@inproceedings{rusnachenko-etal-2023-nclu,
title = "nclu{\_}team at {S}em{E}val-2023 Task 6: Attention-based Approaches for Large Court Judgement Prediction with Explanation",
author = "Rusnachenko, Nicolay and
Markchom, Thanet and
Liang, Huizhi",
editor = {Ojha, Atul Kr. and
Do{\u{g}}ru{\"o}z, A. Seza and
Da San Martino, Giovanni and
Tayyar Madabushi, Harish and
Kumar, Ritesh and
Sartori, Elisa},
booktitle = "Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.semeval-1.36",
doi = "10.18653/v1/2023.semeval-1.36",
pages = "270--274",
abstract = "Legal documents tend to be large in size. In this paper, we provide an experiment with attention-based approaches complemented by certain document processing techniques for judgment prediction. For the prediction of explanation, we consider this as an extractive text summarization problem based on an output of (1) CNN with attention mechanism and (2) self-attention of language models. Our extensive experiments show that treating document endings at first results in a 2.1{\%} improvement in judgment prediction across all the models. Additional content peeling from non-informative sentences allows an improvement of explanation prediction performance by 4{\%} in the case of attention-based CNN models. The best submissions achieved 8{'}th and 3{'}rd ranks on judgment prediction (C1) and prediction with explanation (C2) tasks respectively among 11 participating teams. The results of our experiments are published",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="rusnachenko-etal-2023-nclu">
<titleInfo>
<title>nclu_team at SemEval-2023 Task 6: Attention-based Approaches for Large Court Judgement Prediction with Explanation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicolay</namePart>
<namePart type="family">Rusnachenko</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thanet</namePart>
<namePart type="family">Markchom</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Huizhi</namePart>
<namePart type="family">Liang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Atul</namePart>
<namePart type="given">Kr.</namePart>
<namePart type="family">Ojha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="given">Seza</namePart>
<namePart type="family">Doğruöz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giovanni</namePart>
<namePart type="family">Da San Martino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Harish</namePart>
<namePart type="family">Tayyar Madabushi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ritesh</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elisa</namePart>
<namePart type="family">Sartori</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Legal documents tend to be large in size. In this paper, we provide an experiment with attention-based approaches complemented by certain document processing techniques for judgment prediction. For the prediction of explanation, we consider this as an extractive text summarization problem based on an output of (1) CNN with attention mechanism and (2) self-attention of language models. Our extensive experiments show that treating document endings at first results in a 2.1% improvement in judgment prediction across all the models. Additional content peeling from non-informative sentences allows an improvement of explanation prediction performance by 4% in the case of attention-based CNN models. The best submissions achieved 8’th and 3’rd ranks on judgment prediction (C1) and prediction with explanation (C2) tasks respectively among 11 participating teams. The results of our experiments are published</abstract>
<identifier type="citekey">rusnachenko-etal-2023-nclu</identifier>
<identifier type="doi">10.18653/v1/2023.semeval-1.36</identifier>
<location>
<url>https://aclanthology.org/2023.semeval-1.36</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>270</start>
<end>274</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T nclu_team at SemEval-2023 Task 6: Attention-based Approaches for Large Court Judgement Prediction with Explanation
%A Rusnachenko, Nicolay
%A Markchom, Thanet
%A Liang, Huizhi
%Y Ojha, Atul Kr.
%Y Doğruöz, A. Seza
%Y Da San Martino, Giovanni
%Y Tayyar Madabushi, Harish
%Y Kumar, Ritesh
%Y Sartori, Elisa
%S Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F rusnachenko-etal-2023-nclu
%X Legal documents tend to be large in size. In this paper, we provide an experiment with attention-based approaches complemented by certain document processing techniques for judgment prediction. For the prediction of explanation, we consider this as an extractive text summarization problem based on an output of (1) CNN with attention mechanism and (2) self-attention of language models. Our extensive experiments show that treating document endings at first results in a 2.1% improvement in judgment prediction across all the models. Additional content peeling from non-informative sentences allows an improvement of explanation prediction performance by 4% in the case of attention-based CNN models. The best submissions achieved 8’th and 3’rd ranks on judgment prediction (C1) and prediction with explanation (C2) tasks respectively among 11 participating teams. The results of our experiments are published
%R 10.18653/v1/2023.semeval-1.36
%U https://aclanthology.org/2023.semeval-1.36
%U https://doi.org/10.18653/v1/2023.semeval-1.36
%P 270-274
Markdown (Informal)
[nclu_team at SemEval-2023 Task 6: Attention-based Approaches for Large Court Judgement Prediction with Explanation](https://aclanthology.org/2023.semeval-1.36) (Rusnachenko et al., SemEval 2023)
ACL