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Abstract

There is no simple definition of sexism, but
it can be described as prejudice, stereotyping,
or discrimination, especially against women,
based on their gender. In online interactions,
sexism is relatively rare but still harmful. One
out of ten American adults says that they have
been harassed because of their gender and
have been the target of sexism, so sexism is
a growing issue. The Explainable Detection of
Online Sexism shared task in SemEval-2023
aims at building sexism detection systems for
the English language. In order to address the
problem, we use large language models such
as RoBERTa and DeBERTa. In addition, we
present a novel method called Random Layer
Adversarial Training (RLAT) for transform-
ers which is based on adversarial training, and
show its impact on boosting all subtasks’ scores.
Moreover, we use other discriminative and gen-
eralization techniques for subtask A to boost
performance. Using our methods to make pre-
dictions over subtask A, B, and C test sets, we
obtained macro-F1 of 84.45, 67.78, and 52.52
respectively, outperforming proposed baselines
on all subtasks. Our code is publicly available
on Github.1

1 Introduction

Sexism refers to any negative, abusive, or dis-
criminatory behavior, attitude, or language that
targets individuals based on their gender, particu-
larly women, and involves prejudice, stereotyping,
or discrimination (Kirk et al., 2023). In essence,
sexism encompasses any negative, abusive, or dis-
criminatory behavior or attitude that targets women
based on their gender or a combination of their
gender with other identity characteristics such as
race, religion, or gender identity, for instance, black
women, Muslim women, or trans women (Kirk
et al., 2023). The internet is a breeding ground

1https://github.com/SUTNLP/RLAT-Transformer

for sexism, with approximately one in ten Ameri-
can adults reporting that they have been harassed
due to their gender, and have experienced sexist
behavior (Swim et al., 2001).

In order to promote a fair and inclusive online
environment, it is vital to acknowledge and com-
bat sexism on online platforms because of their
significant scale, extensive reach, and powerful in-
fluence.2

Sexism poses a growing problem in the online
environment, and its consequences can be severe,
such as making online spaces inaccessible and per-
petuating social injustices. To address this issue,
various automated tools have been deployed to de-
tect and assess sexist content. Nonetheless, most
of these tools only provide generic classifications
without further explanation. Identifying sexist con-
tent and explaining why it is offensive will increase
an automated tool’s interpretability, trustworthi-
ness, and understanding of its decisions. This, in
turn, will empower both users and moderators to
make informed decisions and create a fair and in-
clusive online environment (Kirk et al., 2023). The
aim of the SemEval-2023 Explainable Detection
of Online Sexism shared task is to develop and im-
plement sexism detection systems for the English
language (Kirk et al., 2023).

In order to deal with the problem, we use large
language models such as RoBERTa (Liu et al.,
2019) and DeBERTa (He et al., 2020). We intro-
duce a novel method called Random Layer Adver-
sarial Training (RLAT) based on famous adversar-
ial training and demonstrate that it has a positive
impact on boosting performance across all subtasks.
To the best knowledge of the authors, this is the
first research using random layers of a network for
adversarial training.

As part of subtask A, we also use virtual adver-

2https://www.theguardian.
com/commentisfree/2015/dec/16/
online-sexism-social-media-debate-abuse
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sarial training and contrastive learning to improve
the model’s performance.

In subtask A, our team ranked 18th out of 84
teams, in subtask B, 9th out of 69 teams, and in
subtask C, we ranked 6th out of 63 teams. In sub-
tasks A and B, we outperform baseline methods by
a substantial margin, and in subtask C, we outper-
form baseline by a large margin using the RLAT.
Several experiments were conducted to examine
the effect of the RLAT on the current task.

2 Background

2.1 Related Work
Due to the widespread prevalence of sexism in on-
line communication, the automated detection of
online sexism has become an increasingly impor-
tant area of research. Various machine learning
models have been proposed for detecting sexism
in online texts, such as tweets, comments, and
other forms of online communication (Waseem and
Hovy, 2016; Davidson et al., 2017). These models
have been evaluated and compared in terms of their
accuracy and performance. Some other studies,
such as Bolukbasi et al. (2016); Sun et al. (2019)
have also examined the potential for gender bias
in these models and put forth strategies to address
it. Rodríguez-Sánchez et al. (2020) proposed the
use of deep learning approaches to detect sexist
attitudes and stereotypes in tweets. Samory et al.
(2021a) focused on construct validity and reliability
in sexism detection. Ghosh Chowdhury et al. (2019)
creates a dataset for detection of personal recollec-
tions of sexual harassment from tweets. They fur-
ther tested several models on their dataset. In other
research, Parikh et al. (2019) introduced a dataset
consisting of accounts of sexism in 23 categories to
investigate sexism categorization as a multi-label
classification task.

2.2 EDOS task
The task of EDOS comprises three hierarchical
subtasks:

• SUBTASK A - Binary Sexism Detection in-
volves a two-class (or binary) classification,
where the goal of the system is to predict
whether a given post is sexist or not sexist.

• SUBTASK B - Category of Sexism which
involves a four-class classification for sexist
posts: threats, derogation, animosity, and prej-
udiced discussions

• SUBTASK C - Fine-grained Vector of Sexism
task involves a classification of 11 classes for
posts that contain sexism, where systems are
required to predict one of the 11 fine-grained
vectors.

2.3 Preliminaries

In this sub-section, we will give a brief introduction
to the methods and approaches we used for our text
classification system.

2.3.1 Large Pre-trained Language Models
Recent research demonstrates that pre-trained lan-
guage models, such as the transformers approach,
are effective in text classification (Fallah et al.,
2022). The BERT model has emerged as a popular
state-of-the-art model in recent years (Devlin et al.,
2018). This language model is capable of handling
NLP tasks, including text classification (González-
Carvajal and Garrido-Merchán, 2020).

Transformer models have become the most effec-
tive neural network architecture for neural language
modeling. A new model architecture known as De-
BERTa (Decoding-enhanced BERT with disentan-
gled attention) improves the BERT and RoBERTa
models using two novel techniques. The first is
the disentangled attention mechanism, where each
token is represented using two vectors that encode
its content and position, respectively. The atten-
tion weights among tokens are computed using
disentangled matrices of their contents and relative
positions, respectively. Second, an enhanced mask
decoder is used to incorporate absolute positions in
the decoding layer to predict the masked tokens in
model pre-training (He et al., 2020).

2.3.2 Adversarial Training
A machine learning technique known as adversarial
training aims to increase the robustness and gener-
alization of a model by training it on adversarial
examples. These are inputs deliberately designed
to cause misclassification or errors. As a result, per-
turbations to the input data are generated and added
to the training set in order to create a more chal-
lenging and diverse set of data (Goodfellow et al.,
2014). In recent years, adversarial training has
gained popularity in the field of natural language
processing (NLP) for text classification tasks (Miy-
ato et al., 2016), which applied adversarial training
to improve the performance of semi-supervised
text classification models. The method has been
applied to a variety of NLP applications, including
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sentiment analysis, spam detection, topic model-
ing, hate speech, and sexism detection. Some no-
table works in this area include Iyyer et al. (2018),
which proposed a method for generating syntacti-
cally controlled adversarial examples for text classi-
fication, Wu et al. (2017a), which demonstrated the
effectiveness of adversarial training for improving
the robustness of relation extraction models, and
Zhu et al. (2021) which used adversarial training
to make the BERT model more robust and gen-
eralized. Zhu et al. (2019) showed the impact of
adversarial training on boosting the performance
of several benchmarks. Vidgen et al. (2021) pro-
posed a human-and-model-in-the-loop process for
dynamically generating datasets through teaching
annotators to generate adversarial examples of hate
which is challenging for current models to discern.
Further they trained more effective and robust hate
detection models. Kirk et al. (2022) built a dataset
using adversarial examples. They showed that mod-
els trained on this dataset perform significantly
better at detection of emoji-based hate compared
to previous methods while retaining good perfor-
mance at detection of text-only hate. Samory et al.
(2021b) generated adversarial examples from an-
notated datasets to test sexism detection models’
reliability.

2.3.3 Virtual Adversarial Training
Adversarial training is a technique used to improve
the robustness of supervised learning algorithms
by adding perturbations to the input data. On the
other hand, virtual adversarial training extends su-
pervised learning algorithms to semi-supervised
settings by generating adversarial examples in the
unlabeled data space. In other words, while adver-
sarial training focuses on regularizing supervised
learning algorithms, virtual adversarial training
leverages both labeled and unlabeled data to en-
hance the performance of these algorithms in semi-
supervised settings. Recent studies have demon-
strated that virtual adversarial training has achieved
state-of-the-art results in various benchmark semi-
supervised tasks (Miyato et al., 2016). This ap-
proach has also been utilized in various machine
learning applications, including supervised and
semi-supervised learning (Miyato et al., 2019), as
well as sequence labeling (Chen et al., 2020a).

2.3.4 Contrastive Learning
A popular method for learning embedding spaces
is contrastive learning, which ensures that pairs of

data samples with similar labels are represented
closely and pairs with dissimilar labels are rep-
resented at a greater distance. In supervised or
unsupervised settings, it can produce task-specific
or general-purpose representations using different
loss functions (Zhang et al., 2022). This technique
has previously been used in research to perform
various specific tasks such as learn sentence em-
beddings (Gao et al., 2021; Fang et al., 2020),
classify text by producing better text representa-
tions using contrastive samples (Du et al., 2021),
and to solve hierarchical text classification prob-
lems (Wang et al., 2022).

3 System Overview

Overall we developed our models based on large
pre-trained language models and random layer ad-
versarial training. Subtask A is built on random
layer adversarial training, virtual adversarial train-
ing and contrastive learning. Subtasks B and C
are solved similarly and are dependent only on ran-
dom layer adversarial training. So we describe our
system in two different sections.

3.1 Subtask A
3.1.1 Base Transformer
As the base transformer for this subtask, we use
RoBERTa-Large. To calculate the loss of each
batch of training data, we employ cross-entropy
loss. Considering the imbalance of the training
dataset, sample-based loss weighting was adopted
to overcome this issue by weighting samples based
on the inverse ratio of their class frequency in the
training dataset. Using LCE , we present cross-
entropy loss in Equation 5.

3.1.2 Random Layer Adversarial Training
Several researchers in the field of NLP have used
adversarial training to enhance generalization of
their model. These reseraches mostly apply adver-
sarial training to the embedding layer (Zhu et al.,
2021; Liu et al., 2020; Wang et al., 2019; Zhu et al.,
2019; Cui et al., 2022a; Lu et al., 2022). Sankara-
narayanan et al. (2018) shows intermediate layers
could be quite effective in further regularization
and boost of performance for adversarial training
to be applied to.

Through experiments on development data, we
observe that a random layer perturbation method
works best for the current task. In order to do that
we devise an algorithm called Random Layer Ad-
versarial Training (RLAT) which employs different
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random layers to which adversarial training is ap-
plied. Suppose the i-th dense layer of network is
denoted by Hi and word embedding layer is de-
noted by WE . According to the Equation 1, in
each batch a random layer is uniformly selected for
adversarial training. The selected random layer is
denoted by AL.

AL = Uniform({H1, · · · , HL,WE}) (1)

The RLAT method tries to find the optimal pa-
rameters θ∗ by minimizing the maximum possible
adversarial perturbation δ to the outputs of a ran-
dom layer, inside a norm ball of ϵ which is stated
as follows:

θ∗ = argmin
θ

ED,U

{
max

δ:∥δ∥≤ϵ
L(fθ(X + δ), Y )

}

(2)
In Equation 2, network parameters are denoted

by θ, D and U are dataset distribution and the uni-
form distribution on random layer selection respec-
tively. X is the random layer output and Y repre-
sents the label. fθ is the network function and L
represents the loss function. K-projected gradient
descent (K-PGD) (Madry et al., 2017) is adopted to
train the network using adversarial training. K is a
hyperparameter which is tuned using development
data.

3.1.3 Virtual Adversarial Training (VAT)
To further boost the transformer’s generalization
capability, VAT is adopted as another objective
in the training process of our model. We use an
algorithm which is developed based on VAT called
SMART (Jiang et al., 2019). SMART is applied to
the embedding layer. We denote the loss of VAT
by LVAT .

Virtual adversarial training adds a perturbation
to the input and minimizes the distance between
the output of the original input and the output of
the perturbed input. The perturbation is added in a
way so that the distance between the two outputs is
maximized. Contrary to adversarial training, this
method does not use label information. According
to Miyato et al. (2019), virtual adversarial loss can
be formulated like Equation 3.

LVAT = D[fθ(X), fθ(X + δvadv)]

s.t. δvadv = argmax
δ:∥δ∥≤ϵ

D[fθ(X), fθ(X + δ)] (3)

In Equation 3, X is the input, fθ and θ are the
function and parameters of the network respec-
tively, D is a distance metric, δvadv is the pertur-
bation and, ϵ is the a constraint for the maximum
2-norm of the perturbation.

3.1.4 Contrastive Training (CON)

We employ contrastive training to further boost the
discrimination power of our model. (Cui et al.,
2022b) shows that contrastive training is effective
when applied to the last hidden layer of the net-
work. Kaku et al. (2021) shows that contrastive
training could also be effective when applied to
intermediate layers beside the final layer. Follow-
ing Kaku et al. (2021), we use contrastive training
not only to the final layer but also to some inter-
mediate layers. We do this by applying NT-XENT
loss (Chen et al., 2020b) to the hidden representa-
tion of the last L hidden layers of the transformer.
According to the NT-XENT loss, if samples with
indices of i and j have the same label in a batch,
their contrastive loss is computed by the Equation 4,
where lij denotes the contrastive loss and 2N is the
size of batch. L is a hyperparameter which is tuned
using development data. The overall contrastive
loss is denoted by LCON .

lij =
exp(sim(zi, zj)/τ)∑2N

k=1 1[k ̸=i] exp(sim(zi, zk)/τ)
(4)

3.1.5 Overall

To train the transformer for each batch all losses
including LCE , LRAT , LVAT , and LCON are cal-
culated and the total loss of LT is calculated using
Equation 5. λ1, λ2, and λ3 are hyperparameters
that are tuned using development data.

LT = LCE+λ1LRLAT+λ2LVAT+λ3LCON (5)

3.2 Subtasks B and C

DeBERTa-v3-Large is used as the transformer for
both subtasks. We adopt the RLAT as described
in 3.1.2 alongside cross-entropy for both subtasks.
The total loss for both subtasks B and C is com-
puted as follows:

LT = LCE + LRLAT (6)
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4 Experimental Setup

4.1 Dataset and Evaluation
According to the organizers, the dataset consists of
20,000 samples where each sample is a comment
collected from Reddit or Gab (Kirk et al., 2023).
Each sample is tagged by three annotators. For
subtask A, when the annotators’ votes are unani-
mous in favour of one label, this is taken as the
gold label. If there is any disagreement, one of the
experts reviews the entry and decides the gold label.
For subtasks B and C, when at least two annotators
agree on a label, this is taken as the gold label but
in cases of 3-way disagreement, one of the experts
decides the gold label (Kirk et al., 2023). The num-
ber of train, development and test set samples are
shown in Table 1 for each subtask.

Data Train Development Test

Subtask A 14,000 2,000 4,000
Subtask B 3,398 486 970
Subtask C 3,398 486 970

Table 1: Number of train/development/test samples for
each subtask

For subtask A, a comment is given and the ob-
jective is to classify it as sexist or not sexist. For
subtasks B and C, a sexist comment is given and
the objective is to classify the comment as one of
the sexist categories. Datasets for subtasks B and C
are highly unbalanced presenting a new challenge
for our method to handle. Figures 2c and 2b present
the sample count of each class in subtasks B and C
respectively (names of labels in figures are reduced
to the first number of classes to avoid using too
much space). In subtask B, the ratio of the most
frequent class to the least frequent is approximately
5 and for subtask C, this ratio is much severe and
is about 14. This obviously indicates that as we dig
deeper into subtasks, not only are there fewer data
for each class, but the data imbalance worsens as
well. There are 2, 4, and 11 classes for subtasks A,
B, and C respectively (Kirk et al., 2023).

To estimate the performance of the system, the
organizers employ macro-F1 score as the main met-
ric for all subtasks (Kirk et al., 2023).

4.2 Parameter Settings
We use Huggingface3 transformer models and
their respective checkpoints. For all subtasks,

3https://huggingface.com/

AdamW (Loshchilov and Hutter, 2017) algorithm
is adopted as the optimization algorithm. For each
subtask we adopt early stopping with patience of
4 and after training the model checkpoint with the
best performance on development set is used for
prediction on test set. All of the later mentioned
hyperparameters are set using development set for
each subtask.

4.2.1 Choice of Base Transformers
The base transformer for each subtask is chosen be-
tween RoBERTa-Large and DeBERTa-Large. The
choice is based on the performance of the base
transformer on the development data of each sub-
task. Consequently RoBERTa-Large is adopted for
subtask A and DeBERTa-v3-Large is adopted for
subtasks B and C.

4.2.2 Subtask A
We train for 10 epochs. Learning rate is set to 4e−6
and the weight decay is 1e− 2, L is set to 4. K is
set to 2 for PGD. λ1 is set to 1, λ2 and λ3 are set
to 0.5 and 0.4 respectively.

4.2.3 Subtask B
We train the model for 30 epochs. Learning rate is
set to 1e− 5 and weight decay is 9e− 3, K is set
to 2 for PGD.

4.2.4 Subtask C
We train the model for 30 epochs. Learning rate is
set to 6e− 6 and weight decay is 7e− 3, K is set
to 4 for PGD.

5 Results

5.1 Model Performance

As the organizers of the task have not proposed a
baseline, for each subtask we set the base trans-
former of the subtask with only cross-entropy loss
as the baseline method for the subtask. Hence
RoBERTa-Large is used for subtask A baseline and
DeBERTa-v3-Large is used for subtasks B and C
baselines. All of the following results are based on
the test data.

Results of subtask A are shown in Table 2. All
of RLAT, VAT, and CON contribute positively to
boost the performance of the model. As can be
seen excluding any of them results in a drop in per-
formance. RLAT contributes most to the boost as
its exclusion has the largest drop. Tables 3 and 4
provide results of subtask B and C, respectively. It
is evident that adding RLAT has a huge effect on
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(a) Subtask B

(b) Subtask C

Figure 1: Distribution of classes for Subtasks B and C in train data

Model macro-F1 macro-Precision macro-Recall

RoBERTa-Large (Baseline) 84.81 85.08 84.56
RoBERTa-Large + RLAT + VAT 85.05 85.20 84.92
RoBERTa-Large + VAT + CON 85.03 85.18 84.88

RoBERTa-Large + RLAT + CON 85.11 85.15 85.08
RoBERTa-Large + RLAT + VAT + CON 85.45 85.86 85.07

Table 2: Subtask A results

Model macro-F1 macro-Precision macro-Recall

DeBERTa-v3-Large 66.70 65.90 67.77
DeBERTa-v3-Large + RLAT 67.78 69.16 67.75

Table 3: Subtask B results

the performance of both subtasks. Further, confu-
sion matrices for subtasks A, B, and C are depicted

in Figure 2. In the confusion matrix of subtask B,
we observe that the model is unable to accurately
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Model macro-F1 macro-Precision macro-Recall

DeBERTa-v3-Large 45.40 47.21 45.08
DeBERTa-v3-Large + RLAT 52.52 53.67 52.89

Table 4: Subtask C results

Model Subtask B macro-F1 Subtask C macro-F1

DeBERTa-v3-Large 66.70 45.40
DeBERTa-v3-Large + AT (embedding layer) 66.40(−0.30) 48.61(+3.21)

DeBERTa-v3-Large + RLAT 67.78(+1.08) 52.52(+7.12)

Table 5: RLAT Analysis

(a) Subtask A (b) Subtask B

(c) Subtask C

Figure 2: Confusion matrix on test data for Subtasks A, B, and C
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discriminate between classes 2 (Derogation) and
3 (Animosity). A closer look at the confusion ma-
trix of subtask C reveals more information. As we
see a significant portion of samples with label 3.2
(Immutable gender stereotypes) are classified as
class 2.1 (Descriptive attacks), and a huge portion
of samples with label 2.2 (Aggressive and emotive
attacks) are classified as class 3.1 (Casual use of
gendered slurs, profanities insults).

5.2 RLAT Analysis

In order to better understand the RLAT method,
here we try to analyze it. The results for the RLAT
method are shown in Table 5. Many researchers
use the embedding layer to conduct adversarial
training with transformers (Dong et al., 2020; Wu
et al., 2017b; Ju et al., 2019; Zhu et al., 2021; Liu
et al., 2020; Wang et al., 2019; Zhu et al., 2019;
Cui et al., 2022a; Lu et al., 2022). To this end
we compare the RLAT method with the method in
which Adversarial Training (AT) is applied only to
the embedding layer. For subtask B, when adver-
sarial training is applied to the embedding layer,
our model experiences a −0.3% drop in Macro-F1
score in comparison to the baseline. When RLAT
is applied our model experiences a +1.08% gain
in Macro-F1 score compared to the baseline. For
subtask C, our model with RLAT experiences a
+7.12% gain in Macro-F1 score in comparison to
the baseline which is higher by +3.91% compared
to the case when AT is applied to the embedding
layer. This analysis shows the superiority of using
RLAT in comparison to conventional AT.

6 Conclusion

This paper presents SUTNLP’s submission to
SemEval-2023 Task 10 "Explainable Detection of
Online Sexism” competition. To solve this prob-
lem, we use transformers and further propose Ran-
dom Layer Adversarial Training (RLAT) to boost
the performance of the base models by large mar-
gins. We conducted experiments to show the su-
periority of RLAT compared to conventional ad-
versarial training used in NLP for the current task.
For all subtasks, the performance of the model is
evaluated by macro-F1. Using macro-F1 criteria,
appending the RLAT to base transformers shows
gains of 1.08% in Macro-F1 and 7.12% Macro-F1
for subtasks B and C respectively. In the future, we
intend to analyse the RLAT method to determine
how it performs on other NLP tasks and further

improve it.
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