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Abstract

This paper presents our participation to the “Hu-
man Value Detection” shared task (Kiesel et al.,
2023), as “Andronicus of Rhodes”. We de-
scribe the approaches behind each entry in the
official evaluation, along with the motivation
behind each approach. Our best-performing
approach has been based on BERT large, with
4 classification heads, implementing two dif-
ferent classification approaches (with different
activation and loss functions), and two different
partitioning of the training data, to handle class
imbalance. Classification is performed through
majority voting. The proposed approach out-
performs the BERT baseline, ranking in the
upper half of the competition.

1 Introduction

The “Human Value Detection” shared task (Kiesel
et al., 2023) relates to the identification of values
that can be associated with an argument. In the
context of the shared task, a single argument is
represented by a single premise, a conclusion, and
information on what the stance of the premise is
towards the conclusion. Each argument can be clas-
sified into one or more value categories, among
the 20 value categories, based on Schwartz (1994).
The shared task covers a single language, English,
providing 5393 examples for training, 1896 exam-
ples for validation, while participating systems are
evaluated on 1576 test examples (Mirzakhmedova
et al., 2023).

With the ever-increasing ubiquity of artificial in-
telligence in real-world usage scenarios, the aware-
ness of the so-called alignment problem (Christian,
2020) is increasing, as is the need to develop novel
strategies to measure and verify the alignment of

machine learning (ML)/artificial intelligence (AI)
systems (Brown et al., 2021) with human values.

However, high-quality datasets and novel
(moral) value recognition methods are needed to
further develop this area. Some existing initiatives
presenting datasets for human value detection are
based: either on specific types of texts, such as the
SemEval argument annotation task (Mirzakhme-
dova et al., 2023), or on broader over-arching stud-
ies of values and their analysis in different spa-
tiotemporal contexts, such as the VAST Project
approach (Castano et al., 2021). Nevertheless,
since human value recognition in texts is a problem
that can be challenging even for humans, let alone
for machines (Haas, 2020), despite the existing
datasets, additional methods need to be developed
to detect values in various scenarios.

In order to approach the challenge, several differ-
ent natural language processing (NLP) and ML/AI
approaches have been previously proposed and
tested (Kiesel et al., 2022; Yu et al., 2020; Cor-
tiz, 2021; Brown et al., 2021). Several modern
and well-performing techniques for text classifica-
tion (of shorter text sequences) are based on artifi-
cial neural networks (ANN), commonly based on
LSTM, GRU, CNNs, and RNNs (Yu et al., 2020),
and frequently using the so-called transformer ar-
chitectures (Cortiz, 2021; Devlin et al., 2018), and
attention (Vaswani et al., 2017).

To that effect, we focused on building upon
the previously described successful approaches.
Specifically, we designed different ANN architec-
tures building upon BERT (Devlin et al., 2018) and
RoBERTa (Liu et al., 2019) pre-trained models for
the English language and fine-tuning them using
the SemEval 2023 human values dataset (Mirza-
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khmedova et al., 2023). Additionally, we utilized
approaches that have proven successful in short
text feature extraction and classification, such as
siamese networks (Yan et al., 2018), and train-
ing the networks by treating the under-represented
classes separately (Kokol et al., 2022) by providing
a specialised classification head.

2 Background

As mentioned in the introduction, our approach
was built upon BERT and RoBERTa models, with
the models incorporated into a wider ANN with
three different approaches (additional details are
provided in the System Overview):
• A single classifier with 1 classification head out-

putting 20 scalars, each of which corresponds
to a value category; the sigmoidF1 loss function
(Bénédict et al., 2021) was used to train this clas-
sifier.

• A single multi-label classifier for all 20 values
and 4 decision heads; 2 for the majority and 2 for
the minority classes, with 2 different loss func-
tions per class. Final classification is performed
through majority voting.

• A siamese network classifier for all 20 values and
4 decision heads; 2 for the majority and 2 for the
minority classes, with 2 different loss functions
per class.
Having as a starting point a simple multi-label

classifier based on BERT, we explored the training
part of the shared task dataset. As evident from
the initial classification results on the validation
dataset and Figures 1 and 2, class imbalance has a
significant impact on performance. Thus, handling
the class imbalance in the dataset was the main
motive for the approaches that we have applied on
the shared task.
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Figure 1: Number of arguments classified in each value
category.
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Figure 2: Number of value categories per argument.

Our first attempt was based on the observation
that after a few training epochs on a simple multi-
label BERT-based classifier with BCE (binary cross
entropy) loss, the validation F1 score was either in-
creasing or remaining stable, while the validation
loss was also increasing. This motivated us to seek
an objective function that better estimates the F1
metric; a suitable differentiable candidate is the sig-
moidF1 loss (Bénédict et al., 2021). This approach
is further detailed in section 3.1, and constitutes
our first entry to the shared task (entry “2023-01-
28-03-02-04” in Table 2).

Despite the fact that we have not observed a sig-
nificant correlation among the value categories, we
opted to design a multi-label approach. Initially
seeking to exploit multi-task learning (using stance
prediction between premise and conclusion as a sec-
ondary task), we ended up using slightly different
ways in performing the same multi-label classifica-
tion problem: A classification head that involves a
sigmoid layer (a typical approach for multi-label
classification), and a classification head that in-
volves a softmax layer (typically used in multi-class
classification), following (Mahajan et al., 2018).
The two classification heads are combined through
voting, to produce the final classification, selecting
only the value categories that both heads agree.

Returning to the problem of class imbalance,
we tried to “sub-sample” the dataset, through the
removal of associations with the majority classes
from training examples that are associated with
more than 3 value categories, including any major-
ity class. The motivation behind this removal of
assignments was the hypothesis that there may have
been an annotation bias towards some values (like
“Universalism: concern”, “Security: personal”, and
“Security: societal”), either due to annotators’ per-
sonal biases, or due to the presence of values in
the selected arguments. Despite the fact that the
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Figure 3: The high-level architecture of the single multi-label classification ANN.

three majority classes were significantly reduced
(as shown in Table 1), this sub-sampling did not
have any significant effect in the performance of the
baseline BERT classifier (F1 has not significantly
changed on the validation dataset). As a result, we
opted to apply up-sampling and sub-sampling si-
multaneously: we used positive weighting in both
classification heads, that try to balance positive
and negative examples within value categories, and
we added two more (identical) classification heads,
which are trained only on argument examples that
are assigned to minority classes1. Again the final
classification is performed through majority voting
among the 4 classification heads. The architecture
of this approach is shown in Figure 3, and consti-
tutes our second and third entries to the shared task
(entries “2023-01-28-03-07-13” and “2023-01-28-
10-02-00” in Table 2). The third entry is the best
performing approach (as evaluated on the test set)
of our team.

Finally, we designed an approach which com-
bines the idea of the end-to-end ensemble and
simultaneous upsampling/subsampling, with a
siamese network architecture (Figure 4), exploiting
different pre-trained models, BERT and RoBERTa.
This approach constitutes our fourth entry (entry
“2023-01-30-16-39-54”), which is not part of the
official evaluation, as it was submitted after the sub-
mission deadline (but before the evaluation results
were made public).

1Minority classes have been defined as the value categories
that have a frequency lower than 850 in the combined training
and validation datasets.

Value Category Initial Sub-sampling
Universalism: concern 2081 1171
Security: personal 2000 916
Security: societal 1728 544

Table 1: Reduction in the association of argument ex-
amples (training dataset) with majority classes, after
removing associations from examples having more than
3 associated value categories.

3 System Overview

Overall, all approaches were based on the Hugging-
face library (Wolf et al., 2019), utilising a PyTorch
backend (Paszke et al., 2019), and a custom dat-
aloader that was created for the task, described in
more detail in the Experimental Setup2.

3.1 Single Multi-label Classifier with
SigmoidF1 Loss

This multi-label classifier employs a very simple
approach: the BERT English base uncased model
(Devlin et al., 2018) representations of [CLS] to-
ken is fed into a classification head with a single
dense layer and dropout (0.5 probability) which
produces 20 scalars; followed by a sigmoid acti-
vation function. The output, denoted by ŷ̂ŷy, is a
two-dimensional matrix of shape [batch size, 20].
The labels, yyy, are also given in a two-dimensional
matrix, thus we compute the sigmoidF1 loss as

2The source code is publicly available through
GitHub: https://github.com/DimitrisPatiniotis/
Human-Value-Detection.
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Figure 4: The high-level architecture of the siamese multi-label classification ANN.

follows:

L
F̃1

= 1− 1

C

∑
F̃1 (1)

F̃1 =
2t̃p

2t̃p+ f̃n+ f̃p
(2)

where C = 20, t̃p, f̃p, and f̃n are rough surro-
gates of the true positives, false positives, and false
negatives, respectively, calculated as:

t̃p =
1

N

∑
ŷ̂ŷy ⊙ yyy (3)

f̃p =
1

N

∑
ŷ̂ŷy ⊙ (1− yyy) (4)

f̃n =
1

N

∑
(1− ŷ̂ŷy)⊙ yyy (5)

Note that the sign ⊙ represents the element-wise
multiplication and 1 is a two-dimensional matrix
of the same shape as ŷ̂ŷy and yyy, filled with ones.
We should mention that in the original sigmoidF1
loss, the sum over the batch samples is calculated
in Equations (3), (4), and (5), but we replaced it
with the average over the batch samples since we
discovered that this way yields higher performance.
Similarly, we added the average over the classes in
Equation (1), where neither the sum nor the average
was utilized.

Furthermore, we have experimented with replac-
ing the single dense layer head with a GRU head
which takes as input the entire sequence of BERT-
representations, i.e., the representations of all the
words in the argument. In another trial, we replaced
the single dense layer head with 20 concrete heads
(each with its own dense layer), one for each value
category. None of these yielded better results than

the simple approach (as measured by the validation
F1), thus we stuck with the single dense layer head.
We have also performed experiments where we aug-
mented the training dataset with the unlabeled test
samples, applying the GAN-BERT method (Croce
et al., 2020). Unfortunately, the results were infe-
rior, probably due to the small number of unlabeled
samples compared to the labeled ones.

3.2 Single Multi-label Classifier
The multi-label classifier utilises BERT (Devlin
et al., 2018) as its backbone. Two versions were
tested: one using the BERT base uncased English
model (Devlin et al., 2018), and one using the
BERT large uncased English model (Devlin et al.,
2018) (Figure 3). Finally, the model feeds into 4
separate heads, all connected via a fully connected
layer with dropout (with 0.1 probability), trained
on 4 different tasks:
• Positively weighted classes, where under-

represented classes are weighted to try equalizing
the importance of classes, using two different ac-
tivation functions: a) Sigmoid activation (Figure
3 (A)); b) Softmax activation (Figure 3 (B));

• Subsampling using minority classes only, using
two different activation functions: a) Sigmoid
activation (Figure 3 (C)); b) Softmax activation
(Figure 3 (D));
The layer stacking is shown on the Figure 3,

after the BERT (Devlin et al., 2018) Tanh activation
layer, there is a dropout layer, followed by a Linear
layer. The function for the dropout layer is:

hdrop = r⊙ h (6)

where h is the input vector, r is a binary mask vec-
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tor of the same shape as h, and ⊙ represents the
element-wise multiplication operation. The mask
vector r is generated by drawing each element in-
dependently from a Bernoulli distribution with pa-
rameter p, where p is the probability of keeping
each element.

The function for the linear layer is the standard
fully connected layer:

z = Wx+ b (7)

where x is the input vector, W is the weight matrix,
b is the bias vector, and z is the output vector This
is then fed into the Sigmoid activation function for
heads (A) and (C) with the equation:

σ(z) =
1

1 + e−z
(8)

where z is the input to the sigmoid function. The
sigmoid function outputs a value between 0 and 1,
which can be interpreted as a probability or as an
activation value for a neuron in the neural network.

The heads (B) and (D) use the Softmax activation
function with the equation:

softmax(zi) =
ezi∑
j e

zj
(9)

where zi is the input to the softmax function for the
i-th output neuron.

3.3 Siamese Network Classifier
The multi-value classifier utilised the BERT and
BERT-based models as its backbone, combining
the BERT base uncased English pre-trained model
(Devlin et al., 2018), and the RoBERTa base un-
cased English language model (Liu et al., 2019), as
shown in Figure 4.

Both models are then attached to a 64 neuron
fully connected layers utilising the SiLU function
(Elfwing et al., 2018), and combined using simple
addition (summation). The PyTorch autograd (Py-
Torch, 2023) functionality is used during training
for back-propagation.

The model feeds into the same 4 heads, as al-
ready mentioned in the description of the Single
Multi-label Classifier, and shown on Figure 4.

The Siamese network utilises the output of
BERT (Devlin et al., 2018) and feeds it into a lin-
ear layer (eq. 7), after which the SiLU function
(Elfwing et al., 2018) is used, which is calculated
by:

SiLU(z) = z · σ(z) (10)

where z is the input to the SiLU function and
σ(z) = 1

1+e−z is the sigmoid function. The output
of the SiLU layer is then fed into the same heads as
already described for the Single Multi-label Classi-
fier.

4 Experimental Setup

The three different models also used different se-
tups, and full details are available in GitHub3, con-
taining the full source code used for the task.

4.1 Single Multi-label Classifier with
SigmoidF1 Loss

The experimental setup for this classifier included
the:
• Example representation starts with the [CLS] to-

ken, followed by the conclusion, the special to-
ken [SEP], the premise, and another [SEP] at the
end.

• A custom training loop was used, with a batch
size of 8 and a learning rate of 0.00002.

• We exploited early stopping with patience of 5
epochs to avoid overfitting and reduce training
time. After determining the epoch at which train-
ing should stop (based on the validation loss), we
combined training and validation sets and trained
the model again for the same number of epochs.

4.2 Single Multi-label Classifier

The experimental setup for the Single Multi-label
classifier consisted of the following steps:
• Example representation starts with the special

[CLS] token, followed by the premise, stance,
conclusion, and finally, the special [SEP] token;
as shown in Figure 3.

• The training dataset is augmented using the NL-
PAUG library (Ma, 2019); specifically, for each
input, an additional input is generated using the
Word2Vec augmentation function for the English
language.

• Minority classes are determined, and a special
subsample of only minority classes is created
to be used with classification heads (C) and (D)
(Figure 3).

• The Huggingface (Wolf et al., 2019) built-in
trainer was used for training, using a batch size
of 16 and a learning rate of 0.00005.

3https://github.com/DimitrisPatiniotis/
Human-Value-Detection/
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Main
Best per category .59 .61 .71 .39 .39 .66 .50 .57 .39 .80 .68 .65 .61 .69 .39 .60 .43 .78 .87 .46 .58
Best approach .56 .57 .71 .32 .25 .66 .47 .53 .38 .76 .64 .63 .60 .65 .32 .57 .43 .73 .82 .46 .52
BERT .42 .44 .55 .05 .20 .56 .29 .44 .13 .74 .59 .43 .47 .23 .07 .46 .14 .67 .71 .32 .33
1-Baseline .26 .17 .40 .09 .03 .41 .13 .12 .12 .51 .40 .19 .31 .07 .09 .35 .19 .54 .17 .22 .46
2023-01-28-03-02-04 .47 .51 .62 .20 .23 .61 .37 .50 .24 .71 .58 .45 .57 .45 .13 .51 .25 .69 .75 .38 .49
2023-01-28-03-07-13 .47 .49 .58 .23 .13 .58 .36 .48 .21 .70 .59 .46 .53 .26 .18 .47 .26 .67 .74 .39 .47
2023-01-28-10-02-00 .48 .47 .65 .25 .29 .58 .35 .54 .30 .71 .60 .51 .54 .27 .14 .52 .31 .69 .76 .39 .48
2023-01-30-16-39-54∗ .46 .51 .61 .20 .23 .55 .45 .47 .28 .71 .59 .50 .52 .34 .17 .54 .23 .71 .77 .36 .40

Table 2: Achieved F1-score of team Andronicus-of-Rhodes per test dataset, from macro-precision and macro-recall
(All) and for each of the 20 value categories. Approaches marked with * were not part of the official evaluation.
Approaches in gray are shown for comparison: an ensemble using the best participant approach for each individual
category, the best participant approach, and the organizer’s BERT and 1-Baseline.

4.3 Siamese Network Classifier

The Siamese Network Classifier mostly used the
same experimental setup as the Single Multi-label
classifier, using the same pre-processing and train-
ing approach. However, after performing the ini-
tial training, the training and validation sets were
combined, and 3% of the combined dataset was
randomly selected as the validation set for final
fine-tuning, before running the model on the test
set.

5 Results

Our best approach ranked in the upper half of the
competition, and achieved a result above the BERT
baseline of the shared task. As seen in Table 2,
our best model (based on BERT large with 4 clas-
sification heads) achieved an overall F1 score of
0.48, with the single multi-label models following
with 0.47, and the siamese network reaching 0.46.
We have not used any datasets beyond the official
competition dataset for training4. There is a broad
variability of per-category results: both within our
models, as well as within all submitted models on
the leaderboard.

6 Conclusion

Our approach ranks in the upper half of the compe-
tition. We have tested a few different approaches,

4We have used data augmentation and pre-trained models.

all utilising transformer- and attention-based lan-
guage models.

An increased performance over baseline was
achieved by combining multi-task learning with
heads that: a) implement the classification task dif-
ferently, and b) are trained on different partitions of
the data that simultaneously upsample/subsample
the training examples.

Since different models showed different perfor-
mance characteristics for some of the classes, an
expansion of the idea would be the use of ensemble-
based methods, potentially combined with Auto-
mated ML approaches, to further improve the re-
sults.
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