DiactTOD: Learning Generalizable Latent Dialogue Acts for Controllable Task-Oriented Dialogue Systems

Qingyang Wu, James Gung, Raphael Shu, Yi Zhang


Abstract
Dialogue act annotations are important to improve response generation quality in task-oriented dialogue systems. However, it can be challenging to use dialogue acts to control response generation in a generalizable way because different datasets and tasks may have incompatible annotations. While alternative methods that utilize latent action spaces or reinforcement learning do not require explicit annotations, they may lack interpretability or face difficulties defining task-specific rewards. In this work, we present a novel end-to-end latent dialogue act model (DiactTOD) that represents dialogue acts in a latent space. DiactTOD, when pre-trained on a large corpus, is able to predict and control dialogue acts to generate controllable responses using these latent representations in a zero-shot fashion. Our approach demonstrates state-of-the-art performance across a wide range of experimental settings on the MultiWOZ dataset, including zero-shot, few-shot, and full data fine-tuning with both end-to-end and policy optimization configurations.
Anthology ID:
2023.sigdial-1.24
Volume:
Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue
Month:
September
Year:
2023
Address:
Prague, Czechia
Editors:
Svetlana Stoyanchev, Shafiq Joty, David Schlangen, Ondrej Dusek, Casey Kennington, Malihe Alikhani
Venue:
SIGDIAL
SIG:
SIGDIAL
Publisher:
Association for Computational Linguistics
Note:
Pages:
255–267
Language:
URL:
https://aclanthology.org/2023.sigdial-1.24
DOI:
10.18653/v1/2023.sigdial-1.24
Bibkey:
Cite (ACL):
Qingyang Wu, James Gung, Raphael Shu, and Yi Zhang. 2023. DiactTOD: Learning Generalizable Latent Dialogue Acts for Controllable Task-Oriented Dialogue Systems. In Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue, pages 255–267, Prague, Czechia. Association for Computational Linguistics.
Cite (Informal):
DiactTOD: Learning Generalizable Latent Dialogue Acts for Controllable Task-Oriented Dialogue Systems (Wu et al., SIGDIAL 2023)
Copy Citation:
PDF:
https://aclanthology.org/2023.sigdial-1.24.pdf