@inproceedings{madureira-etal-2023-road,
title = "The Road to Quality is Paved with Good Revisions: A Detailed Evaluation Methodology for Revision Policies in Incremental Sequence Labelling",
author = "Madureira, Brielen and
Kahardipraja, Patrick and
Schlangen, David",
editor = "Stoyanchev, Svetlana and
Joty, Shafiq and
Schlangen, David and
Dusek, Ondrej and
Kennington, Casey and
Alikhani, Malihe",
booktitle = "Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue",
month = sep,
year = "2023",
address = "Prague, Czechia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.sigdial-1.14",
doi = "10.18653/v1/2023.sigdial-1.14",
pages = "156--167",
abstract = "Incremental dialogue model components produce a sequence of output prefixes based on incoming input. Mistakes can occur due to local ambiguities or to wrong hypotheses, making the ability to revise past outputs a desirable property that can be governed by a policy. In this work, we formalise and characterise edits and revisions in incremental sequence labelling and propose metrics to evaluate revision policies. We then apply our methodology to profile the incremental behaviour of three Transformer-based encoders in various tasks, paving the road for better revision policies.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="madureira-etal-2023-road">
<titleInfo>
<title>The Road to Quality is Paved with Good Revisions: A Detailed Evaluation Methodology for Revision Policies in Incremental Sequence Labelling</title>
</titleInfo>
<name type="personal">
<namePart type="given">Brielen</namePart>
<namePart type="family">Madureira</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Patrick</namePart>
<namePart type="family">Kahardipraja</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Schlangen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue</title>
</titleInfo>
<name type="personal">
<namePart type="given">Svetlana</namePart>
<namePart type="family">Stoyanchev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shafiq</namePart>
<namePart type="family">Joty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Schlangen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ondrej</namePart>
<namePart type="family">Dusek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Casey</namePart>
<namePart type="family">Kennington</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Malihe</namePart>
<namePart type="family">Alikhani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Prague, Czechia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Incremental dialogue model components produce a sequence of output prefixes based on incoming input. Mistakes can occur due to local ambiguities or to wrong hypotheses, making the ability to revise past outputs a desirable property that can be governed by a policy. In this work, we formalise and characterise edits and revisions in incremental sequence labelling and propose metrics to evaluate revision policies. We then apply our methodology to profile the incremental behaviour of three Transformer-based encoders in various tasks, paving the road for better revision policies.</abstract>
<identifier type="citekey">madureira-etal-2023-road</identifier>
<identifier type="doi">10.18653/v1/2023.sigdial-1.14</identifier>
<location>
<url>https://aclanthology.org/2023.sigdial-1.14</url>
</location>
<part>
<date>2023-09</date>
<extent unit="page">
<start>156</start>
<end>167</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T The Road to Quality is Paved with Good Revisions: A Detailed Evaluation Methodology for Revision Policies in Incremental Sequence Labelling
%A Madureira, Brielen
%A Kahardipraja, Patrick
%A Schlangen, David
%Y Stoyanchev, Svetlana
%Y Joty, Shafiq
%Y Schlangen, David
%Y Dusek, Ondrej
%Y Kennington, Casey
%Y Alikhani, Malihe
%S Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue
%D 2023
%8 September
%I Association for Computational Linguistics
%C Prague, Czechia
%F madureira-etal-2023-road
%X Incremental dialogue model components produce a sequence of output prefixes based on incoming input. Mistakes can occur due to local ambiguities or to wrong hypotheses, making the ability to revise past outputs a desirable property that can be governed by a policy. In this work, we formalise and characterise edits and revisions in incremental sequence labelling and propose metrics to evaluate revision policies. We then apply our methodology to profile the incremental behaviour of three Transformer-based encoders in various tasks, paving the road for better revision policies.
%R 10.18653/v1/2023.sigdial-1.14
%U https://aclanthology.org/2023.sigdial-1.14
%U https://doi.org/10.18653/v1/2023.sigdial-1.14
%P 156-167
Markdown (Informal)
[The Road to Quality is Paved with Good Revisions: A Detailed Evaluation Methodology for Revision Policies in Incremental Sequence Labelling](https://aclanthology.org/2023.sigdial-1.14) (Madureira et al., SIGDIAL 2023)
ACL