
Proceedings of the The 17th International Workshop on Semantic Evaluation (SemEval-2023), pages 64–76
July 13-14, 2023 ©2023 Association for Computational Linguistics

Brooke-English at SemEval-2023 Task 5: Clickbait Spoiling

Shirui Tang
Pingan / 2040179500@qq.com

Abstract

The task of clickbait spoiling is: generating a
short text that satisfies the curiosity induced
by a clickbait post. Clickbait links to a web
page and advertises its contents by arousing
curiosity instead of providing an informative
summary. Previous studies on clickbait spoil-
ing has shown the approach that classifing the
type of spoilers is needed, then generating the
appropriate spoilers is more effective on the
Webis Clickbait Spoiling Corpus 2022 dataset.
Our contribution focused on study of the three
classes (phrase, passage and multi) and finding
appropriate models to generate spoilers fore-
ach class. Results were analysed in each type
of spoilers, revealed some reasons of having di-
versed results in different spoiler types. "pas-
sage" type spoiler was identified as the most
difficult and the most valuable type of spoiler.

1 Introduction

According to the clickbait spoiling generate re-
search paper (Hagen et al., 2022) (Fröbe et al.,
2023a) (Fröbe et al., 2023b), clickbait spoiling gen-
eration is similar to the task of machine reading
comprehension (MRC), where context is the full
article/advertises with its title waiting for a reader.
Question of MRC corresponds to the clickbait,
which is a short text that arouses curiosity with-
out providing much informative summary, aiming
at attracting people to click into the link towards
the context article. And the answer is a spoiling
text that could satisfy people’s curiosity raised by
the clickbait, therefore people could save the time
of reading.

Detailed research about the task and its dataset
has been conducted in the referring paper. In order
to spoil its content, we are listing a couple of key
points already verified by the paper and its dataset,
and they would be considered as important priors
in our experiments.

• All the answers can be located as a span in

the context, using extraction models could
produce the correct answers.

• Classifying the spoiler into tree types
"phrase", "passage" and "multi" is helpful to
the span prediction, under the condition of
having a good classifier, otherwise using an
unclassified model is a better option.

• DeBERTa (He et al., 2020) model showed
a general good performance for most of the
spoiler-type and score-metric combinations, it
is also a good spoiler-type classifier. Although
"multi" type was not evaluated, DeBERTa QA
model can be regarded as a good initial model
for the task fine tune.

During data processing some flaw on target span
positions were found, target fixing procedure was
applied, details would be described in Section3.1.
Due to this target fix procedure, direct result com-
parison between this paper and the previous re-
search paper may not be appropriate. On the other
hand, "multi" type spoilers are included in our ex-
periment. Within a multi example, multiple text
spans that are often locate in different paragraph
lines of context. Considering the differences in
dataset, training tasks and the starting pretrained
model, we designed different features, module
layers, losses and postprocesses for each type of
spoiler.

Experiment results verified that three types of
spoilers shall be trained separately with it’s own
parameters. Using a classifier with accuracy 0.76,
the overall benefit of separation training overcomes
the drawback of misclassifing the spoiler and send
it to a wrong spoiler extractor. There existed a dis-
tribution shift between validation and test dataset,
due to a small dataset size and the random dataset
splitting. Consistant gap of the measures between
validation and test dataset were observed. The rea-
son of observed test performance being much better

64



than validation would be discussed. Evidences and
error analysis suggested "passage" type spoiler and
BLEU-n may be the causes of troubles.

Experiment results showed mixing all types of
spoiler in a training dataset would give lower mea-
sures on both BLEU-n and meteor than firstly pre-
dicting the spoiler type, then use separate models to
extrace spoilers. Replacing the classifier with a hy-
pothetical perfect classifier, would produce the best
measures. Separating the spoilers would improve
on the signal-noise ratio, which would be shown as
a very important aspect of explaining performance
differences between models.

The DeBERTa QA model had been pretrained
for SQuAD, and was used as initial parameters
of my models. Relative paragraph id was used
as an additional feature for classifier and "multi"
model. Contrastive learning losses were used for
"passage", "multi" and "mix" models, because their
span token lengths were larger in both mean and
variance. Learning the start and end boundary of a
longer spoiler, is less similar to a typical SQuAD
answer, whereas boundary of a short spoiler (i.e.
phrase) typically encloses an entity, which is more
similar to a SQuAD answer. More modifications
were applied to "passage" and "multi" models due
to their smaller similarity answers towards SQuAD.

Inference and training codes are released at 1

2 Background

Table1 shows a clickbait-spoiler data example, con-
text text is a concatenated string of title and para-
graphs, clickbait is a question-like sentence, and its
answer is the spoiler. The length of each paragraph
is at regular sentence length, but the joined context
could contain over 2k tokens, which is a length
exceeding the typical max length of transformer
encoders. Spoilers could appear anywhere in the
context, the position of one spoiler span can be
expressed in two ways:

1. as shown in the example, [[span start para-
graph id, start offset within the paragraph],
[span end paragraph id, end offset within the
paragraph]]

2. span position within contxts, [start offset
within joined context, end offset within joined
context]

1https://github.com/ttssrr423/SemEval2023-Task5-
clickbait-spoiling

For "phrase" and "passage" spoiler types, the
answer simply includes 1 span, their difference is
mainly on token length. For "multi" spoiler, the
answer consists of multiple spans, which then can
be concatenated to make the answer after extracted.
Most "multi" spoilers are extracted from different
lines, but there are a few examples of nested spans.

Dataset paragraph spans has to be converted into
context spans, then the context would be splited
into shorter texts, called feature texts. Each feature
text has a fixed number of tokens overlapping with
its neighbour feature texts, in order to reduce the
likelihood of having a ground truth span that starts
and ends across two consecutive feature texts. The
feature texts belonging to an example, are then
appended after the example clickbait text, forming
the complete input texts, like shown in Fig1

The pretrained DeBERTa QA model predicts
the start and end position logits separately and by
adding the logit scores sij = gi+gj , the span score
which starts at token position i and ends at token
position j can be calculated. Selecting the span
with the maximum score gives the answer span. If
the feature does not contain any answers, the [CLS]
token position shall have the maximum answer, i.e.
s00 > sij∀i > 0, j > 0.

SQuAD dataset was used to pretrain the baseline
model, and my models are all fine tuned starting
with this baseline version.2

In order to merge the results of all features be-
longing to a single example, a beam search mech-
anism was used in the baseline postprocess. Pseu-
docode can be used to describe the postprocess
alg1: This postprocess works fine for single span
results, but it need to be modified for "multi" spoil-
ers.

For the spoiler type classification task, only the
first feature of each example is used as the input to
calculate the [CLS] feature, then use a FC classifier
to predict the spoiler class.

2https://github.com/pan-webis-de/pan-
code/tree/master/semeval23/baselines/transformer-baseline-
task-2

65



Figure 1: example to input texts

Title Sprite May Be The Best Hangover Cure, Chinese Researchers Say
Paragraph1 Most of us are familiar with the pounding headaches, ...
Paragraph2 To alleviate the suffering, chugging coffee, downing Advil or simply choosing ...
... ...
ParagraphN Do you have a tried-and-tested hangover ...
clickbait This popular soda could cure your hangovers scientists say:
spoiler Sprite
spoiler-type phrase
spoiler-pos [[[2, 125], [2, 131]]]

Table 1: data example

Algorithm 1: baseline postprocess

Data: [(gstm, gedm ),...]: list of feature logits pair
1 empty reranking list ;
2 for mth feature in example do
3 sort gstm, gedm in descending order ;
4 foreach (n, i = posn) in topN of gstm do
5 foreach (n, j = posn) in topN of gedm do
6 check for j > i > 0 and span text is valid;
7 calculate and adding score sij to reranking list;
8 end
9 end

10 end
11 return best scored span in reranking list;

phrase passage multi mix
bleu-n 0.592 0.250 0.117 0.367
meteor 0.588 0.385 0.285 0.455

Table 2: spoiler type measures in mix

66



3 System Overview

In our experiment, dataset repair was conducted
before model training, then a single model extract-
ing all types of spoilers, called the mixed model
was trained. The mix model was tried with various
combinations of input features and loss setups, but
the overall result was not satisfactory.

Table2 is the results of the mix model on val-
idation dataset after trained, with detailed bleu-n
and meteor on each spoiler type. The performances
indicates phrase spoilers are the most similar texts
towards a typical QA answer, whereas the multi
spoilers have the least similarity. Multi spoilers
cannot be produced in the mixed model, it only
predicts one answer span.

A classifier was trained, then grid search of con-
fidence threshold of classifier was performed. By
comparing the classifier’s predicted spoiler type
confidence with the thresholds, we could decide
whether a type-specified model should be used, and
those examples with low type confidences goes into
the mixed model. 5 models were trained, three for
each individual type, one for mixed, and one classi-
fication model.

The three type-specific models all output a score
matrix sij , storing the reranking scores of spans
start at token position i and ends at token position j.
Their input features, prediction heads, and postpro-
cess are different, depending on their ground truth
similarity with the original QA task, more modifi-
cations were applied if similarity is low. Multitask
training setup was considered but not experimented
due to the GPU memory was limited within 24G,
so encoder layers do not share parameters.

3.1 Dataset repair

The dataset provided sometimes make mistakes
between context span offsets and paragraph offsets,
and it may also mismatch with the ground truth text.
A fix process on the offsets and the token positions
was performed, aligning them with the ground truth
spoiler text. If the paragraph id and its spoiler span
offsets extracts different text with the ground truth
spoiler text, searching around the initial mistaken
positions could often fix the mistake. But there
were cases that global search had to be done in
order to find a match. Matching the paragraph
offsets to context offsets while keeping the track of
paragraph ids and their absolute position ids within
the paragraph requires much carefulness, mistakes
can be easily made when the clickbait tokens and

the overlap tokens are introduced.

3.2 Spoiler type classification
For the token type classification task, adding the
position embeddings after transformer layers gives
a better accuracy, like suggested by the DeBERTa
paper. A DeBERTa model accepts the first fea-
ture of an example, concatenate it with clickbait
as the inputs, and trained with cross entropy is the
classifier being used for the later extraction experi-
ments. Absolute position ids of input text (xpos =
[0, 1, ...Lcb, 0, 1, ..., Lt, 0, ..., Lp1 , ..., LpN ], where
Lcb=length of clickbait, Lt=length of title,
Lpn=length of nth paragraph) was embedded, and
then added after transformers’ last layer hidden
out. henc(x) = DeBERTa(x) + eabs where
eabs = Embedding(xpos) Accuracy of the clas-
sifier was around 0.76.

3.3 Phrase extractor
Phrase extractor is the most similar task with the
pretrained QA task, so minimum adjustment in
the model was made, score metric was identi-
cally calculated as sij = gsti + gedj where gsti =

logitsst(x) ∈ RT , and x = (xw, xr), represent-
ing sequence token words and token types. Unlike
the classifier model, absolute position ids was not
used, gst = Linearst(DeBERTa(x)), subscript
st indicates the score of start of a span was calcu-
lated. Probabilities are pst = softmax(gst) and
cross entropy loss is the phrase model objective.
Lossphrase = CE(pst, tgtst) + CE(ped, tgted)

Phrase spoilers typically has only a few to-
kens, therefore relative position in DeBERTa could
well capture the n-gram relations if n is not large.
Reranking and select the top 1 non-empty span to
obtain the answer in postprocess is identical with
alg1.

3.4 Passage extractor
The answer span has a larger variance in terms of
the span token length, lengths of passage spoil-
ers could vary from as short as phrases to as
long as a 200 token paragraph. Score metric was
sij = gsti + gedj , the absolute position embeddings
were not used. Softmax supresses non-target logits
with a strength proportional to the exponential of
logits, this involves all the possible relative posi-
tions. However the useful supressions are the "top
but wrong" logits, their gradients would be more
important than the gradient of supressing the long
tail logits, because the long tail logits would not

67



Figure 2: whitelist of a span

threaten the gound truth logit. A contrastive loss
was added to the cross entropy loss, in order to em-
phasis supression of the important negative logits.
Total loss is a weighted sum of cross entropy loss
same as phrase model plus the contrastive loss.

Contrastive loss Jc = 1
K

∑
i,j /∈C

δKReLU(sij −

s(+)), where s(+) is a positive span’s score. Phrase
type only has on positive span, the span score of
ground truth sij=gt. For those span positions not in
the whitelist C, choose the top K scores which
are greater than ground truth score, then calcu-
late their mean advantages over the ground truth.
We hope the ground truth score would have the
maximum score, hence achieving Jc = 0. δK =
1 if (i, j) ∈ {TopK Span ij set} else 0. Whitelist
C was defined as fig2, it contains the ground truth
span position as well as any substring span posi-
tions within the ground truth. Also it may include
a safty zone/margin, which is 2 token positions
neighbouring the start or the end of ground truth
span. This margin forbids negative sampling from
substrings of ground truth including neighbouring
positions xstpos − 2 to xedpos + 2. For longer spans,
the information extracted would not change much
if we add an extra 2 tokens, and we should focus
on supressing those spans which share little IOU
with ground truth span, meanwhile keeping high
sij scores. The top K negative samples being sam-
pled are from "-ve sample" and "invalid" region.
Any spans within the whitelist predicts a span that
may not be the ground truth but still gives non-zero
BLEU, meteor and BertScore during evaluation, so
avoiding negative sampling from whitelist would
reduces the noise.

The overall loss for passage model is a

weighted sum of the contrastive loss and the
cross entropy loss, with weights of 1.0 in both
terms. Losspassage = Jc + CE(pst, tgtst) +
CE(ped, tgted)

Postprocess of passage model is similar as
alg1, the topN loop was based on score
{i(N)} = topN(argsorti(maxj(sij))) and then
{j(N,{i})} = topN(argsortj(sij | i ∈ {i(N)})).
It selects the topN starting i’s based on their end-
ings with max span score, and then loop foreach
selected i’s, select topN endings. Hence we would
have N × N top score candidates in the rerank-
ing list. A final reranking of selecting top N from
the list would produce N spans. This is a much
quicker approximation of ranking all combinations
of ij and then choosing top N results. When N=1,
the process is identical as i∗, j∗ = argmaxi,j(sij),
which is our desired passage span.

3.5 Multi extractor

Multi spoiler has the least number of examples in
the dataset, but the most modifications was applied
on the multi model. Many of the multi spoilers
are enumerated items that extracted from differ-
ent paragraphs, therefore paragraph id information
should be incoporated into the model. Paragraph
ids were defined as the following:

xp(t) =





−1 if 0 ≤ t < Lcb

0 if Lcb ≤ t < Lcb + Lt

d if Lcb + Lt +
∑

1≤e<d

Lp(e) ≤ t
(1)

Tokens in the clickbait with token length Lcb

were labeled with -1, tokens in title with length Lt

were labeled as 0, and tokens in the dth paragraph
were labeled with d, starting from paragraph index
1. Clickbait, title and paragraphs are concatenated
into a single sequence, whose sequence position
was labeled as t.

Relative paragraph id positions between title and
paragraphs were calculated, then their embeddings
were looked up as e(ctx)mn , representing the relative
paragraph id embedding of query token in mth

paragraph of context, and key token in nth para-
graph of context. Context included title and para-
graphs, but no clickbait. the embedding for click-
bait was a different trainable embedding e(q).

The relative attention score bias between query

68



position i and key position j was calculated as:

sattn(i, j) =
1√

(DH)

[
q(i)TWqkk(j)+

(Wstq(i))
T ep(i, j) + (Wedk(j))T ep(i, j)

] (2)

where query, key vectors are slices from De-
BERTa out hidden plus absolute position embed-
dings same as type-classify model, q(t) = k(t) =
h(t) = DeBERTa(x)+eabs ∈ RDH . Wqk, Wst

and Wed are linear layers with biases. The relative
paragraph embeddings looked up is:

ep(i, j) =

{
e(q) if xp(i) < 0 OR xp(j) < 0

e(ctx)mn if xp(i) = m AND xp(j) = n
(3)

The score modifier was made antisymmetric as:
mij = sattn(i, j) − sattn(j, i). The output score
was sij = gsti + gedj +mij . The logits gst and ged

are also calculated with absolute position embed-
dings added after deberta out, like in the spoiler-
type classifier.

A token would attendent to tokens not only in
its neighbour positions, but also the tokens in its
neighbour paragraphs, it would be benefitial for
those spoilers locatd in a series of consecutive para-
graphs, which is quite oftenly the case.

Cross entropy loss for "multi" was different, be-
cause there were multiple (start,end) spans, a reg-
ular softmax would mistakenly supress some of
the ground truth logits. Hence a "multi" version of
softmax was used:

Z− =
∑

t|tgt(t)=0

exp{gt} (4)

Z =
∑

t

exp{gt} (5)

Z− is the partition function for all negative logits,
Z is the normal version of partition function. The
multi-softmax probability is:

p(t) =





exp{gt}/Z if tgt(t) = 0

exp{gt}
Z− + exp{gt}

if tgt(t) = 1
(6)

The multi-softmax ensures any positive logit
does not supress the logit of any other positive
positions. Also the probabilities are close to the the
single-positive softmax probabilities if we ignore
the other positive positions temporarily as their
probabilities are not being evaluated. Although

multi version has a sum probability may not be
equal to 1, the logp losses would not be affected
much and therefore gradients would still descend
at same direction. When there’s only one positive
logit, the multi-softmax is identical as regular soft-
max. Cross entropy loss of span start becomes

Lossstce =
L∑
l=0

−δtgtlt log(pst(t)), where the "multi-

hot" delta is 1 when the lth ground truth span starts
at position t (or ends at position t for the ed version
loss).

Contrastive loss is also different as we need a
threshold to know how many spans are produced
as the multi answers. The span score at CLS, s00
was chosen as the threshold. Negative samples are
those span position pos−(i, j) = {(i, j) /∈ C} not
in whitelist defined same as the "passage" model,
and their contrastive loss is:

Jc,− = 0.5 ∗
(
max(ReLU(stopK− − s00))+

mean(ReLU(stopK− − s00))
) (7)

TopK negative sampling is performed to focus
on learning the difficult spans. Positive samples
produces contrastive losses as:

Jc,+ = 0.5 ∗ (max(ELU(s00 − s+))+

mean(ELU(s00 − s+)))
(8)

A balanced contribution between max and mean
losses was considered for the both positive and
negative samplings, only considering max would
be a more accurate design but more difficult to
train.

The overall loss of multi model is Lossmulti =
(Jc,+ + Jc,−) + 0.5 ∗ (Lossstce + Lossedce), the loss
gives less weight on the multi-CE loss and more on
contrastive loss compare with "passage".

Postprocess of multi spoiler is also quite differ-
ent, top1 search cannot be used. If we use topN
search, there would be another problem. The n
candidate spans with highest scores may overlap to
each other due to they have close start and end posi-
tions. We want to group similar answer spans, and
choose the best answer foreach group, so that the
final answers are texts with "orthogonal" contents.

A greedy clustering of candidate answer was
designed as alg2

IOU of token count between current and pre-
vious spans were used as a measure of deciding
whether a new answer line (or a new group) should
be added. The complete postprocess for multi

69



Algorithm 2: multi span orthogonize
Data: [(sp1, sp2),...]: list of topN spans in a

feature
1 empty groups list G;
2 for spn ∈ topN span list do
3 foreach group id ig ∈ G do
4 if ∃spo<n ∈ G[ig] and IOU(spo,

spn)>0.6 then
5 append spn after group list

G[ig]

6 end
7 end
8 if spn not added to any previous group

then
9 create a new group in G

10 end
11 end
12 set result list as empty ;
13 foreach group id ig ∈ G do
14 sptop1ig

= maxsp.score(G[ig]) ;

15 add sptop1ig
to result list ;

16 end
17 return result list ;

spoiler of an example is alg3. The input is a list of
features belong to a same example like shown in
Fig1, with subscript v representing its id.

The output of "multi" postprocess keeps at least
2 answer lines and at most 6 lines. Statistic showed
most of the ground truth multi spoilers contains 2
to 6 answer lines. Spans belonging to any feature
of the example are sorted with their scores srij , r is
a loop index of O which is the example’s output
of alg3. We try to keep those spans which are
allowed to be slightly lower (the 0.9 factor) than
the threshold of its feature score sv|r00 , in the hope of
increasing the recall. The final Group∗ process is
slightly different from the feature Group process
in terms of Group∗’s IOU is calculated on text
offsets instead of token position ids, this makes
calculation easier outside the feature loop.

3.6 Mixed extractor

Mixed model is similar to the "phrase" model,
but its loss is a combination of CE with multi-
softmax (CEM) and contrastive loss. Lossmix =
LossCEM (gst, tgtst) + LossCEM (ged, tgted) +
0.5 ∗ Jc where Jc = 1

K

∑
i,j /∈C′

δKReLU(sij −

max(s(+))). Noticing the difference of contrastive

Algorithm 3: postprocess for multi spoil-
ers

Data: E=[(feat1, feat2),...]: list of
features in an example

1 define Group(list) as alg2 ;
2 empty candidate list D;
3 for featv ∈ E do
4 calculate scores and spans

(sv, spv) = modelmulti(featv) ;
5 calculate Fcand ={sp1:N}= topN list of

"passage" postprocess ;
6 calculate Fgp=Group(Fcand) ;
7 foreach sp ∈ Fgp do
8 append (sp, s(v)00 ) to D
9 end

10 end
11 calculate O = Group∗(D) ;
12 sort O with span score ssp in descending ;
13 select top 6 answers from O := O(top6) ;

14 delete any spr ∈ O(top6) if sspr < 0.9s
v|r
00

until |O| ≤ 2 ;
15 rearrange O with ascending paragraph id;
16 return O

loss here and in the "passage" model, the positive
scores are wrapped with a max, meaning we have
abandomed predicting multi answers, in order to
avoid the distruption of learning second best span.
Only one best span would be produced in the post-
process. The score metric was sij = gsti + gedj ,
where absolute position embedding was not used af-
ter DeBERTa output. The safty margin in whitelist
defination was set to 0, to make the span boundary
clearer for short "phrase" spoilers. For the short
phrase spoilers, extra 2 tokens would make a great
difference in BLEU and meteor, so whitelist only
contains substrings from token start i = xstpos to
end j = xedpos of ground truth.

70



4 Experimental Setup

800 examples were splited into 400 for validation and 400 for test, whereas the training example has a
number of 9138. Train batch size was 4 and gradient accumulation steps was 5. Max token sequence
length was set to 384. Negative sample in contrastive loss chose topK as K = 20, postprocess in multi
answer grouping chose topN as N = 30. During the training of all the models, the following techniques
based on experience were used to improve training performance:

1. Lookahead optimizer was being used, with AdamW being the base optimizer, lr was 1e-5, weight
decay was 1e-2.

2. Learning rates for different transformer layers were grouped and separately set. Layer 1 to 8 have
a lower learning rate of LR/1.6, layer 9 to 16 have an unchanged LR, and layer 17 to 24 have a
higher LR ∗ 1.6.

3. Linear schedule with warmup were used, with warmup step=60.

4. Adversarial training was applied after the first epoch, AWP had an attack lr of 1e-4.

5. Epoch parameter set with the best evaluation metric was chosen, with max train epoch num=10.

Differences of setups for training all the models are listed in Table3. Rows are the model options,
including: 1) absolute token positions in each paragraph; 2) paragraph ids used to calculate relative
paragraph embedding and the antisymmetric modifier; 3) multi-softmax in cross entropy; 4&5) weights of
cross entropy loss and contrastive loss; 6) width of margin in terms of number of tokens when defining the
whitelist; 7) max number of tokens of a single answer span allowed; 8) top N number during postprocess;
9) number of answer sapans after grouping similar answers.

type phrase passage multi mix

abs pos ! % % ! %

para-id
modifier % % % ! %

multi
-softmax NA % % ! !

CE weight NA 1.0 1.0 0.5 1.0

contrastive
weight NA 0.0 1.0 1.0 0.5

whitelist
margin NA NA 2 2 0

span max
#tokens NA 40 200 40 200

postprocess
topN NA 1 1 30 1

#grouped
answers NA NA NA [2 to 6] NA

Table 3: model setups

71



Figure 3: measure metric distribution for "passage" predictions

∆ = 0.808− 0
prd: handling their money and talking about it with their partners
GT: talk about their money
∆ = 0.844− 0.235
prd: the NES Classic Edition is not available for pre-order just yet
GT: not available for pre-order
∆ = 0.709− 0.120
prd: Roberts continued, I think she’s fabulous," before trailing off, saying, "but she doesn’t
seem ... she seems cooler than ..."
GT: I think she’s fabulous,
∆ = 0.814− 0.263
prd: the canisters Bruce Wayne/Batman used have "Pb" — the abbreviation for lead in the
Periodic Table of Elements — etched on them.
GT: the canisters Bruce Wayne/Batman used have "Pb"
∆ = 0.701− 0.158
prd: I think this one is straight down the pike for the fans, said Spielberg, who would not reveal
plot details, with one exception: "The one thing I will tell you is I’m not killing off Harrison
[Ford] at the end of it."
GT: not killing off Harrison [Ford] at the end

Table 4: divergence between bleu-n and meteor for validation predicted as "passage"

72



5 Results

Type classification result is shown in Table5. Rea-
son of such a big difference is due to the imbal-
anced "passage" examples in the two dataset, and
we would discuss it later with more details. We
would show test and validation results together as
the evidences.

classifier

val acc 0.7625

test acc 0.7925

Table 5: spoiler type model results

If the spoiler type can be perfectly predicted,
which is just a hypothetical scenario, the perfor-
mance of models for different types can be evalu-
ated separately.

phrase passage multi mix all

val B 0.644 0.343 0.276 0.367 0.450

test B 0.617 0.402 0.388 0.412 0.494

val M 0.610 0.500 0.570 0.455 0.557

test M 0.583 0.530 0.621 0.470 0.570

Table 6: poiler generation knowing the types

Metric B is BLEU-n, n is in range [1,4] and not
exceeding the length of number of words in ground
truth text. Metric M is meteor. Since there were
only 400 in validation and 400 in test dataset, the
metrics evaluated had a large variance. Results
indicated that test dataset may contain less hard
examples than validation dataset, therefore their
results were better except for the phrase spoilers.
There were not enough time for me to k-fold all
the models to make a more convincing result, but
the overall BLEU-n and meteor for "all" spoiler
types (combined result for all 3 spoiler types using
the classifier model) are larger in the test dataset,
so overfitting did not occure. The column "mix"
showed result of training all types of spoilers with
one single model. Clearly separating the spoiler
types and train a model for each type would in-
crease the "all" performance in both datasets.

Using a classifier already trained, confidences of
each spoiler type can be obtained. A grid search on

validation dataset of thresholds for "phrase", "pas-
sage" and "multi" was performed. If an example
has its top1 type probability above the confidence
threshold of the corresponding type, then the type-
specified model would extract the answer, other-
wise the "mix" model would extract the answer
instead.

Thresholds of phrase=0.75, passage=0.45,
multi=0.7 were chosen because it had a balanced
good performance in validation dataset. Results of
two-stage prediction using such a threshold were
shown in Table7

phrase passage multi mix all

val B 0.647 0.297 0.330 0.367 0.411

test B 0.726 0.341 0.510 0.412 0.467

val M 0.563 0.453 0.560 0.455 0.502

test M 0.618 0.488 0.725 0.470 0.538

Table 7: type-predict then spoiler generation

Spoiler type counts and their type prediction con-
fusion matrices using the [0.75, 0.45, 0.7] thresh-
olds are shown in Table8 and Table9.

phrase passage multi mix tot

phrase 106 36 0 35 177

passage 2 132 5 13 152

multi 1 15 44 11 71

Table 8: spoiler type confusion matrix on test

phrase passage multi mix tot

phrase 78 35 2 43 158

passage 6 149 4 11 170

multi 5 17 37 13 72

Table 9: spoiler type confusion matrix on validation

The large difference of performance between
validation and test datasets was mainly due to the
distribution shift. Validation dataset has a larger
proportion of "passage" spoilers, therefore increas-
ing the difficulty of making accurate type predic-
tions. If we remove the thresholds and analyse

73



the confusion matrix without the "mix" model, we
could discover that both "phrase" and "multi" are
most likely to be misclassfied to "passage". Both
"phrase" and "multi" examples had a proportion
of 23% which were predicted as false "passage",
whereas only 12% passages were predicted as false
"phrase" or "multi". This implied "passage" data is
naturally noisy in the sence that some of its exam-
ples showed moderate similarities with the other
two types. Unlike the "phrase" and "multi" examles
which showed good orthogonality in terms of type
similarity, "passage" is more like a "mixture" of
all types of spoilers. Some "passage" had a short
spoiler text which is shorter than the mean length
of "phrase" spoilers, therefore it is reasonable for
the model to misclassify "phrase" and "multi" to
a "passage" if confidence level is low. That ex-
plains why we need high confidence thresholds for
"phrase"(0.75) and "multi"(0.7), these two models
show much better meteor performance compare
with "passage" model when they are extracting
their own type of spoilers.

In Table6 we could conclude the "passage" had
a similar noise level as the "mix", because "pas-
sage" had performances which were closest to
"mix" model. Low confidence threshold of "pas-
sage"(0.45) reflected the fact that "passage" model
was accepting the "noisy" (or hard) examples, and
it was still a slightly better model compre to the
"mix" in most cases.

Comparing the number of all types of spoilers
in validation and test dataset, we could exaplain
why test results are better than validation results
in nearly all the tables, because validation has 170
passage spoilers out of 400, whereas test has a
fewer number of 152. Even though best snapshots
of models on the validation dataset was chosen,
the deterioration of performances due to the dis-
tribution shift of having more "passages", is still
prominent. Spoiler type prediction accuracy con-
firms the fact that validation dataset was harder to
be correctly classified due to these extra "passage"
examples.

We have explained the causes of bad perfor-
mances of "passage" model on validation dataset,
so bad case analysis was done on the errors. Fig3
showed the detailed distribution of measure met-
rics of examples predicted as "passage" type. The
type labels in the figure are the ground truth types,
the x-axis are measure metrics, y-axis are the ex-
ample counts. Hence the primary reason of bad

performance of "passage" predictions in Table7
can be identified as wrongly classifying "phrase"
and "multi" examples to a false "passage".

Table10 showed the bleu-n and meteor of pre-
dicted spoilers with the "passage" model for each
ground truth spoiler type on validation dataset.
When ground truth type is "passage", the results
were close to the corresponding results in Table6,
which are the correctly classified results. However
if the ground truth type is "phrase" or "multi", their
results would be significantly lower than the results
in Table6. Summing the true and false "passages",
the predicted bleu-n and meteor in Table7 would
be produced, giving the worst performance model
which was the passage type model.

true type bleu-n meteor

phrase 0.174 0.286

passage 0.350 0.509

multi 0.133 0.297

Table 10: effect of false "passage" predict

Fig3 also revealed the fact that BLEU-n is not
as smooth as meteor. The term "smooth" means
the histogram of the metric is a more even distribu-
tion, rather than a polarized distribution, which has
concentrated measure values at the low end [0,0.1]
or the high end (0.9, 1.0]. This means BLEU-n
is encoding less information of similarity between
ground truth and predicted spoiler, because it has a
lower entropy.

Human analysis of differences between BLEU-
n and meteor was done by sorting ∆ =
abs (meteor −BleuN) in descending order for
the "passage" predictions of validation dataset. Ta-
ble4 showed top5 examples that the two metrics
showed a largest divergence. The predicted pas-
sages tend to include the ground truth as a sub-
string, and it is reasonable to penalize the tedious
unwanted texts, but there are cases like "talk about
their money" and "handling their money and talk-
ing about it with their partners", which convey es-
sentially the same information only with slightly
different way of saying. Silly mistakes for both
metrics happens in short phrase spoilers. Meteor
failed with single-token predicted and target spoiler,
for an example textprd = textgt="ottoman", has
bleu-n 1.0 and meteor 0.5. This directly caused
blue-n larger than meteor value in phrase ex-

74



amples. Bleu-n failed with substrings such as
texttgt="Mitzi Gaynor Beverly Hills, California"
and textprd="Mitzi Gaynor", which has bleu-n 0.0
and meteor 0.4. Non-english names also failed for
both measures, such as texttgt="Carrer Avinyo"
and textprd="Carrer Avinyó", producing bleu-n
0.0 and meteor 0.25.

These are common mistakes made by metrics,
the predictions are not absolutely wrong. Extract-
ing a short phrase or passage from a long article
would always encounter such a problem that a
spoiler could have "isotops" which bring the same
information but expressed differently. Largest com-
mon string was used during dataset repair, maybe
it is also a good metric for short texts. Bert score
may also be able to reduce these pseudo mistakes.
It would be interesting to make a further study on
designing a suitable metric.

Because of the deadline time and the GPU mem-
ory limitation, multi-task setup was considered but
not experimented, it is reasonable to hypothesize
that sharing the first few layers of encoder could be
benifitial, further study would also be focused on
this approach.

6 Conclusion

Clickbait spoiling generation can be regarded as
an MRC problem, its model accepts similar input
features as SQuAD. The spoiler answer types and
the article paragraph layout information were im-
portant because these are newly added components
towards a typical QA problem. Designs consider-
ing multi-paragraph answers produced the largest
improvement in the "multi" model results using
the mix as a baseline, this can be concluded by
comparing Table2 and Table6, revealing improve-
ments on bleu-n for phrase, passage and multi are
0.022, 0.115 and 0.285 respectively, and the im-
provements on meteor are 0.052, 0.093 and 0.159.
Separating different types of models brings im-
provements in all models. Despite having the least
similarity with the starting QA task and the least
number of training examples, multi type spoiler
extractor achieved the largest improvement.

Phrase type spoiler extraction is the easiest task,
it has little improvement after the type splitting,
and in most cases the absolute performance is the
best among the all types. It is the most similar
task as the starting pretrained task, experiments
of adding extra input features, loss design or post-
process showed little influence on its performance.

The influences are too small to be distinguished
within a 400 example 1-fold validation, k-fold ex-
periments shall be done to make a convincing weak
improvement, making phrase type spoiler task not
as attracted as the other types.

Passage type spoiler is the most difficult in the
sence that its data is the noisiest. There is not a clear
feature indicating the spoiler should be a "passage"
type instead of the other two types, and there is not
a good general description of the passage ground
truth texts. It is not a named entity, not a list of
enumeration items, not a complete sentence, but it
is any possible substring of the context. Therefore
we encounter the most unknown inputs and outputs,
results of passage model is the closest towards mix-
type results, confirming the randomness of passage
spoilers.

Since passage type has a relative large propor-
tion in the dataset and a relative poor performance,
more study effort was put on passage model. Fig3
revealed the most important drawback for the pas-
sage model is misclassifing spoiler type and use it
to predict a "phrase" or "multi" example. Tuning
the thresholds showed a trade-off between task gen-
eralization and specialization. If a model is good
at a specific type of task, then as shown in Table10,
its performance in a general task (where passage is
the closest to the general mix) would be bad, hence
we need a high threshold. Designing the training
for a general task like passage spoiler extraction, is
challenging and valuable, further study would be
focus on this.

Bad case study also revealed some fails for both
bleu-n and meteor for short spoilers with only a few
tokens. For longer spoiler texts, changing the way
of expressing and difference in degree of penalty of
substring, are the two major causes of diversified
results between the two measures. A measuring
metric to bring the gaps closer shall be studied in
future.

References
Maik Fröbe, Tim Gollub, Matthias Hagen, and Martin

Potthast. 2023a. SemEval-2023 Task 5: Clickbait
Spoiling. In 17th International Workshop on Seman-
tic Evaluation (SemEval-2023).

Maik Fröbe, Matti Wiegmann, Nikolay Kolyada, Bas-
tian Grahm, Theresa Elstner, Frank Loebe, Matthias
Hagen, Benno Stein, and Martin Potthast. 2023b.
Continuous Integration for Reproducible Shared
Tasks with TIRA.io. In Advances in Information Re-
trieval. 45th European Conference on IR Research

75



(ECIR 2023), Lecture Notes in Computer Science,
Berlin Heidelberg New York. Springer.

Matthias Hagen, Maik Fröbe, Artur Jurk, and Martin
Potthast. 2022. Clickbait spoiling via question an-
swering and passage retrieval. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
7025–7036, Dublin, Ireland. Association for Com-
putational Linguistics.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2020. Deberta: Decoding-enhanced
bert with disentangled attention.

76

https://doi.org/10.18653/v1/2022.acl-long.484
https://doi.org/10.18653/v1/2022.acl-long.484
https://doi.org/10.48550/ARXIV.2006.03654
https://doi.org/10.48550/ARXIV.2006.03654

