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Abstract

This paper describes the participation of team
QUST in the SemEval2023 task 3. The mono-
lingual models are first evaluated with the
under-sampling of the majority classes in the
early stage of the task. Then, the pre-trained
multilingual model is fine-tuned with a com-
bination of the class weights and the sample
weights. Two different fine-tuning strategies,
the task-agnostic and the task-dependent, are
further investigated. All experiments are con-
ducted under the 10-fold cross-validation, the
multilingual approaches are superior to the
monolingual ones. The submitted system1

achieves the second best in Italian and Spanish
(zero-shot) in subtask-1.

1 Introduction

Task 3 (Piskorski et al., 2023) expects the partici-
pants to develop algorithms to automatically detect
the news genre, framing and persuasion techniques
in a multilingual setup as shown in Table 1. Six dif-
ferent languages are covered in this task, including
English, French, German, Italian, Polish and Rus-
sian. In addition, three surprise languages, Spanish,
Greek and Georgian, are also included in the fi-
nal test phase for conducting a zero-shot learning
scenario.

One of the major challenges of this task is that
the model must have the ability to tackle the issues
of imbalanced and insufficient training data. In
subtask-1, the number of samples for labels ‘re-
porting’, ‘opinion’ and ‘satire’ are 269, 878 and
87 respectively. With only few ‘satire’ samples
relative to other majority classes such as ‘opinion’,
the training model will easily overfit on majority
classes and not learn enough from minority ones.
For example, many batches will have no ‘satire’
samples, so the gradients will be less informative
during the training phase and result in poor per-
formances in predicting the minority class. Mean-

1https://github.com/zgjiangtoby/SemEval2023_QUST

while, previous studies (Leite et al., 2020; Zhang
et al., 2021) demonstrate that the scale of training
data could influence the model performance sig-
nificantly. However, the total training samples are
1234 in subtask-1, which is not enough to effec-
tively train a deep learning model from scratch.

To address the above issues, traditional machine
learning and deep learning methods are first evalu-
ated with the under-sampling of the majority class
in a monolingual setting. Then, the pre-trained
multilingual model is fine-tuned to learn the cross-
language features between languages. Specifically,
fine-tuning is a common approach for utilizing
the pre-trained language model (PLM) on many
downstream tasks. It typically replaces the origi-
nal output layer with a new task-specific layer and
then fine-tunes the complete model. To model the
features representation of news articles across dif-
ferent languages, the XLM-RoBERTa (XLM-R)
(Conneau et al., 2020) is fine-tuned since it can
processes all the languages existing in Task 3, and
typically outperforms other models such as mBERT
(Kenton and Toutanova, 2019).

In addition, this study also calculates the sam-
ple weights and class weights to combat the data
imbalance. The sample weights enable a training
batch that contains represents a good spread of the
dataset. The class weights are able to penalize
the misclassification made from the minority class
by setting a higher class weight and reducing the
weight for the majority class at the same time.

Two types of fine-tuning approaches, task-
agnostic and task-dependent, are conducted on
three subtasks. A task-agnostic strategy is a stan-
dard approach that fine-tunes the PLM on each
subtask individually. This study also conducts a
task-dependent strategy that fine-tunes the PLM
from subtask-1 to subtask-3, since all the training
samples have a similar content except the labels
which are different.

To evaluate, this paper conducts 10-fold cross-
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Article-id (Para-id) Text Labels
T1 T2 T3

710376094 (4) ...the asteroid named 3200
Phaethon ... is classified as
“potentially hazardous” by
the Minor Planet Center...

Opinion Security and
defense, Quality
of life

Repetition

23114 (17) Les études de l’Insee et de
l’Ined confirment en outre
que l’ascenseur social
fonctionne...Chez les natifs
(quatrième génération et
plus)...

Reporting Fairness and
equality

Loaded Lan-
guage

2672 (3) Ventisei milioni di cittadini
chiusi in casa. Reclusi. Ai
domiciliari. Gli abitanti di
Shanghai... sono sottoposti a
un lockdown severissimo

Satire Policy
prescription and
evaluation,
Quality of life

Loaded Lan-
guage, Name
Calling-
Labeling

Table 1: Random examples from the dataset. T1 (subtask-1), T2 (subtask-2) and T3 (subtask-3) are document-level-
multiclass, document-level-multilabel and sentence-level-multilabel tasks respectively, the paragraph id (Para-id) is
only valid in subtask-3.

validation (CV) that comprehensively analyses the
different monolingual and multilingual approaches
and investigates the effectiveness of using sample
weights and class weights to overcome the data im-
balanced issue. The experimental results suggest
that fine-tuning the PLM with sample weights and
class weights can significantly improve the model
performance in the task-dependent setting. In addi-
tion, the task-dependent fine-tuning strategy outper-
forms the task-agnostic method slightly, showing
that the final fine-tuned model is able to learn the
shared information between all the subtasks.

2 System Description

The submitted system is a standard fine-tuning ap-
proach by adding a linear classifier to project the
[CLS] embedding to an unnormalized probability
vector over the output classes. To address the im-
balanced data issue, the class weights enable more
weights to be assigned to the minority class in the
cross-entropy loss. Therefore, the assigned weights
are able to provide a higher penalty to the minority
class and the algorithm could focus on reducing the
errors for the minority class.

Furthermore, the ‘satire’ samples can be found
with only 7% of the training set. This might re-
sult in only few or even no minority class sam-
ples appearing in the training batch. To tackle this,
the sample weights aim to calculate each sample’s

weights over the entire dataset, and then apply a
weight to each sample to ensure that the majority
class will have a smaller weight, or vice versa. The
sample weights are also calculated in subtask-2 and
subtask-3 except for the class weights.

After training with all the positive strategies,
early stopping is applied to save the best model
in each fold. Eventually, the top 3 best models
from the 10-fold CV are ensembled for the final
prediction in each subtask.

2.1 Weighted Fine-tuning
The class weights are used to adjust the cross-
entropy loss, which is the standard loss function to
measure the difference between the predicted prob-
ability distribution and the true label distribution.

The class weights are a vector of values that cor-
respond to each class label, and they are multiplied
by the cross-entropy loss for each sample. Specifi-
cally, the class weights enable more weights to be
assigned to the minority class, which means that
the loss function will penalize the model more for
misclassifying the minority class samples. Eventu-
ally, the model can learn to pay more attention to
the minority class and improve its performance on
the imbalanced data. Formally, given a total of n
training samples, the class weights Cj

w for class j
can be simply calculated as:

Cj
w =

n

c× nj
(1)
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where c denotes the number of classes, and nj is
the total number of sample in class j.

The class weight can be multiplied by the cross-
entropy loss for each sample, to adjust the loss
function. Specifically, let yc is the true label for
class j, and pj is the predicted probability, then the
cross-entropy loss for class j is:

Lj = −Cj
w × yj × log(pj) (2)

the total loss is the sum of the losses for all classes.
The weighting of classes is able to mitigate the

impact of the data imbalance issue. However, given
the size of the minority class is rather small, the
training batches are likely to have only few or even
no samples of the minority class and leading to
retard of the model’s convergence.

To tackle this issue, the weighted random sam-
pler is able to resample the training data, so that
each batch contains a relatively balanced number
of samples from each class. The weighted random
sampler assigns a weight to each sample based on
its class frequency, and then randomly selects sam-
ples from the dataset according to their weights.

2.2 Task-Agnostic Vs. Task-Dependent

The task-agnostic strategy is a standard approach
that fine-tunes the PLM on each subtask individu-
ally. Specifically, the PLM is initialized with the
pre-trained weights, and then trained on the specific
data and labels of each subtask. The task-agnostic
strategy can help the PLM to adapt to the domain
and the task of each subtask, but it does not leverage
the shared information or the hierarchical structure
among the subtasks.

The task-dependent strategy is an alternative ap-
proach that fine-tunes the PLM from subtask-1
to subtask-3, since all the training samples have
the same content except the labels are different.
This means that the PLM is initialized with the
pre-trained weights, and then trained on the data
and labels of subtask-1. After that, the PLM is
further trained on the data and labels of subtask-
2, using the weights from subtask-1 as the initial
weights. Similarly, the PLM is further trained on
the data and labels of subtask-3, using the weights
from subtask-2 as the initial weights. The task-
dependent strategy can help the PLM to transfer
the knowledge and the features learned from the
previous subtasks to the next subtasks.

T1 T2 T3
minimum 88 67 3
maximum 7747 7747 1069
average 763 761 47

Table 2: Minimum, maximum and average numbers of
tokens in each subtask.

3 Experimental Setup

3.1 Data
The total number of news articles in subtask-1 and
subtask-2 are 1234 and 1238 respectively. The
subtask-3 divides each article into paragraphs, so
the total number of paragraphs is 20207. The max-
imum, minimum and average numbers of tokens
in three subtasks are calculated as shown in Ta-
ble 2. All the experiments discussed in this paper
were conducted with 10-fold CV, and the results
displayed are the averages. Specifically, the dataset
is split into 10 folds for each subtask, and the same
folds are used for the task-agnostic strategy and the
task-dependent strategy. For each fold, one fold is
used as the test set and the other nine folds are used
as the training set.

3.2 Preprocessing
The punctuation, links, escape characters (e.g.,
‘\n’), and numbers are removed from the data, and
strings are lowercased. All news articles are trun-
cated or padded to a maximum of 512 tokens and
different languages are merged into a JSON file. In
subtask-3, a ‘None’ class is added to represent the
paragraphs that do not have a label.

In data version three (v3), the organizer released
the labels of the development set. Intuitively, it
would be beneficial to the model performance by
expanding the scale of training data. Therefore, the
v3 merges the training and development data from
all the languages for conducting a 10-fold CV. The
results of subtask-1 are evaluated with macro-f1,
and the other subtasks are evaluated with micro-f1.

3.3 Model Configurations
Several baseline models are compared before the
final system is built. Given the scale of the train-
ing data is relatively small, traditional machine
learning approaches are first evaluated in a mono-
lingual setting. All traditional approaches are built
based on TF-IDF vectors with under-sampling the
majority class. Then, deep learning methods in-
clude CNN (Jiang et al., 2019), RNN (Lin et al.,
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Models en fr de it po ru
SVM 0.36 0.37 0.31 0.16 0.38 0.14
LG 0.42 0.48 0.42 0.29 0.67 0.29
RF 0.49 0.32 0.33 0.27 0.50 0.24
BERT-CNN 0.21 0.37 0.37 0.25 0.47 0.23
BERT-RNN 0.19 0.35 0.35 0.19 0.49 0.21
BERT-Self 0.26 0.31 0.28 0.13 0.37 0.22
RBERT-CNN 0.41 0.43 0.44 0.29 0.58 0.25
RBERT-RNN 0.29 0.35 0.44 0.23 0.55 0.21
RBERT-Self 0.24 0.35 0.41 0.23 0.55 0.17

Table 3: Macro-f1 of the monolingual models on the
v2 subtask-1. SVM, LG and RF denote Support Vec-
tor Machine, Logistic Regression and Random Forest
respectively. The CNN, RNN and Self models are built
based on the [CLS] embeddings directly encoded from
BERT and RBERT (RoBERTa).

2017) and Self-attention (Jiang and Wang, 2022)
are built upon with the [CLS] embedding from
the monolingual PLMs respectively. Both tradi-
tional and deep learning methods are conducted
with imblearn (Lemaître et al., 2017) and skorch
(Tietz et al., 2017). Finally, the task-agnostic and
the task-dependent of the fine-tuned PLMs are also
evaluated.

The final system is built upon the pre-trained
XLM-RoBETRa by using the huggingface library.
The AdamW (Loshchilov and Hutter, 2017) opti-
mizer is utilized with a learning rate of 3e-5, and
training epochs are 30. In each fold, the early stop-
ping tolerance is 5 epochs, and only the model
with the highest score is saved. The top three best
systems are saved in each subtask, and the final
predictions are made by ensembling2 all the predic-
tions from the top three models.

4 Results

4.1 Monolingual Approaches
The evaluations are conducted in two stages (i.e.,
the v2 and v3 of the released data). In the v2 stage,
the evaluations aim to find out if the monolingual
approaches are effective given the scale of train-
ing data is relatively small in each language. The
monolingual models are first evaluated with tradi-
tional machine learning approaches and deep learn-
ing approaches as shown in Table 3. The v2 stage
only evaluates subtask-1 in order to have a quick
‘warmup’ and find out the feasible approaches be-
tween models and data.

As a result, traditional machine learning ap-
proaches outperform deep learning approaches in

2The systems are ensembled through the majority voting.

Languages XLM-R(v2) XLM-R(v3)
T1 T2 T3 T1 T2 T3

en 0.51 0.50 0.47 0.51 0.52 0.49
fr 0.62 0.41 0.30 0.62 0.42 0.29
de 0.64 0.63 0.34 0.65 0.65 0.37
it 0.75 0.54 0.30 0.78 0.54 0.31
po 0.50 0.59 0.15 0.51 0.59 0.13
ru 0.47 0.30 0.20 0.49 0.27 0.21

Table 4: Average scores (i.e., macro-f1 for T1 and micro-
f1 for T2 and T3) of XLM-RoBERTa (XLM-R) from
10-fold CV on each task based on task-dependent fine-
tuning strategy.

general. For example, a simple combination of
TF-IDF and a logistic regression classifier with an
under-sample of the majority class achieves the
best score in four out of six languages (i.e., fr, it,
po and ru). Meanwhile, a similar combination but
with a random forest classifier yields the best score
on the dev leaderboard during the v2 stage.

In terms of deep learning methods, all models are
first using the PLMs3 to encode the news article and
obtain the [CLS] embeddings. Then, the [CLS]
embeddings are taken as the input to the multi-
kernel CNN, attentive RNN and self-attention net-
works. On the one hand, the overall performance of
deep learning approaches is sub-optimal to the tra-
ditional ones. One possible reason is that the deep
learning models with a comparatively large number
of parameters in relation to the small size of the
training set result in overfitting. On the other hand,
the use of RoBERTa can yield better performance
than BERT in subtask-2. In addition, the CNN
models are generally better than attentive RNN and
self-attention in all sub-tasks.

4.2 Multilingual Approaches
Although the monolingual approaches achieve
good performance in a single language, the per-
formances are not consistent in all languages. In
order to capture the shared information between all
languages and train a multilingual model which can
process all the languages at once, the pre-trained
XLM-R is utilized in the v3 stage as shown in Table
4.

The multilingual approaches are evaluated in
both the v2 and v3 stages. In the v2 stage, the
XLM-R is fine-tuned based on a 10-fold CV from
the released v2 dataset. To combat the imbalanced
data during fine-tuning, the sample weights and

3The complete list of PLMs in monolingual settings are
shown in Appendix A.
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the class weights are calculated. The weighted
random sampler is combined with sample weights
to balance the training batches relatively. The class
weights are multiplied by the training loss to make
the model concern more on the minority class.

As a result, the performance is significantly im-
proved compared with the monolingual approaches
in the v2 stage (see XLM-R(v2) T1 column), show-
ing that some languages (e.g., it, fr and en) can
capture meaningful features from other languages.
Given the news articles have the same content but
the labels are different between subtasks, the best
model obtained from subtask-1 is further fine-tuned
on subtask-2 and subtask-3.

In the v3 stage, the released labels from the de-
velopment dataset enable an expansion of the train-
ing samples in the 10-fold CV. Therefore, the same
fine-tuning method is retained except the training
samples become larger in the v3 stage. The results
from XLM-R(v3) indicate that the expansion of the
training sample leads to a slight performance im-
provement. Finally, the top 3 best XLM-R models
from the v3 are ensembled to make final predic-
tions.

4.3 Ablation Study
In order to investigate the effectiveness of each
component in the proposed method, an ablation
study is conducted as shown in Table 5. The results
indicate that the use of the class weights, the sam-
ple weights and the task-dependent fine-tuning can
significantly improve the model performance in all
subtasks.

Specifically, the average macro-f1 is dropped
by 14% when the class weights are removed. A
quick manual inspection of the predicted files also
finds that most of the news articles are predicted
as ‘opinion’, which is the largest majority class of
the training data. The scores get worse when the
sample weights are removed as well. This might be
because some of the training batches do not contain
any minority class sample, and the less informa-
tive features are updated during the training phase.
Then, the task-dependent is removed and the XLM-
R(v3) w/o td becomes a vanila XLM-R model that
does not utilize any of the strategies from the above.
This leads to the fine-tuning strategy becoming
task-agnostic. The results demonstrate that the task-
dependent fine-tuning (i.e., XLM-R(v3) w/o sw)
learns the shared information between tasks and
leads to better performance than the task-agnostic
one (i.e., XLM-R(v3) w/o td).

Methods T1 T2 T3
XLM-R(v3) 0.51 0.52 0.49
XLM-R(v3) w/o cw 0.37 n/a n/a
XLM-R(v3) w/o sw 0.25 0.31 0.20
XLM-R(v3) w/o td 0.24 0.31 0.19

Table 5: Ablation study of the fine-tuned XLM-R model.
cw, sw and td denote class weights, sample weights and
task-dependent respectively. Note that the class weights
are not used in subtask-2 and subtask-3.

4.4 Error Analysis
In the error analysis, the XLM-R(v2) is fine-tuned
only on the training set of v2 data with 10-fold CV,
and uses the best model to predict the labels of the
v3 development data. The confusion matrix of each
component in the XLM-R(v2) is shown in Figure
1.

Figure 1: Confusion matrix of each component of the
XLM-R(v2) in English subtask-1.

The XLM-R(v2) achieves the highest number of
correct predictions on the minority class ‘satire’ as
well as the majority class ‘reporting’. However, the
performance decayed significantly when the class
weights and the sample weights are removed. The
sample weights removed XLM-R(v2) can not cor-
rectly predict the minority class ‘satire’, showing
that the standard fine-tuning is not able to make cor-
rect predictions when the data is highly imbalanced.
In order to evaluate the effectiveness of the shared
information between subtasks, the last XLM-R(v2)
removes the class weights and the sample weights,
and is directly fine-tuned through three subtasks.
As a result, the last XLM-R(v2) obtains the least
number of correct predictions on ‘reporting’, and
makes the highest number of misclassifications be-
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Lan Baseline QUST (rank)
T1 T2 T3 T1 T2 T3

en 0.29 0.35 0.20 0.51 (10th) 0.51 (6th) 0.14 (22nd)
fr 0.57 0.33 0.24 0.62 (9th) 0.45 (11th) 0.21 (19th)
de 0.63 0.49 0.32 0.63 (10th) 0.62 (7th) 0.15 (19th)
it 0.39 0.49 0.40 0.77 (2nd) 0.50 (10th) 0.21 (19th)
po 0.49 0.59 0.18 0.53 (11th) 0.59 (11th) 0.10 (19th)
ru 0.40 0.23 0.21 0.47 (9th) 0.25 (12th) 0.10 (19th)
es 0.15 0.12 0.25 0.55 (2nd) 0.37 (13th) 0.12 (17th)
gr 0.17 0.35 0.08 0.49 (10th) 0.41 (9th) 0.05 (15th)
ka 0.26 0.26 0.14 0.54 (7th) 0.31 (12th) 0.09 (15th)

Table 6: Official Task 3 leaderboard on the test set.
Better scores are bold compared with baselines.

tween ‘reporting’ and ‘opinion’. However, it ob-
tains two correct predictions on the minority class
‘satire’, showing that the shared information is able
to provide useful features to handle the minority
class.

4.5 Results on the official test set
Team QUST ranked 2nd in Italian and Spanish
(zero-shot) on the T1 official test set as shown in
Table 6. In addition, the proposed method surpasses
T1 and T2 baselines in all languages except that in
German and in Polish. Interestingly, the proposed
method performs significantly bad in T3, and all
submissions fail to the T3 baselines. The possi-
ble reasons could be two-fold: 1) All early-stage
evaluations are conducted based on model perfor-
mances from T1, therefore the results can not fully
reflect that of T3. 2) T1 and T2 are both document-
level classification tasks, but T3 is sentence-level
so the T2 could benefit more than T3 from the
task-dependent fine-tuning.

5 Conclusion

This paper extensively describes the monolingual
and multilingual approaches in detecting news
genre, news framing and persuasion techniques.
To address the issue of imbalanced data, the ma-
jority classes are first under-sampled at the early
stage of the task. The traditional machine learning
models and deep learning models are evaluated in
a monolingual setup. In order to learn the shared
information between all languages, a multilingual
model is built in the later stage of the task. The
XLM-R is fine-tuned with the pre-calculated class
weights and sample weights to combat the imbal-
anced data. In addition, two types of fine-tuning
strategies, the task-agnostic and the task-dependent,
are evaluated respectively. The proposed method
is the second best system in Italian and in Spanish
(zero-shot) subtask-1. In future work, the minor-

ity class sample can be back-translated from other
languages to augment the data size.
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