent harmful interference from dis-
similar languages. For selecting the source lan-
guage set, they performed forward and backward
source language selection, similar to feature selec-
tion approaches (Tsamardinos and Aliferis, 2003;
Borboudakis and Tsamardinos, 2019). Forward
feature selection starts with an empty set of lan-
guages and adds languages to it, while backward
feature selection starts with a complete set of lan-
guages and then excludes languages from it. For
example, the best source languages for multilin-
gual training for Hausa using Forward selection are
Kinyarwanda, Twi, Algerian Arabic and Nigerian-
Pidgin. For Yorùbá, the best source languages ac-
cording to the backward selection are Kinyarwanda,
Xitsonga, Twi, and Algerian-Arabic. NLNDE used
multiple models for this task rather than a single

one like most teams did. The target language of
the tweet would determine the corresponding multi-
ple training strategy. NLNDE ranked first in this
sub-task.

DN (Homskiy and Maloyan, 2023) They fine-
tuned AfroXMLR-large on the 12 languages avail-
able in the training data. They performed addi-
tional pre-processing on the tweets before training,
i.e., they removed links, hashtags, and @mentions,
which boosted the performance of their system over
those trained on a single multilingual model on all
12 languages. DN ranked third in this sub-task.

GMNLP , unlike in sub-task A, did not use a
phylogeny-based adapter fine-tuning for this sub-
task due to the absence of language ID information.
They only performed task adapter training.

Witcherses (Gokani et al., 2023) used an ensem-
ble of both multilingual PLMs and classical ML
models: Logistic Regression, Random Forest, Sup-
port Vector Machine, AfriBERTa, AfroXLMR, and
AfriBERTa fine-tuned on the NaijaSenti corpus.

Hausa NLP used the same approach as in sub-
task A. They used AfroXLMR-large for multilin-
gual training, which was previously fine-tuned on
MasakhaNER 2.010 (Adelani et al., 2022c).

NLP-LISAC used the same approach described
in sub-task A. They chose the mDeBERTaV3 PLM
to fine-tune on the multilingual corpus.

The other teams i.e. UM6P, Masakhane-
AfriSenti, UCAS-IIE-NLP, and ABCD Team
used the same approach as the one they used for
sub-task A. The only difference was that they
trained a PLM on all 12 languages instead of train-
ing a monolingual sentiment model.

6.3 Subtask C: Zero-Shot Sentiment
Classification Systems

We provide an overview of the top-10 submissions
with system description papers in Table 2 and show
the complete results for this sub-task in Table 5.

UCAS-IIE-NLP used the same approach de-
scribed in sub-task A. They used additional lexicon
information for zero-shot transfer to both Oromo
and Tigrinya. UCAS-IIE-NLP ranked first for
sub-task C, first for Oromo, and second for
Tigrinya. Surprisingly, their best performance is

10https://huggingface.co/masakhane/
afroxlmr-large-ner-masakhaner-1.0_2.0
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# Team orm tir Avg.

1 UCAS-IIE-NLP 45.82 70.47 58.15
2 NLNDE 44.97 70.86 57.92

* AfriSenti baseline 47.10 68.60 57.90

3 ymf924 45.34 70.39 57.87
4 UM6P 45.27 69.53 57.40
5 TBS 45.12 69.61 57.37
6 uid 44.75 69.90 57.33
7 mitchelldehaven 46.23 66.96 56.60
8 tmn 41.97 69.09 55.53
9 DN 41.45 68.93 55.19

10 GMNLP 41.87 61.52 51.70
11 ABCD Team 42.64 60.53 51.59
12 BERT 4EVER 42.32 60.37 51.35
13 Masakhane-Afrisenti 42.09 57.99 50.04
14 UBC-DLNLP 41.79 57.03 49.41
15 NLP-LTU 36.89 61.48 49.19
16 NLP-LISAC 42.02 52.64 47.33
17 FIT BUT 38.24 52.42 45.33
18 PA2023 27.76 62.27 45.02
19 saroyehun 37.79 45.19 41.49
20 MaChAmp 38.02 44.86 41.44
21 FUOYENLP 35.57 47.18 41.38
22 Sefamerve 39.35 34.16 36.76
23 PA14 39.86 29.49 34.68
NR yg.ren - 60.87 60.87
NR hk001 - 60.35 60.35
NR abc1234 - 59.07 59.07
NR abc123 - 55.49 55.49
NR abc1 - 42.42 42.42
NR Bhattacharya_Lab 40.61 - 40.61
NR Seals_Lab 40.61 - 40.61
NR Snarci 33.98 - 33.98
NR abc12 - 33.33 33.33
NR GunadarmaxBRIN 32.05 - 32.05
NR HausaNLP 25.43 - 25.43

Table 5: Task C Results. The ranking is based on the av-
erage of the scores. Partial submissions are not included
in the final ranking. (NR - No Ranking.)

below the AfriSenti baseline for Oromo (−1.28
F1), which is based on choosing the best language
for zero-shot transfer. Muhammad et al. (2023)
identified Hausa and Amharic as the best source
languages for Oromo and Hausa and Yorùbá as the
best source languages for Tigrinya. Co-training on
the two languages led to a better performance.

NLNDE used the same approach as in sub-task
B. They used forward and backward language se-
lection to decide the best source languages to trans-
fer from. For Oromo, the best source languages
they identified were Kinyarwanda, Hausa, Yorùbá,
and Xitsonga using forward selection, and Yoruba,
Mozambique Portuguese, and Xitsonga using back-
ward selection. Similarly, for Tigrinya, they identi-
fied Hausa, Kinyarwanda, Amharic, Moroccan Ara-
bic, and Mozambique Portuguese in the forward
selection, and Mozambican Portuguese, Yorùbá,

and Hausa. The languages selected were similar to
those identified by Muhammad et al. (2023). NL-
NDE ranked second on sub-task C and first for
Tigrinya.

Masakhane-AfriSenti used the multilingual
model they introduced in sub-task B based on
AfroXLMR-base and AfriBERTa. They also tried
adapter-based training based on MAD-X (Pfeiffer
et al., 2020). Their final result is based on an en-
semble of the three methods.

UBC-DLNLP (Bhatia et al., 2023) compared
about 10 PLMs for all the sub-tasks includ-
ing XLM-R, AfriBERTa, mBERT, AfroXLMR,
Serengeti (Adebara et al., 2022b), Serengeti_ft
(Serengeti + TAPT), and AfroXLMR-base_ft
(AfroXLMR-base + TAPT). Their best-reported re-
sult is based on AfroXLMR-base_ft. Surprisingly,
AfroXLMR-base_ft and AfroXLMR-base, which
were pre-trained on 17 African languages outper-
formed Serengeti_ft & Serengeti, which were pre-
trained on 500+ African languages. This indicates
that training on a large number of languages may
suffer from the curse of multilinguality (Conneau
et al., 2020) without appropriate scaling since it
is difficult to learn a good representation for 500
languages with a small PLM of 270M parameters.

FIT BUT (Aparovich et al., 2023) used
AfroXLMR-small with additional adversarial train-
ing but they only achieved average performance.
This is probably due to the use of a small PLM for
training.

Other teams like NLP-LISAC, UM6P, DN,
GMNLP, and ABCD adopted approaches similar
to those of sub-task B: they trained on all multilin-
gual datasets and performed zero-shot evaluation
on Oromo and Tigrinya.

7 Discussion

We summarize some of the approaches that led to
the best results in different sub-tasks.

Sub-task A All of the top-10 best-performing
teams with systems description papers employed
multilingual pre-trained models, especially Afro-
centric models. For example, eight of the
ten teams make use of AfroXLM—one of the
best-performing PLM for African languages.
AfroXLMR-large with additional pre-training of-
ten led to the best results while multilingual PLMs
like mDeBERTaV3 and LaBSE led to competitive
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results. A few teams used other PLMs, specifi-
cally trained on Arabic variants such as DziriBERT.
Some teams also reported significant language-
specific improvements using further domain and
task-specific pre-training. For instance, the NL-
NDE team, which ranked first, used both lan-
guage and task adaptive pre-training. UIO and
Masakhane-AfriSenti also demonstrated the ben-
efit of domain adaptive pre-training. In addition,
PALI and Masakhane-AfriSenti showed that using
a PLM that has already been trained on sentiment
classification can help. Interestingly, other teams
using an ensemble of different fine-tuned PLMs
tended to perform worse, which highlights that the
quality of individual models is important.

Sub-task B Most teams used a single multilin-
gual PLM and fine-tuned it on all languages. In fact,
most of the best-ranking teams used AfroXLMR-
large as it performed well on sub-task A. The best-
performing team for this task, NLNDE, chose to
select the most appropriate languages to co-train
for each language before performing multilingual
training, highlighting the importance of the choice
of source languages.

Sub-task C UCAS-IIE-NLP ranked first and
used a lexicon-based multilingual BERT. This
shows the usefulness of leveraging sentiment lexi-
cons as side information in building language mod-
els. However, their best performance was below the
AfriSenti paper baseline for Oromo (−1.28 F1).

The top-performing teams in each subtask were
not affiliated with African institutions. They de-
veloped the best models despite a lack of language
expertise. This highlights both the generality of
existing models and adaptation paradigms as well
as the need for a more collaborative approach to
building more effective and inclusive solutions for
Africa-centric sentiment analysis.

8 Conclusion

We presented the SemEval-2023 Task 12: Senti-
ment Analysis for African Languages, the first Se-
mEval shared task that focuses on sentiment analy-
sis for African languages. The task included mono-
lingual classification (in Amharic, Algerian Ara-
bic, Hausa, Igbo, Kinyarwanda, Moroccan Arabic,
Mozambican Portuguese, Nigerian Pidgin, Swahili,
Twi, Xitsonga, and Yorùbá), multilingual classifi-
cation, and zero-shot classification (in Oromo and
Tigrinya). We described the task settings, datasets,

and baselines.
We discussed the main findings of the 44 partici-

pating teams who submitted their systems, based
on their system description papers (i.e., 29 papers)
as well as our observations and analysis of some
common errors. Overall, the best ranking teams
used pre-trained language models (PLMs), with
Africa-centric models such as AfroXLMR perform-
ing the best in the Task A (monolingual) and Task B
(multilingual) classification tasks, with an average
weighted F1 of 71.3%, and 75.06%, respectively.
For Task C (zero-shot), the top team used lexicon-
based multilingual BERT and achieved an average
weighted F1 of 58.15.%. These scores indicate
that there is still room for improvement in polarity
classification in low-resource settings.

By sharing our insights, we aim to encourage
researchers to work on under-resourced and under-
studied African languages and help them improve
the performance of current sentiment analysis sys-
tems. In the future, we will extend our task to more
languages by building additional datasets.

9 Ethics Statement

People often express sentiment in unique and in-
teresting ways. Thus, there is large amounts of
person–person variation. Therefore, any automatic
method for sentiment analysis will achieve differ-
ent results on data from different people, from dif-
ferent domains, etc. We do not recommend the use
of automatic methods of sentiment analysis (based
on individual instances of text) to make important
decisions that can impact an individual. Instead,
it is often better to use automatic sentiment analy-
sis to determine broad trends of sentiment across
large amounts of data. Sentiment analysis, like
many other AI technologies, can be used not just
for beneficial purposes, but also to cause harm such
as using it to identify and suppress dissent. There
are several such ethical considerations that should
be accounted for when developing and deploying
sentiment analysis systems. We refer to Moham-
mad (2022, 2023) for a comprehensive discussion
of ethical considerations relevant to sentiment and
emotion analysis.
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A Algorithms Used

Algorithms used by the participants for data pre-
processing and for building the classification sys-
tems are shown in Figure 4.
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Figure 4: Algorithms used for pre-processing and final
tweet classification.

B Tools Used

Tools used by the participants to implement their
systems are shown in Figure 5.
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Figure 5: Tools Used

C Affiliation

Table 6 shows the participating teams, the tasks
they made submissions for, their system description
paper, and their affiliations.
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