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Abstract

This paper evaluates the extent to which cur-
rent Large Language Models (LLMs) can cap-
ture task-oriented multi-party conversations
(MPCs). We have recorded and transcribed
29 MPCs between patients, their companions,
and a social robot in a hospital. We then anno-
tated this corpus for multi-party goal-tracking
and intent-slot recognition. People share goals,
answer each other’s goals, and provide other
people’s goals in MPCs – none of which occur
in dyadic interactions. To understand user goals
in MPCs, we compared three methods in zero-
shot and few-shot settings: we fine-tuned T5,
created pre-training tasks to train DialogLM
using LED, and employed prompt engineering
techniques with GPT-3.5-turbo, to determine
which approach can complete this novel task
with limited data. GPT-3.5-turbo significantly
outperformed the others in a few-shot setting.
The ‘reasoning’ style prompt, when given 7%
of the corpus as example annotated conversa-
tions, was the best performing method. It cor-
rectly annotated 62.32% of the goal tracking
MPCs, and 69.57% of the intent-slot recogni-
tion MPCs. A ‘story’ style prompt increased
model hallucination, which could be detrimen-
tal if deployed in safety-critical settings. We
conclude that multi-party conversations still
challenge state-of-the-art LLMs.

1 Introduction

Spoken Dialogue Systems (SDSs) are increasingly
being embedded in social robots that are expected
to seamlessly interact with people in populated
public spaces like museums, airports, shopping
centres, or hospital waiting rooms (Foster et al.,
2019; Tian et al., 2021; Gunson et al., 2022). Un-
like virtual agents or voice assistants (e.g. Alexa,
Siri, or Google Assistant), which typically have
dyadic interactions with a single user, social robots
are often approached by pairs and groups of indi-
viduals (Al Moubayed et al., 2012; Moujahid et al.,
2022). Families may approach a social robot in

1 U1: What time was our appointment?
2 U2: We have an appointment at 10.30pm.
3 U1: Ok.

Table 1: An example extract from our new corpus. This
example illustrates that people complete other user’s
goals in an MPC. The system must understand that U1’s
question was answered by U2, and it does not need to
answer this question as if it was a dyadic interaction.
Further annotated examples can be found in Table 3.

a museum, and patients are often accompanied by
a family member when visiting a hospital. In these
multi-party scenarios, tasks that are considered triv-
ial for SDSs become substantially more complex
(Traum, 2004; Zhong et al., 2022; Addlesee et al.,
2023). In multi-party conversations (MPCs), the
social robot must determine which user said an ut-
terance, who that utterance was directed to, when
to respond, and what it should say depending on
whom the robot is addressing (Hu et al., 2019; Gu
et al., 2021, 2022a). These tasks are collectively
referred to as “who says what to whom” in the
multi-party literature (Gu et al., 2022b), but these
tasks alone provide no incentive for a system to ac-
tually help a user reach their goals. State of the art
“who says what to whom” systems can, therefore,
only mimic what a good MPC looks like (Addlesee
et al., 2023), but for practical systems we also need
to know what each user’s goals are. We therefore
propose two further tasks that become substantially
more complex when considered in a multi-party
setting: goal tracking and intent-slot recognition
(Addlesee et al., 2023).

Dialogue State Tracking (DST) is a well-
established task (Lee et al., 2021; Feng et al., 2022)
that is considered crucial to the success of a di-
alogue system (Williams et al., 2016). DST cor-
pora are abundant (Henderson et al., 2014a,b), but
they only contain dyadic conversations. No cor-
pus exists containing MPCs with goal tracking or
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intent-slot annotations, yet there are important dif-
ferences. Consider the example in Table 1 (from
our new corpus, detailed in Section 2). In turn 1,
we can identify that User 1 (U1) wants to know
their appointment time. Before the social robot had
time to answer, User 2 (U2) answered in turn 2.
This obviously does not occur in a dyadic interac-
tion, yet this understanding is essential for natural
system behaviour. The SDS must determine that
it should not repeat the answer to the question, so
data must be collected to learn this. Other major
differences exist too. For example, current DST
corpora do not contain a concept of ‘shared goals’
(Eshghi and Healey, 2016). If two people approach
a café counter, the barista must determine whether
the two people are separate (two individuals want-
ing to get coffee), or together (two friends with the
shared goal to get coffee) (Keizer et al., 2013). The
interaction changes depending on this fact, it would
be unusual to ask “are you paying together” to two
individuals. Shared goals can commonly be iden-
tified through explicit dialogue. For example, the
use of ‘we’ in “We are looking for the bathrooms”.
Similar to answering each other’s questions, people
may also ask questions on behalf of others. In our
corpus, a person said “ARI, the person that I’m
accompanying feels intimidated by you, and they’d
like to know where they can eat”.

In this paper, we present several contributions.
(1) We collected a corpus of multi-party interac-
tions between a social robot and patients with their
companions in a hospital memory clinic. (2) This
corpus was annotated for the standard “who says
what to whom” tasks, but also for multi-party goal
tracking and intent-slot recognition. We followed
current DST annotation instructions, tweaked to en-
able annotation of multi-party phenomena (detailed
in Section 2). (3) We then evaluated Large Lan-
guage Models (LLMs) on these two new tasks us-
ing our collected corpus. Models were pre-trained,
fine-tuned, or prompt engineered where applica-
ble (detailed in Section 3). It is not possible to
collect enormous corpora from patients in a hos-
pital, so models were evaluated in zero-shot and
few-shot settings. We found that the GPT-3.5-turbo
model significantly outperformed others on both
tasks when given a ‘reasoning’ style prompt.

2 Dataset and Tasks

For the initial data collection, we partnered with
a hospital in Paris, France, and secured ethical ap-

proval as part of the EU SPRING project1. We
then recorded, transcribed, translated (from French
to English), anonymised, and annotated 29 multi-
party conversations (774 turns). These MPCs were
between patients of the memory clinic, their com-
panion (usually a family member), and a social hu-
manoid robot created by PAL Robotics called ARI
(Cooper et al., 2020). We hired a professional trans-
lator to avoid machine translation errors, and to
enable faster experimentation as we are not French
speakers. Future work based upon the findings in
this paper will be evaluated in both English and
French.

We used a wizard-of-oz setup as this task is
new, and we required this data to design a multi-
party SDS for use in the hospital. A robot oper-
ator was therefore controlling what ARI said by
selecting one of 31 response options (task-specific
answers and some common responses like “yes”,
“no”, “please”, “thank you”, and “I don’t know”).
Following our previously published data collec-
tion design (Addlesee et al., 2023), each partici-
pant was given one or two goals, and asked to con-
verse with ARI to try to achieve their goal. Both
participants were given the same goals in some
cases to elicit dialogues containing ‘shared goal’
behaviour. In order to encourage lexical diversity,
we provided pictograms to give each participant
their goals. For example, if we told the patient that
they want a latte, they would likely use the specific
word “latte” (Novikova et al., 2016), so we instead
gave the participants pictograms as seen in the top-
right of Figure 1. This worked as people didn’t just
ask for coffee when given this image, some asked
for hot chocolate or herbal tea instead.

In this paper, we evaluated each model on both
multi-party goal tracking, and multi-party intent-
slot recognition. These are two related, yet distinct
tasks. If ARI asked the user “Are you hungry?”,
and the user responded “yes”, then the intent of
that turn is an affirmation, but the user’s goal is
also established as wanting to eat. As explained in
Section 1, standard DST annotation schemes are de-
signed for dyadic interactions, which do not enable
annotation of multi-party behaviours. Each turn
is annotated with its intent and slot values where
applicable, but goal annotations require both the
goal and the user whose goal is being established.
When a goal is detected in a dyadic interaction, no
user information is needed as there is only a single

1https://spring-h2020.eu/

https://spring-h2020.eu/
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Figure 1: A sample of the pictograms used to represent
user goals, given to patients and companions. These
elicited dialogues without restricting vocabulary.

user. In multi-party interactions, multiple users can
have multiple active goals. These goals may be dif-
ferent, they may be shared (see Table 2), users may
answer each other’s goals (see Table 1), and one
user may provide another user’s goal, for example
by saying “My wife would love a coffee”.

An annotated extract from an MPC in our col-
lected corpus can be found in Table 2. In turn 1, U1
states that “we’d like a coffee”, indicating that U1
and their companion U2 would both like a coffee.
This turn is annotated with two intents: greet
(due to the “hello”), and request. This request
intent has a slot value to indicate that the request
is for a beverage – coffee. The goal tracking anno-
tation signifies that a goal has been established in
this turn with ‘G’. The goal is shared by ‘U1+U2’,
and their goal is to drink a coffee. In turn 2, ARI
responds informing both users where the café is,
hence the inform intent annotation. The goal
tracking annotation is the same as turn 1, but starts
with ‘AG’ (for ‘answer-goal’) instead of simply
‘G’. This indicates that this goal has been answered,
which is critical knowledge for the system to track
which goals remain open. In this example, the
goal is explicitly closed in turn 3, indicated by the
corresponding ‘CG’ (close-goal) goal tracking an-
notation. Not all goals are explicitly closed by the
user. A dialogue manager could decide to implic-
itly close an answered goal if the user does not
reopen it within three turns, for example. We only

annotate explicit goal closures, like the one in turn
3. There are two intents annotated in both turns 1
and 3 in Table 2, and multiple goal annotations can
similarly exist, separated by a semicolon. For ex-
ample, “I’m hungry but need the toilet first” simul-
taneously opens two goals. All of these annotations
were completed using the ELAN tool (Brugman
et al., 2004), and then mapped into JSON for model
training2.

With these two sets of annotations, we can eval-
uate various LLMs on two tasks: (1) multi-party
intent-slot recognition; and (2) multi-party goal
tracking. It is not possible to collect vast quanti-
ties of interactions with patients in the hospital, so
these models must be able to learn from a corpus
of limited size. We therefore decided to mask an-
notations in a randomised window selected from
each MPC, providing the model with the surround-
ing context and speaker labels. That is, a random
number of turns was selected in each MPC, and
then the annotations were replaced by a ‘[MASK]’
token. An example of this is shown in Table 3.

As the corpus size is limited, the window selec-
tion could potentially heavily impact model perfor-
mance. We therefore randomised the selected win-
dow three times for each conversation and train/test
split, and these exact same windows were used to
train and test each model. To clarify, all train/test
splits and windows were randomised for multiple
runs, but they were unchanged between each model.
For example, run 1 with the 20/80 split in Section
4 for T5 contained the exact same test set, with the
exact same window, as run 1 with the 20/80 split for
DialogLED. This holds true for both tasks. Each
masked window was bookended with a ‘[start]’ and
‘[end]’ tag to help the models learn this task too
(Zhong et al., 2022). A shortened example from
our corpus can be seen in Table 3.

3 Experimental Procedure

We evaluated three different models (each detailed
below): T5 (Raffel et al., 2020), DialogLM using
LED (DialogLED) (Zhong et al., 2022), and GPT-
3.5-turbo3. Each approach was evaluated in a zero-
shot and few-shot setting, with various train/test
splits. We could not provide more data to GPT-3.5-
turbo due to context window size, but the train/test

2Mapping code, annotated data, and training hyperpa-
rameters can be found here: https://github.com/
AddleseeHQ/mpgt-eval.

3https://platform.openai.com/docs/
models/gpt-3-5

https://github.com/AddleseeHQ/mpgt-eval
https://github.com/AddleseeHQ/mpgt-eval
https://platform.openai.com/docs/models/gpt-3-5
https://platform.openai.com/docs/models/gpt-3-5
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User Utterance Intent-Slot Annotation Goal Tracking Annotation
1 U1: Hello, we’d like a coffee. Where can we go? greet() ; request(beverage(coffee)) G(U1+U2, drink(coffee))
2 ARI: You have to enter the building behind you. inform(directions(cafe)) AG(U1+U2, drink(coffee))
3 U2: Ok, well thank you very much. acknowledge(); thank() CG(U1+U2, drink(coffee))

Table 2: A corpus example displaying shared goals with both intent-slot and goal tracking annotations.

User Masked Goal Tracking Utterance Gold Annotation
1 ARI: Hello, my name is ARI. How can I help you? -

[start] -
2 U1: My friend is intimidated by you, where can they eat? [MASK] G(U2, eat())
3 ARI: There’s a cafeteria on the ground floor, near the courtyard. [MASK] AG(U2, eat())

[end] -
4 U2: My appointment is in room 17, where is it? G(U2, go-to(room_17)) -

Table 3: A corpus example illustrating the goal tracking task. This process was the same for intent-slot recognition,
with the corresponding annotations. Note that U1 asks U2’s question, and this is reflected in the annotation.

splits for T5 and DialogLED were: 0/100 (zero-
shot), 20/80, 50/50, and 80/20. This allowed us
to determine how each model learned to do these
tasks when given more training examples. As de-
scribed in Section 2, we ran each experiment three
times with randomised splits and windows, but
these remained the same between-models to avoid
few-shot problems such as recency bias (Zhao et al.,
2021). We trained all the T5-Large and DialogLED
models on a machine containing a 16Gb NVIDIA
GeForce RTX 3080 Ti GPU with 64Gb RAM and
an Intel i9-12900HK processor.

3.1 T5-Large

Older GPT models (GPT-3 and below) are pre-
trained with the next token prediction objective on
huge corpora (Radford et al., 2019; Brown et al.,
2020), an inherently directional task. The creators
of T5 added two more objectives and give it the
goal of minimising the combined loss function
(Raffel et al., 2020) across all three tasks. The
two additional tasks were de-shuffling, and BERT-
style de-masking (Devlin et al., 2018). This latter
pre-training task involves ‘corrupting’ tokens in the
original text, which T5 must then predict. Impor-
tantly, this enabled T5 to work bidirectionally, be-
coming particularly good at using the surrounding
context to predict tokens in corrupted sentences.
This is not dissimilar to our task, in which the
model must learn to use the surrounding MPC turns
to predict the annotations that are masked. T5 also
achieves state-of-the-art results on related tasks like
(Lee et al., 2021; Marselino Andreas et al., 2022),
albeit, fine-tuned on larger datasets.

We used T5-Large in both a zero-shot setting,

and fine-tuned with various train/test splits. T5
allows fine-tuning with a given named task like
‘answer the question’, or ‘translate from French
to German’. We used ‘predict goals’ and ‘predict
intent-slots’ for goal tracking and intent-slot recog-
nition, respectively, giving the same task names as
input during testing. As the corpus is very small,
there was no model performance boost beyond 3
epochs, which was expected (Mueller et al., 2022).

3.2 DialogLM using LED (DialogLED)

MPCs reveal unique new communication chal-
lenges (Addlesee et al., 2023), as detailed in Sec-
tion 1, so some LLMs have been developed specifi-
cally for the multi-party domain (Hu et al., 2019;
Gu et al., 2021, 2022a). Microsoft published Di-
alogLM (Zhong et al., 2022), a pre-trained LLM
based upon UniLMv2 (Bao et al., 2020), but
specifically designed for multi-party tasks. Along-
side the base model, they released two variations:
DialogLM-sparse for long dialogues over 5,120
words, and DialogLM using LED (DialogLED)
which outperformed the others. DialogLED builds
on Longform-Encoder-Decoder (LED) (Beltagy
et al., 2020), an attention mechanism that scales
linearly with sequence length. Transformer-based
models typically scale quadratically with the se-
quence length, restricting their ability to process
long dialogues.

DialogLED was pre-trained on five objectives
designed specifically for MPCs, and the model’s
goal was to minimise the combined loss of all of
these tasks. Their state-of-the-art results showed
that their pre-training tasks did encourage the LLM
to ‘understand’ multi-party interactions. The five
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tasks were: (1) speaker masking, the model has
to predict who spoke; (2) turn splitting, the model
has to recognise when two utterances are likely the
same turn; (3) turn merging, the opposite of (2),
where the model has to recognise when the turns
were likely separate; (4) text infilling, the model
has to predict masked tokens within the turn; and
(5) turn permutation, the model has to correctly
re-order jumbled turns.

We cloned their repository4 and added two new
tasks: (6) goal masking, the model has to predict
goal tracking annotations; and (7) intent-slot mask-
ing, the model has to predict intent-slot annota-
tions. In the zero-shot setting, we simply ran the
test set through base DialogLED. We then ran their,
now modified, code to run our few-shot evaluations
three times for each data split.

3.3 GPT-3.5-turbo

Larger LLMs are not inherently better at following
a user’s intent (Ouyang et al., 2022) as they have no
incentive to help the user achieve their goal, only
to generate realistic looking outputs. This leads
to significant problems, including the generation
of false, biased, and potentially harmful responses.
GPT-3 was therefore fine-tuned on prompts with
human-feedback to create InstructGPT (Ouyang
et al., 2022). OpenAI later followed this same
approach to create the now famous ChatGPT family
of models. At the time of writing, GPT-4 is the
most powerful of these models, but it is currently
in a waiting list phase. OpenAI recommends their
GPT-3.5-turbo model while waiting as the next best
option. We therefore decided to evaluate this model
on the same two tasks.

Unlike T5 or DialogLED, there is no way to
fine-tune your own version of GPT-3.5-turbo, or to
edit their pre-training steps. People instead mould
the model’s behaviour through prompt-engineering
(Lester et al., 2021; Wei et al., 2022; Weng, 2023).
The newer GPT models allow developers to pro-
vide huge contexts, called prompts, containing in-
structions for the model to follow. GPT-3.5-turbo
allows prompts of up to 4,096 tokens. Although
these models have only exploded in popularity re-
cently, there are many suggested prompt ‘styles’
suggested online by conversation designers who
are implementing these models in the real-world.
We have analysed this space and devised six prompt
styles for the two tasks. In the zero-shot setting,

4https://github.com/microsoft/DialogLM

only the prompt and the masked MPC is provided
to the model. In the few-shot setting, we addition-
ally provide the model with 7% of the corpus as
examples. This is crucial to highlight. T5 and Di-
alogLED were trained on 20% of the corpus, 50%
of the corpus, and finally 80% of the corpus. GPT-
3.5-turbo’s maximum context size can only fit 7%
of the corpus, less than the other models.

The prompt styles we used were the following
(the actual prompts are included in Appendix A):

• Basic: This is our baseline prompt. It very
simply tells the model what it is going to get as
input, and what we want as output. It contains
no further special instructions.

• Specific: GPT practitioners report that when
prompts are more detailed and specific, per-
formance is boosted (Ye et al., 2023).

• Annotation: For annotation tasks, we would
give fellow humans annotation instructions.
In this prompt, we provide the model with
annotation instructions.

• Story: This model was pre-trained on a very
large quantity of data, including novels, film
scripts, journalistic content, etc... It may
be possible that by phrasing the prompt like
a story, performance may be boosted due to
its likeness to its training data.

• Role-play: Similar to the story prompt, it is
reported that these models are very good at
role-playing5. People ask ChatGPT to pretend
to be a therapist, a lawyer, or even alter-egos
that have no safety limitations (Taylor, 2023).
We tell GPT-3.5-turbo that it is a ‘helpful as-
sistant listening to a conversation between two
people and a social robot called ARI’.

• Reasoning: Finally, recent work suggests that
these models improve in performance if you
explain the reasoning for desired outputs (Fu
et al., 2022). We therefore added one ficti-
tious turn to this prompt, and explained the
reasoning behind its annotation.

4 Results

We evaluated T5, DialogLED, and GPT-3.5-turbo
as described in Section 3 on multi-party goal track-

5https://github.com/f/
awesome-chatgpt-prompts

https://github.com/microsoft/DialogLM
https://github.com/f/awesome-chatgpt-prompts
https://github.com/f/awesome-chatgpt-prompts
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ing, and multi-party intent-slot recognition. Out-
puts were annotated as either ‘exact’, ‘correct’, or
‘partial’ to distinguish each model’s performance
beyond simple accuracy. Exact matches were
strictly annotated, but slight differences are allowed
if the annotation meaning remains unchanged.
For example: ‘G(U1, go-to(lift))’ and
‘G(U1, go-to(lifts))’ (note the plural
‘lifts’). Outputs were marked as exact if every
[MASK] in the MPC was exact, and marked
as correct if every [MASK] was more broadly
accurate. For example, if the annotation con-
tained ‘drink(coffee)’ and the model output
‘drink(hot_drink)’, we considered this cor-
rect. The output was marked as partially correct if
at least 60% of the [MASK] tags were correctly an-
notated. This latter metric allows us to distinguish
between models that generate nonsense, and those
that roughly grasp the task. Our inter-annotator
agreements were 0.765 and 0.771 for goal tracking
and intent-slot recognition, respectively. These are
less than 0.8, and this was due to the broad defi-
nition of ‘correct’. We plan to design automatic
metrics for our future work (see Section 5).

4.1 MPC Goal Tracking Results

The goal tracking results can be found in Table 4.
An ANOVA test (Fisher, 1992) indicated that there
was an overall significant difference between the
model’s results. We therefore ran a Tukey HSD
test (Tukey, 1949) that showed that the GPT-3.5-
turbo model in the few-shot setting did significantly
outperform all the other models.

Firstly, the T5-Large model performed poorly,
even when it was trained on 80% of our corpus.
Upon further analysis, it generated complete non-
sense in the zero-shot setting, but did start to gen-
erate strings that looked reasonable with only 20%
of the data. Given the 50/50 train/test split, T5
consistently replaced the [MASK] tokens, but did
still hallucinate turns. When given 80% of the data
as training data, the T5 model preserved the orig-
inal dialogue, and replaced the [MASK] tokens
with goal annotations, they were just all completely
wrong. This steady improvement as we increased
the amount of training data suggests that T5 could
be a viable option for similar tasks, just not where
data is limited (such as our hospital use case).

The DialogLED model also generated nonsense
in the zero-shot setting, but very quickly learned
the task. Even with just 20% of the data used for

training, DialogLED reliably preserved the origi-
nal dialogue and replaced the [MASK] tokens with
goal annotations. Most of the annotations were in-
correct, for example ‘G(U2, eat(ticket))’,
but DialogLED did correctly detect some goals
opening, being answered, and being closed cor-
rectly, achieving a non-zero partial score. Given
more training data, DialogLED did begin to use the
surrounding contextual dialogue turns more accu-
rately, but almost every result contained an incor-
rect prediction. This was often the mis-detection
of shared goals, or closing goals early. Like T5,
DialogLED would need a larger training set to ac-
curately complete this task. This model learned the
task quickly, so may need fewer examples.

In the zero-shot setting, GPT-3.5-turbo roughly
‘understood’ the task, generating many partially
correct outputs. With all the prompt styles, it did
frequently reformat the dialogue. This was particu-
larly true when using the roleplay prompt, it would
output all the goals per interlocutor, for example,
rather than per turn. The worst zero-shot GPT-
3.5-turbo prompt was the ‘story’ style, not even
generating one partially correct output. This was
due to its increased hallucination. The story prompt
noticeably produced more fictitious turns, and also
rephrased and removed turns in the original dia-
logue. We believe this is likely because a story
scenario is naturally a fictitious topic. The ‘rea-
soning’ style prompt performed remarkably well,
generating five times more correct outputs than the
second-best prompt style, and generating 79.31%
partially correct outputs, showing that it can grasp
the concept of the task. The reasoning prompt com-
monly mis-identified shared goals, unfortunately.

In the few-shot setting, GPT-3.5-turbo’s results
improved significantly compared to every other
approach. We would like to highlight again that
each run’s example prompts provided to the model
were exactly the same for each prompt style. Per-
formance differences were only due to the given
prompt style. The ‘reasoning’ prompt once again
outperformed the others across all metrics, gen-
erating correct outputs 62.32% of the time, and
partially correct 94.20% of the time. In our fu-
ture work (see Section 5), we plan to utilise this
prompt style’s impressive performance on limited
data. The ‘story’ prompt was the only style to suc-
cessfully attribute goals to other speakers, as in
Table 3, but it still suffered from increased halluci-
nation, which is not appropriate in a safety-critical
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Model train/test % Prompt Style Exact % Correct % Partial %
T5 0/100 - 0 0 0
T5 20/80 - 0 ± 0 0 ± 0 0 ± 0

T5 50/50 - 0 ± 0 0 ± 0 0 ± 0

T5 80/20 - 0 ± 0 0 ± 0 0 ± 0

DialogLED 0/100 - 0 0 0
DialogLED 20/80 - 0 ± 0 0 ± 0 5.80 ± 1.45

DialogLED 50/50 - 0 ± 0 2.38 ± 2.38 1.19 ± 0.63

DialogLED 80/20 - 0 ± 0 0 ± 0 20 ± 11.55

GPT 3.5-turbo 0/100 Basic 0 3.45 31.03
GPT 3.5-turbo 0/100 Specific 0 3.45 24.14
GPT 3.5-turbo 0/100 Annotation 0 6.90 44.83
GPT 3.5-turbo 0/100 Story 0 0 0
GPT 3.5-turbo 0/100 Role-play 0 0 6.90
GPT 3.5-turbo 0/100 Reasoning 3.45 34.48 79.31
GPT 3.5-turbo 7/80* Basic 11.59 ± 3.83 30.43 ± 10.94 86.96 ± 6.64

GPT 3.5-turbo 7/80* Specific 20.29 ± 3.83 43.48 ± 9.05 92.75 ± 2.90

GPT 3.5-turbo 7/80* Annotation 14.49 ± 5.80 28.99 ± 3.83 82.61 ± 4.35

GPT 3.5-turbo 7/80* Story 17.39 ± 6.64 36.23 ± 13.83 86.96 ± 4.35

GPT 3.5-turbo 7/80* Role-play 18.84 ± 7.25 46.38 ± 12.38 92.75 ± 5.22

GPT 3.5-turbo 7/80* Reasoning 27.54 ± 1.45 62.32 ± 9.50 94.20 ± 5.80

Table 4: The final multi-party goal tracking results for each model in both the zero- and few-shot settings.
*We could not fit more than 7% of the training examples in GPT-3.5-turbo’s context window. We therefore used
fewer examples than with T5 and DialogLED. The same 80% test sets were still used to enable model comparison.

setting. We suspect that the other prompt styles
failed to do this because of the rarity of this phe-
nomenon in our corpus. We are eliciting more of
these in ongoing experiments with a deployed sys-
tem, not wizard-of-oz (Addlesee et al., 2023).

4.2 MPC Intent-slot Recognition Results

The results for each model on the intent-slot recog-
nition task can be found in Table 5. As with the
goal tracking results, an ANOVA test (Fisher, 1992)
indicated that there was an overall significant differ-
ence between our model’s results. We therefore ran
a Tukey HSD test (Tukey, 1949) that showed that
the GPT-3.5-turbo model in the few-shot setting
significantly outperformed all the other models.

As intent-slot annotations are well-established,
T5 and DialogLED both started generating sensible-
looking outputs with only a few training examples.
The T5 outputs were all incorrect again, however.
DialogLED consistently improved as it was trained
on progressively more data, annotating almost half
of the MPCs partially correctly, and beginning to
accurately annotate full MPCs. Given a larger cor-
pus, we expect that DialogLED could potentially
generate competitive results, but this is not the case

for T5 in this setting with limited data.

GPT-3.5-turbo in the zero-shot setting also
achieved higher partial scores, compared to the
goal tracking results, due to the fact that intent-slot
recognition is a more established task. Turns were
commonly annotated with multiple gold goals, but
this model tended to only output one per turn. For
example: “Hello ARI, where is the café?” would
only have the prediction ‘greet’, missing the re-
quest to locate the café entirely. This prevented the
model from achieving higher correct scores.

In the few-shot setting, however, GPT-3.5-turbo
significantly outperformed all the other models.
The difference was remarkable. Almost all of the
predictions were partially correct, and the ‘reason-
ing’ prompts correctly annotated 70% of the MPCs.
Other models tended to falter when anaphoric ex-
pressions couldn’t be resolved with just the pre-
vious turn. They also struggled to identify the
‘suggest’ intent, for example, when one person
said “do you want to go to the toilet?”. These were
misclassified as request intents, likely due to their
prominence in the corpus, and influence on the re-
sults due to GPT-3.5-turbo’s limited input context.
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Model train/test % Prompt Style Exact % Correct % Partial %
T5 0/100 - 0 0 0
T5 20/80 - 0 ± 0 0 ± 0 0 ± 0

T5 50/50 - 0 ± 0 0 ± 0 0 ± 0

T5 80/20 - 0 ± 0 0 ± 0 0 ± 0

DialogLED 0/100 - 0 0 0
DialogLED 20/80 - 0 ± 0 0 ± 0 5.80 ± 2.90

DialogLED 50/50 - 0 ± 0 0 ± 0 38.10 ± 10.38

DialogLED 80/20 - 0 ± 0 13.33 ± 6.67 46.67 ± 6.67

GPT 3.5-turbo 0/100 Basic 0 3.45 51.72
GPT 3.5-turbo 0/100 Specific 0 0 13.79
GPT 3.5-turbo 0/100 Annotation 0 3.45 20.69
GPT 3.5-turbo 0/100 Story 0 0 24.14
GPT 3.5-turbo 0/100 Role-play 0 0 20.69
GPT 3.5-turbo 0/100 Reasoning 0 27.59 82.76
GPT 3.5-turbo 7/80* Basic 17.39 ± 6.64 36.23 ± 12.88 97.10 ± 2.90

GPT 3.5-turbo 7/80* Specific 27.54 ± 1.45 60.87 ± 9.05 94.20 ± 1.45

GPT 3.5-turbo 7/80* Annotation 18.84 ± 1.45 40.58 ± 6.32 91.30 ± 4.35

GPT 3.5-turbo 7/80* Story 26.09 ± 4.35 47.83 ± 10.04 94.20 ± 3.83

GPT 3.5-turbo 7/80* Role-play 20.29 ± 3.83 49.27 ± 12.88 97.10 ± 1.45

GPT 3.5-turbo 7/80* Reasoning 37.68 ± 1.45 69.57 ± 10.94 100 ± 0

Table 5: The final multi-party intent-slot recognition results for each model in both the zero- and few-shot settings.
*We could not fit more than 7% of the training examples in GPT-3.5-turbo’s context window. We therefore used
fewer examples than with T5 and DialogLED. The same 80% test sets were still used to enable model comparison.

5 Conclusion and Future Work

Multi-party conversations (MPCs) elicit complex
behaviours which do not occur in the dyadic in-
teractions that today’s dialogue systems are de-
signed and trained to handle. Social robots are
increasingly being expected to perform tasks in
public spaces like museums and malls, where con-
versations often include groups of friends or fam-
ily. Multi-party research has previously focused
on speaker recognition, addressee recognition, and
tweaking response generation depending on whom
the system is addressing. While this work is vital,
we argue that these collective “who says what to
whom” tasks do not provide any incentive for the
social robot to complete user goals, and instead en-
courage it to simply mimic what a good MPC looks
like. In this paper, we have detailed how the tasks
of goal tracking and intent-slot recognition differ
in a multi-party setting, providing examples from
our newly collected corpus of MPCs in a hospital.
We found that, given limited data, ‘reasoning’ style
prompts enable GPT-3.5-turbo to perform signifi-
cantly better than other models.

We found that other prompt styles also perform
well, but prompts that are story-like increase model

hallucination. With the introduction of prompt fine-
tuning with human feedback (Ouyang et al., 2022),
generative LLMs do now have some incentive to
avoid misleading or harming the user, providing
outputs prepended with caveats, but the issue is
not solved. OpenAI claims that GPT-4 generates
40% fewer hallucinations than GPT-3 (Hern and
Bhuiyan, 2023), but these models should still not be
applied directly in a hospital or other safety-critical
setting without further evaluation. In the hospital
setting, users are more likely to be from vulnerable
population groups, and are more likely to be older
adults that are not familiar with the capabilities of
today’s models. Multiple researchers and hospi-
tal staff members are present when conducting our
data collections, so that if hallucinations do occur,
they can be quickly corrected. We will, therefore,
be able to evaluate response grounding, Guidance6,
and other hallucination prevention strategies to de-
termine whether these models can ever be used
safely in a high-risk setting. These further exper-
iments will also elicit further MPCs that can be
annotated for various multi-party tasks.

User inputs must be processed on external

6https://github.com/microsoft/guidance

https://github.com/microsoft/guidance
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servers when using industry LLMs, like GPT-3.5-
turbo and Google’s Bard. For this reason, these
specific models cannot be deployed in the hos-
pital setting. Patients may reveal identifiable or
sensitive information during our data collection,
which we subsequently remove from the corpus.
This data must stay contained within approved
data-controlled servers in the SPRING project. In
this paper, we have reported the remarkable per-
formance of an industry LLM, when given limited
data, compared to prior model architectures. We
will analyse open and transparent instruction-tuned
text generators (Liesenfeld et al., 2023), which are
able to meet our data security requirements.

The accessibility of today’s SDSs is critical
when working with hospital patients (Addlesee,
2023). Speech production differs between the ‘av-
erage’ user, and user groups that remain a minority
in huge training datasets. For example, people with
dementia pause more frequently and for longer du-
rations mid-sentence due to word-finding problems
(Boschi et al., 2017; Slegers et al., 2018). We are
utilising knowledge graphs to ensure that SDSs
are transparent, controllable, and more accessible
for these user groups (Addlesee and Eshghi, 2021;
Addlesee and Damonte, 2023a,b), and we see the
unification of large language models and knowl-
edge graphs (Pan et al., 2023) as the near-term
future of our field.

We plan to design and run subsequent experi-
ments in both the hospital memory clinic, and a
newly established mock waiting room in our lab.
This space will allow us to collect additional MPCs
with more than two people, replicating scenarios
in which whole families approach a social robot.
We plan to evaluate whether prompt engineering
can work modularly for N users. For example, we
could use GPT-4 to correct speaker diarization (Mu-
rali et al., 2023), then to handle multi-party goal
tracking, and then to generate responses to the user.
This experimental setup will allow us to quickly
test new ideas, such as automatic prompt optimiza-
tion (Pryzant et al., 2023) in the lab, maximising
the benefit of patients’ time in the hospital.
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A Full GPT-3.5-turbo Prompts

Here are the full prompts given to GPT-3.5-turbo
for each task. We used six styles described in Sec-
tion 3. The masked MPC was appended to each
prompt in the zero-shot setting. In the few-shot
prompts (see Section A.2), we appended examples
with “input:” + masked MPC #1 + “output:” + gold
output #1 + ‘input:” + masked MPC #2 + “output:”
+ gold output #2 + “input:” + test set masked MPC
+ “output:”7.

A.1 Zero-shot Goal Tracking
• Basic: This conversation has a window be-

tween [start] and [end]. Return this window
with the [MASK] tags replaced with the goal
annotations:

• Specific: This is a conversation between two
people and a robot called ARI. There is a sec-
tion of the conversation between the [start]
and [end] tags. I want you to return this
section of the conversation, but I want you
to replace the [MASK] tags with the user
goals. Do not change any of the other words

7The examples given were randomised per run, and the
appendix page limit doesn’t fit the full 4,096 token prompts.
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in the section, only replace [MASK]. Every
[MASK] should be replaced. Here is the con-
versation:

• Annotation: This is a conversation between
two people and a robot called ARI. I want
you to first extract the text between [start] and
[end]. There are [MASK] tags in the extracted
text. I want you to replace the [MASK] tags
with goal annotations. Do not change any
of the other text. If the person’s goal can be
determined by that turn, add an ’@’ symbol
followed by ’G’ (G for goal), and then brack-
ets with the speaker ID and what their goal is.
If it is a shared goal, you can annotate both
speakers with a ’+’ sign between them. For
example, if you think U1 and U2 share the
goal, you can write U1+U2. If you think the
goal is being answered, you can do the same
but with ’AG’ (AG for Answer Goal) instead
of ’G’. Finally, if you think the person is clos-
ing the goal, you can do the same annotation
using ’CG’ (CG for Close Goal) instead of ’G’
or AG’. Here is the conversation:

• Story: There once was a conversation be-
tween a patient, a companion, and a robot
called ARI. One bit of the conversation was
confusing. A helpful researcher noted the start
with [start], and the end with [end]. The con-
fusing bits are marked with [MASK]. Can you
help us figure out the goals that should replace
the [MASK] tags? The conversation is this:

• Role-play: You are listening to a conversation
between two people and a robot called ARI.
You are a helpful assistant that needs to figure
out what goals the people have. You need to
pay attention to the [MASK] tags between the
[start] and [end] tags in the given conversa-
tion. Your job is to replace these [MASK]
tags with the correct goal annotations. Here is
the conversation:

• Reasoning: I will give you a conversation
between two people and a robot called ARI.
You need to return the text between [start]
and [end] with the [MASK] tags replaced by
user goals. Let’s step through how to figure
out the correct annotation. If the conversa-
tion included ’U1: I really need the toilet
[MASK]’, then we would first know that the
speaker is called U1. The turn also ends with

[MASK], so we know that we need to replace
it with a goal. We know that U1 needs the
toilet, so their goal is to go to the nearest toi-
let. Goals always begin with the ’@’ symbol,
and then a ’G’ if we have found a person’s
goal. We would therefore replace [MASK]
with @ G(U1, go-to(toilet)). If someone tells
U1 where the toilets are, they have answered
their goal. We would therefore annotate that
turn with @ AG(U1, go-to(toilet)). We use
AG here to indicate Answer Goal. Finally, if
U1 then said thank you, we know their goal
has been met. We would annotate the thank
you with @ CG(U1, go-to(toilet)) because
U1’s goal is finished. CG stands for Close
Goal. Do this goal tracking for each [MASK]
in this conversation:

A.2 Few-shot Intent-slot Recognition
• Basic: Each conversation has a window be-

tween [start] and [end]. Return this window
with the [MASK] tags replaced with the intent-
slot annotations. Here are some examples.

• Specific: Each of these conversations is be-
tween two people and a robot called ARI.
There is a section of each conversation be-
tween the [start] and [end] tags. I want you
to return this section of the conversation, but
I want you to replace the [MASK] tags with
the user intents and slots. Do not change any
of the other words in the section, only replace
[MASK]. Every [MASK] should be replaced.
Here are some examples.

• Annotation: Each of these conversations is
between two people and a robot called ARI.
I want you to first extract the text between
[start] and [end]. There are [MASK] tags in
the extracted text. I want you to replace the
[MASK] tags with intent-slot annotations. Do
not change any of the other text. If the per-
son’s intent can be determined by that turn,
add a ’#’ symbol followed by their intent and
then brackets with the slots within. There
are not always slots, so the brackets can be
empty. Sometimes there are multiple intents,
split them with a semi-colon ’;’. Here are
some examples.

• Story: There once was a conversation be-
tween a patient, a companion, and a robot
called ARI. One bit of the conversation was
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confusing. A helpful researcher noted the start
with [start], and the end with [end]. The con-
fusing bits are marked with [MASK]. Can
you help us figure out the intents and slots
that should replace the [MASK] tags? Here
are some examples.

• Role-play: You are listening to a conversation
between two people and a robot called ARI.
You are a helpful assistant that needs to figure
out what goals the people have. You need to
pay attention to the [MASK] tags between the
[start] and [end] tags in the given conversation.
Your job is to replace these [MASK] tags with
the correct intent-slot annotations. Here are
some examples.

• Reasoning: I will give you a conversation
between two people and a robot called ARI.
You need to return the text between [start]
and [end] with the [MASK] tags replaced by
user intents and slots. Let’s step through how
to figure out the correct annotation. If the
conversation included ’U1: Hello, I’d like to
know where the doctor’s office is? [MASK]’
then we know there is a missing intent-slot
annotation because of the [MASK] tag. U1
first said hello, greeting their interlocutor, so
we know their intent is greet. This has no
slots, so we have the annotation ’# greet()’ to
start. U1 also asked where the doctor is, so
their second intent is a request. The slot is
the room that the doctor is in, as that is what
they are requesting. Their second intent is
therefore ’# request(doctor(room)). As there
are multiple intents, the [MASK] is replaced
by ’# greet() ; request(doctor(room))’. The ’;’
is only used because there was more than one
intent. Do this intent-slot annotation for each
[MASK] in this conversation. Here are some
examples.


