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Abstract

Despite recent advances in Natural Language

Processing (NLP), hierarchical discourse pars-

ing in the framework of Rhetorical Structure

Theory remains challenging, and our under-

standing of the reasons for this are as yet lim-

ited. In this paper, we examine and model

some of the factors associated with parsing dif-

ficulties in previous work: the existence of im-

plicit discourse relations, challenges in identify-

ing long-distance relations, out-of-vocabulary

items, and more. In order to assess the relative

importance of these variables, we also release

two annotated English test-sets with explicit

correct and distracting discourse markers asso-

ciated with gold standard RST relations. Our re-

sults show that as in shallow discourse parsing,

the explicit/implicit distinction plays a role, but

that long-distance dependencies are the main

challenge, while lack of lexical overlap is less

of a problem, at least for in-domain parsing.

Our final model is able to predict where errors

will occur with an accuracy of 76.3% for the

bottom-up parser and 76.6% for the top-down

parser.

1 Introduction

Powered by pretrained language models, recent ad-

vancements in NLP have led to rising scores on

a myriad of language understanding tasks, espe-

cially at the sentence level. However, at the dis-

course level, where analyses require reasoning over

multiple sentences, progress has been slower, with

generalization to unseen domains remaining a per-

sistent problem for tasks such as coreference reso-

lution (Zhu et al., 2021) and entity linking (Lin and

Zeldes, 2021).

One task which remains particularly challenging

is hierarchical discourse parsing, which aims to

reveal the structure of documents (e.g. where parts

begin and end, which parts are more important than

others) and make explicit the relationship between

clauses, sentences, and larger parts of the text, by

Figure 1: An RST analysis of a vlog excerpt. Tokens

highlighted in red are discourse markers associated with

relations in the tree, while tokens highlighted in blue

are distractors, with no corresponding relation.

labeling them as expressing a type of e.g. CAUSAL,

ELABORATION, etc. More specifically, hierarchi-

cal discourse parses identify connections between

elementary discourse units (EDUs, usually equated

with propositions) in a text or conversation, classify

their functions using a closed tag set, and form a

recursive tree structure, which indicates the locally

most prominent EDU in each tree or subtree. Fig-

ure 1 shows an example tree in the most popular

hierarchical discourse formalism, Rhetorical Struc-

ture Theory (RST, Mann and Thompson 1988), in

which the list of units 37–38 is the most promi-

nent (being pointed to by other units directly or

indirectly), and discourse relation labels such as

CAUSE are identified using edge labels, whose def-

initions in RST are based on the rhetorical effect

which the writer (or speaker) is thought to be con-

veying to the reader (or hearer).

There is by now substantial evidence show-

ing that even for a high resource language like

English, state-of-the-art (SOTA) neural RST dis-

course parsers, whether employing a top-down or a

bottom-up architecture, do not perform well across

domains (Atwell et al., 2021, 2022; Yu et al., 2022;

Aoyama et al., 2023), with some crucial tasks, such

as predicting the most prominent Central Discourse

Unit (CDU) of each document, performing at just

50% (Liu and Zeldes, 2023). At the same time,
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we do not have a good understanding of what ex-

actly prevents good performance—is it the fact

that some relations are well-marked (for example,

most CONTINGENCY relations are marked by the

discourse marker (DM) if, but most EVALUATION

relations lack a common marker)? Conversely, is

the presence of distracting markers not associ-

ated with the correct relation (e.g. an additional

temporal marker such as then inside a unit with

a non-temporal function)? Alternatively, is it the

difficulty in identifying high-level relations, be-

tween groups of multiple sentences or paragraphs,

compared to less tricky intra-sentential relations

between clauses? Or is it just the prevalence of

out-of-vocabulary (OOV) items in test data?

In this paper, we would like to systematically

evaluate the role of these and other factors con-

tributing to errors in English RST discourse parsing.

Our contributions include:

• Annotation and evaluation of the dev/test

sets of the English RST-DT (Carlson et al.,

2003) and GUM datasets (Zeldes, 2017), for

explicit relation markers, as well as distracting

markers not signaling the correct relation;

• Parsing experiments with two different SOTA

architectures to examine where degradation

happens;

• Development and analysis of multifactorial

models predicting where errors will occur and

ranking importance for different variables;

• Qualitative and quantitative error analysis.

Our results reveal that while explicit markers and

distractors do play a role, the most significant pre-

dictor of difficulty is inter-sentential status and the

specific relation involved. At the same time, our

error analysis indicates that distractors often cor-

respond to true discourse relations which are not

included in the gold-standard tree, but may be in-

cluded in alternative trees produced by other anno-

tators. In addition, we find that OOV rate plays only

a minor role, that architecture choice is presently

not very important, and that genre continues to mat-

ter even when all other factors are known. All code

and data are available at https://github.

com/janetlauyeung/NLPErrors4RST.

2 Related Work

2.1 Discourse Structure in Discourse Parsing

Discourse parsing is the task of identifying the co-

herence relations that hold between different parts

of a text. Regardless of discourse frameworks

or formalisms, identifying intra-sentential, inter-

sentential, or inter-paragraph discourse relations

may pose different levels of difficulty to parsers

due to their various characteristics and levels of

explicitness (e.g. Zhao and Webber 2021; Dai and

Huang 2018; Muller et al. 2012). Intuitively, this

becomes increasingly important for discourse pars-

ing in a hierarchical framework such as RST, where

long-distance relations are more frequent.

Researchers have therefore been considering

ways of dealing with long-distance relations for

nearly twenty years, starting with the structure-

informed model proposed by Sporleder and Las-

carides (2004) to tackle local and global discourse

structures such as paragraphs. Other multi-stage

parsing models, for example, as developed by Joty

et al. (2013, 2015), have taken into account the dis-

tribution and associated features of intra-sentential

and inter-sentential relations, achieving competi-

tive results for English document-level parsing.

Later models expanded on these approaches

by incorporating paragraph information to better

capture high-level document structures. For in-

stance, Liu and Lapata (2017) proposed a neu-

ral model leveraging global context, enabling it

to capture long-distance dependencies and achiev-

ing SOTA performance. Yu et al. (2018) used

implicit syntactic features in a hierarchical RNN

architecture. Active research continues on devel-

oping multi-stage parsing algorithms aiming at

capitalizing on structural information at the sen-

tence or paragraph-levels (Wang et al., 2017; Lin

et al., 2019; Kobayashi et al., 2020; Nishida and

Nakayama, 2020; Nguyen et al., 2021).

2.2 Explicit and Implicit Relations in RST

Unlike in hierarchical RST parsing, work on shal-

low discourse parsing in the framework of the Penn

Discourse Treebank (PDTB, Prasad et al. 2014), in

which relations apply between spans of text with-

out forming a tree, has long distinguished explicitly

and implicitly marked discourse relations. Explicit

relations are signaled by connectives such as ‘but’

or ‘on the other hand’, while implicit ones lack such

marking. It is well-established that shallow pars-

ing of explicit discourse relations is substantially

easier due to the availability of connective signals,

which, although not unambiguous, narrow down

likely senses for relations. For example, the best

systems from Knaebel (2021) achieved an F1 score

https://github.com/janetlauyeung/NLPErrors4RST
https://github.com/janetlauyeung/NLPErrors4RST
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of 62.75 on explicit relations and an F1 score of

40.71 on implicit relations for Section 23 of WSJ

using PDTB v2 (Prasad et al., 2008). The DISRPT

shared task created a relation classification task in

2021 (Zeldes et al., 2021), and the 2023 edition

(Braud et al., 2023) reported separate mean accu-

racy scores for explicit (79.32) and implicit (50.85)

relations across six datasets in 4 languages.

RST datasets used in hierarchical discourse pars-

ing do not make such a distinction, in part because

RST trees include very high-level relations between

entire sections of documents, which are less likely

to be marked by such items. As a result, such a

distinction is not available, meaning that we are in

the dark regarding the prevalence and importance

of such markers for RST parsing.

We are aware of two prior works analyzing con-

nectives for RST data: the RST Signalling Corpus

(RST-SC, Das et al. 2019) analyzes each relation

in the English RST-DT dataset, indicating which

relations were signaled by a DM (DMs roughly

include the same items as PDTB connectives; see

Webber et al. (2019) and Das and Taboada (2014)

for complete inventories of markers). However, the

data is limited to newswire material and does not

provide an alignment of analyses to actual tokens,

limiting the possibilities for model building (i.e. we

only know whether a DM was present somewhere,

but not which token in the text it was or in which

exact EDU it appeared). It also does not indicate

whether DMs were present which did not signal the

relation in the tree (i.e. distractors). Although pre-

vious efforts targeted DM tokens in RST-DT (Liu

and Zeldes, 2019) as well as such DM tokens in

non-newswire texts (Liu, 2019), no previous study

has examined the role of DMs in RST parsing.

Stede and Neumann (2014) enriched an RST

corpus of German with token-aligned connectives

and the relations they signal, allowing investigation

of their positions and the presence of distracting

connectives. However, the annotations were not

mapped to the RST relations in the corpus, making

exact inferences again tricky, and the size of the

corpus (32K tokens) precludes training high quality

models. This corpus too is limited to the newspaper

domain, which also motivates us to annotate genre-

rich data, described in the next section.

Finally we note that data in other frameworks,

including not only PDTB but also SDRT (Seg-

mented Discourse Representation Theory, Asher

and Lascarides 2003), contains multiple concurrent

discourse relations, providing information about

the presence of competing or distracting relations.

However, SDRT data does not include connective

annotations, and apart from the coverage of RST-

SC’s overlapping data with the Wall Street Journal

(WSJ) in PDTB, there is no way to extract a map-

ping between connectives and RST relations in any

existing dataset (for attempts at aligning PDTB and

RST-DT, see Demberg et al. 2019).

In this paper, we therefore begin by creating

hand-annotated data (using rstWeb, Gessler et al.

2019) associating exact DM tokens with RST-style

relations, or indicating their status as distractors,

not associated with any relation in the gold tree.

These latter DMs are especially interesting, since

they could indicate that some parser errors are not

exactly errors, instead corresponding to concurrent

relations not present in the gold trees.

3 Data

To examine the role of explicit vs. implicit relations

in parsing errors, we first need to know which re-

lations were explicitly signaled. To that end, we

use PDTB’s methodology to define explicit connec-

tives. Note that RST papers often use the term DM

without clear inventories; from this point on we

will use ‘DM’ for brevity, but strictly adhere to the

PDTB English inventory. Specifically, we annotate

data from the two largest RST corpora for English,

covering the test set of RST-DT1 (Carlson et al.,

2003) and the test and dev sets of GUM (Zeldes,

2017) , with 1) discourse markers (including ‘dis-

tractor’ DMs) and 2) associated relations, thereby

attaching DMs to each relation they signal, or no

relation. Table 1 gives an overview of the data.

RST-DT GUM v9

# of docs 385 213

train/dev/test 347 / – / 38 165 / 24 / 24
# of toks 203, 352 203, 780

# of EDUs 21, 789 26, 310

# of genres 1 12

# of relation labels 78 32

# of relation classes 17 15

# of relation instances 18, 630 23, 451

Table 1: Overview of the Largest English RST Corpora.

Inter-Annotator Agreement To assess the reli-

ability and quality of the human annotations, we

conduct an inter-annotator agreement study on the

test set of RST-DT and report average mutual F1

1RST-DT has no established separate dev set.
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scores. The use of RST-DT can also facilitate some

comparisons between the PDTB and RST frame-

works as a number of documents from the WSJ

section of the Penn Treebank (Marcus et al., 1993)

were annotated in both PDTB v3 and RST-DT. In

total, we double-annotated 38 documents, divided

to overlap among three annotators. For DMs, the

average F1 score was 95.2, and for associated rela-

tions, the average F1 score given a DM was 96.7.

These scores indicate a high agreement between

annotators for both tasks.

Automatic Parses In order to examine pars-

ing errors from different architectures, we select

two SOTA-performing parsers to obtain automatic

parses: a BOTTOM-UP one from Guz and Carenini

(2020), using their best SpanBERT-NoCoref

setting, and a TOP-DOWN one from Liu et al.

(2021) using XLM-RoBERTa-base (Conneau et al.,

2020). Following recommendations by Morey et al.

(2017), we use the more stringent original Parseval

metric on binary trees. Table 2 shows reproduced

5-run average scores on both test sets.2 It is clear

that scores of both architectures are neck and neck,

which raises questions on whether, beyond numeric

scores, they find similar or different data difficult.

corpora GUM v9 RST-DT

metrics S N R S N R

BOTTOM-UP

Guz and Carenini (2020)
70.4 57.7 49.9 76.5 65.9 54.8

TOP-DOWN

Liu et al. (2021)
71.9 58.9 51.7 76.5 65.8 54.8

Table 2: Parsing Performance on GUM v9 and RST-

DT test with Gold EDU Segmentation (5 run aver-

age). S=Span (whether subtrees span the right EDUs);

N=Nuclearity (whether edges point the right way);

R=Relation (whether labels are correct).

4 Analysis

Strictly speaking, the types of errors that top-

down and bottom-up parsers make are not identi-

cal: while bottom-up, and in particular shift-reduce

parsers see analyzed preceding discourse units,

grouped in a stack, and remaining discourse units

in an upcoming queue, top-down parsers analyze

a domain of ungrouped tokens to be split and de-

termine the optimal split point and label for each

decision. Because we want to analyze what pro-

motes errors both across and for each architecture,

2Validation performance of each parser on both corpora is
provided in Appendix A.

Figure 2: An Example of an RST Constituent Fragment

converted into the Discourse Dependency Structure fol-

lowing Li et al. (2014).

we adopt an output-centric view, analyzing EDUs

at which parsers do and do not make errors based

on their properties in the completed gold vs. pre-

dicted tree. At the same time, we do not want our

results to be swayed by coincidental variations in

neural models, which can have far-reaching conse-

quences due to cascading errors. Instead, we train

five models in each architecture, i.e. five training

runs, each with a different random seed produc-

ing a different initialization for the parser: if only

one model fails to predict a relation, it may not be

very hard, while 4–5 errors would be indicative of

genuinely hard relations.

Additionally, since models ultimately confront

different inputs as a result of such cascaded deci-

sions, we will use a dependency representation of

both the gold and predicted RST trees, following

the dependency conversion as defined by Li et al.

(2014),3 as exemplified in Figure 2. Although RST

uses constituent discourse trees, focusing on each

EDU and its dependencies will make it possible to

make meaningful comparisons across models, and

to intuitively understand how challenging EDUs

are at any point in each document, regardless of

whether or not they head large constituent struc-

tures. In Section 4.2 we will also incorporate the

spanned domain of each head EDU’s constituent

block as an additional feature to assess the role of

block size in predicting errors.

4.1 Explicit vs. Implict Relations

Table 3 shows the distribution of explicit or

unmarked relations across the genres in the

dev+test sets of GUM v9 and in comparison

to RST-DT’s test set, for each relation class and

overall. The results for RST-DT are consistent with

previous work, with 17.0% of test data relations

being marked, similarly to the 18.2% identified

by Das and Taboada (2017) for the entire corpus

(but not anchored to specific tokens). An exami-

3The conversion code is available at https://github.
com/amir-zeldes/rst2dep.

https://github.com/amir-zeldes/rst2dep
https://github.com/amir-zeldes/rst2dep
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# of

explicit

explicit

prop.

# of

implicit

implicit

prop.

# of

distractor

distractor

prop.

RST-DT 398 17.0% 1948 83.0% 81 3.5%

GUM v9 1198 21.7% 4332 78.3% 174 3.1%

academic 73 16.1% 380 83.9% 13 2.9%

bio 66 18.4% 292 81.6% 11 3.1%

conversation 100 12.9% 674 87.1% 23 3.0%

fiction 116 23.7% 374 76.3% 15 3.1%

interview 80 20.2% 317 79.8% 8 2.0%

news 73 18.1% 331 81.9% 7 1.7%

reddit 147 28.3% 373 71.7% 20 3.8%

speech 84 19.1% 356 80.9% 9 2.0%

textbook 95 21.3% 352 78.7% 9 2.0%

vlog 180 35.8% 323 64.2% 38 7.6%

voyage 69 22.4% 239 77.6% 9 2.9%

whow 115 26.4% 321 73.6% 12 2.8%

mean 99.8 21.9% 361 78.1% 14.5 3.1%

Table 3: Distribution of Explicit and Implicit Relations

as well as EDUs with Distracting DMs in RST-DT

test and dev+test of GUM v9.

nation of distributions by genre in GUM reveals

some differences, highlighted in Table 3, with vlog

exhibiting the most explicit relations, and conver-

sation the fewest, raising the possibility that it may

be more challenging for parsers. And in fact, Liu

and Zeldes (2023) pointed to conversation as the

worst-performing genre at all metric levels using

an older version of the corpus (v8), which had less

conversation data compared to GUM v9.

Looking at the presence of ‘distractor’ connec-

tives, which are not associated with one of the

gold relations in the tree, we see that vlog is the

most prone to such cases, again raising the question

of whether these may pose a problem for parsers,

which may identify a possibly correct relation

that is not prioritized by the gold tree. This situa-

tion appears to be infrequent in the WSJ data from

RST-DT, which has only 81 such cases (3.5%).

Taking a closer look at the types of distractors

across genres in GUM, we see that the most fre-

quent types are ‘and’, ‘but’, and ‘so’, which are

highly ambiguous and common in conversational

data such as vlog and conversation.

Regarding the most and least explicitly signaled

relation classes in GUM v9, Table 4 reveals that

CONTINGENCY is the most explicitly marked class

due to the use of the DM ‘if’, and that the least

explicitly signaled classes are ATTRIBUTION and

ORGANIZATION. The former is almost always

signaled by speech verbs (a verb such as ‘say’ or

‘argue’) and the latter mostly by document lay-

out and graphical features in written texts, or by

back-channeling in conversation data. It is also

worth noting that instances of EVALUATION, RE-

STATEMENT, and TOPIC (used predominantly for

question-answer pairs) are mostly not signaled by

a discourse marker.

relation

class

# of

explicit

explicit

prop.

# of

implicit

implicit

prop.

ROOT 0 0.0% 48 100.0%

ADVERSATIVE 222 55.5% 178 44.5%

ATTRIBUTION 0 0.0% 292 100.0%

CAUSAL 131 53.5% 114 46.5%

CONTEXT 143 31.8% 306 68.2%

CONTINGENCY 99 91.7% 9 8.3%

ELABORATION 64 5.8% 1049 94.2%

EVALUATION 4 1.7% 231 98.3%

EXPLANATION 44 12.5% 308 87.5%

JOINT 409 37.2% 689 62.8%

MODE 52 45.2% 63 54.8%

ORGANIZATION 0 0.0% 331 100.0%

PURPOSE 21 10.7% 176 89.3%

RESTATEMENT 6 3.8% 150 96.2%

SAME-UNIT 1 0.3% 289 99.7%

TOPIC 2 2.0% 99 98.0%

Table 4: Distribution of Explicit and Implicit Relations

across Relation Classes in dev+test of GUM v9.

With these descriptive statistics in hand, we

can examine each parser’s performance on ex-

plicit/implicit relations, as well as on EDUs with

a distracting DM in either the source or target of

the relation (we must consider both ends, since

many DMs can mark either a source or target such

as ‘but’ and ‘so’). Figure 3 shows the density of

relations incurring between 0 and 5 attachment er-

rors (disregarding labels) in each architecture for

GUM, broken down by whether a DM marks the re-

lation (top) and whether a distracting DM is present

(bottom). The figure reveals several important

facts: firstly, DMs are unsurprisingly associated

with fewer errors (t=−7.29, D=0.23, p<0.0001),

with lack of connectives affecting top-down models

slightly more severely (χ2=3.95, φ=0.14, p<0.05).

Secondly, lack of distractors is associated with hav-

ing fewer errors (t=5.0718, D=0.37, p<0.0001),

and this is more pronounced for the bottom-up ar-

chitecture, but the difference between architectures

is not significant here.4 Figure 4 shows the same

kind of density plots for RST-DT.

Although it seems obvious that explicitness will

facilitate parsing and that distractors should be

harmful, it is an open question whether such mark-

ers will remain important once we know about

other factors known to cause problems, such as

OOV items, EDU text length, and intra-sentential

status. To compare these, we construct several re-

gression models predicting the number of errors.

Because the distribution of error numbers is U-

4That said, we recognize that there are also more differ-
ences between these parsers than just the top-down/bottom-up
distinction, so it is possible that with a broader sample of
parsers, more differences would emerge.
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Figure 3: Attachment Error Count Density with and

without DMs or Distractors for Each Architecture in

dev+test of GUM v9.
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Figure 4: Attachment Error Count Density with and

without DMs or Distractors for Each Architecture in

test of RST-DT.

shaped (many cases with zero or five errors, few in

the middle), as shown in Figures 3–4, we cannot

use traditional gaussian models, which assume a

roughly normal distribution of the data. Instead, we

use mixed effects Beta regression, which is suited

to U-shaped data, with a random effect for docu-

ment identity, and re-scale the number of attach-

ment or relation errors to the range 0–1, where

1 means the max 5 model errors. Table 5 shows

significance for each predictor in each model.5

Looking first at GUM on the left, Table 5 shows

that, when given only DMs and distractors, both

features are significant in predicting errors above

a per-document random effect baseline, for both

5Significance for genre, a multi-nominal feature, is com-
puted via a likelihood ratio test comparing the model with and
without this predictor.

architectures. In other words, predicting implicit

relations is unsurprisingly harder in RST, just as it

is for PDTB-style shallow discourse parsing, and

distractors make things even harder.

However, adding the subordination feature (the

second and third pairs of models from the left for

GUM v9), which indicates whether an EDU is in a

subordinate clause (and therefore likely to have an

intra-sentential relation), removes the significance

of the presence of a DM (but not of distractors).

This suggests DMs are less important in predicting

errors (or lack thereof) than intra-sentential status.

Adding some more predictors, a fuller model with

EDU length, OOV rate (the percentage of lexical

items not seen during training per EDU), and genre

does not remove the significance of subordination

status, and shows that OOV rate is not a significant

predictor in this setting. The more complex models

with 6 features also restore some significance for

DMs, albeit to a lesser degree than other predictors.

Moving to RST-DT, we see a similar pattern,

except for a surprising difference between archi-

tectures: in the mixed effects model, presence of

a DM is not a significant predictor for the bottom-

up architecture, while it is significant for top-down.

This pattern is repeated across all sets of features on

the right side of Table 5. For RST-DT, since we do

not have gold syntactic dependency trees, we use

gold intra-sentential relation status to represent the

subord feature. This feature remains highly sig-

nificant in all models across architectures. Finally,

adding all the features to the right-most models

(excluding genre, since RST-DT is all newswire),

OOV rate again fails to reach significance, while

all other features are significant, except for DMs

for the bottom-up architecture models.

These numbers suggest several things: first and

most important, while DMs may be somewhat

important, some representation of intra-sentential

status is the more robust predictor of parsing er-

rors. This effect persists even if we know about

other plausible features, such as EDU length and

OOV rate. This observation fits with the line of

work mentioned above on multi-stage models for

RST parsing, which attempt to learn separate mod-

els for intra-sentential and inter-sentential or inter-

paragraph models (e.g. Kobayashi et al. 2020). Al-

though joint models can perform well on all levels

regardless, we can confirm that there are substantial

differences between these types.

In terms of architecture differences, results for
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corpus GUM v9 RST-DT

architecture bot-up top-down bot-up top-down bot-up top-down bot-up top-down bot-up top-down bot-up top-down

dm <.001*** <.001*** 0.059 0.074 0.003** 0.005** 0.988 0.002** 0.244 <.001*** 0.445 <.001***

distractor <.001*** <.001*** <.001*** <.001*** <.001*** <.001*** <.001*** <.001*** <.001*** <.001*** <.001*** <.001***

subord <.001*** <.001*** <.001*** <.001*** <.001*** <.001*** <.001*** <.001***

length <.001*** <.001*** <.001*** <.001***

oov 0.115 0.262 0.944 0.563

genre <.001*** <.001***

Table 5: Results of the Regression Models for GUM v9 and RST-DT from both Architectures.

RST-DT suggest more sensitivity to DMs for top-

down models, but this result is not reproduced in

GUM. Finally, all models are sensitive to distrac-

tors, which raises questions about the nature of

this sensitivity—what kinds of errors are parsers

making, and more specifically are they predicting

relations corresponding to distractor DMs? We

address these questions in the next sections.

4.2 Predicting Parsing Errors

The results in the previous section quantify the im-

portance of different characteristics of discourse

relations in promoting errors, and the relative dif-

ficulty of implicit relations in SOTA English RST

parsing.

However, the linear model comparing the signif-

icance of explicit DMs, distractors, and features

such as EDU length or OOV rate is rather naive

and leaves out a variety of potentially relevant prop-

erties of subtrees, such as total number of attached

discourse units (which could contribute to ambi-

guity), or the gold relation to be predicted—some

relations are easier to recognize or are less ambigu-

ous, and some relations have high prior likelihood,

making guessing them a safe bet. Although these

properties may not be useful for realistic prediction

of errors when we do not have a gold parse, they

can be of interest for understanding tree properties

which are difficult for parsers to get right.

To make matters even more complex, the fac-

tors mentioned above interact in subtle ways with

each other and with explicit marking status. For

example, CONTINGENCY relations are easy to rec-

ognize thanks to the reliable DM ‘if’ as in (1), but

this is not always the case, as in (2) which uses

subject-verb inversion to mark a conditional. Some

relations are almost never marked by DMs, but may

still be easy, such as ATTRIBUTION, which can be

identified via speech verbs, as in (3).

(1) [Um if you don’t want to do a tour of Pittock

Mansion,]
gold:CONTINGENCY

−−−−−−−−−−→[I’d still recommend like
taking the trail up there]GUM_vlog_portland

(2) [“Had it happened an hour later]
gold:CONTINGENCY

−−−−−−−−−−→[It
would have been much worse]GUM_news_crane

(3) [Any judge in this country would

agree]
gold:ATTRIBUTION

−−−−−−−−−→[that opening and closing
statements along are not a trial.]GUM_speech_impeachment

This complexity means that a realistic model of

difficult parsing environments may need to con-

sider more variables, and the interactions mean

that a simple linear model cannot capture the rich

patterns in the data. In this section, we therefore

use XGBoost (Chen and Guestrin, 2016), a highly

accurate ensemble gradient boosting framework

which is able to harness arbitrary interactions be-

tween features and is highly regularized to prevent

overfitting, meaning it can be expected to find a

near-optimal mapping of our variables to parser

error occurrences. For this experiment, we will

attempt to predict ‘hard’ EDUs, which we define

as EDUs which most models predict incorrectly.

However, it is not immediately clear what kinds

of features we should allow the model to use: on

the one hand, we would like to know what constel-

lations in gold RST trees are difficult, including

the gold relation label or the relative importance of

being a leaf node vs. a hub with many dependents,

as well as the contributions of DMs and distractors.

On the other hand, in a realistic scenario we would

not be able to know whether a DM is a distractor

without knowing the gold relation, and we would

not know how many dependents a node really has.

We thus construct two models: the REALIS-

TIC model only has access to features that can

reasonably be predicted without the gold parse, in-

cluding EDU length in tokens, presence of DMs

(whether helpful or distracting), the incoming syn-

tactic dependency relation (which can be predicted

by a syntax parser), the OOV rate, and genre. The

FULL model, by contrast, has access to all gold fea-

tures, including the gold relation class, intra-/inter-

sentential status, DM vs. distractor presence etc.

The first model is more relevant for realistic scenar-

ios in which we want to diagnose where parser er-
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rors are more likely (or how many we might incur),

while the second is more helpful for understand-

ing what is hard in an RST graph given the gold

graph itself. Note that neither model is fed features

from any outputs of the parser models above: the

parsers are only used to compute the number of

errors at each point, which the XGBoost model

attempts to predict. Figure 5 gives an analysis of

feature importances using classification gain6 for

both the REALISTIC and the FULL models, which

score 67.3% and 76.3% respectively over a major-

ity baseline score of 58.3%, which predicts that

RST parsers will never be wrong, for the bottom-

up architecture. For top-down, the scores of the

two models are 65.3% and 76.6% respectively.
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Figure 5: Feature Importances for the REALISTIC (top)

and FULL (bottom) XGBoost Models for GUM from

both BOTTOM-UP (left) and TOP-DOWN (right) Archi-

tectures. Very important features are highlighted in teal.

The XGBoost library’s plots automatically high-

light the most important features for both parser

architectures, which for the REALISTIC model

is only the syntactic function of the EDU. This

likely indicates the overwhelming importance of

knowing whether an EDU has a typical intra-

sentential role, such as a relative or adverbial

clause, which is likely to be predicted correctly.

The next features begin with length (short EDUs

are likely to have similar ones attested in training

data compared to long ones), then genre (since

some genres are harder), and only then the typical

NLP difficulty predictor, the OOV rate (which is

6Because XGBoost relies on gradient boosting with tree-
based learners, the effect of variable interactions is computed
within the classification gain metric, which is often used to
estimate feature importance (see e.g. Shang et al. 2019).

slightly less useful when EDU length is also known,

since the two correlate). The last feature, presence

of DMs, is still useful but less so, especially since

it folds in occurrences of helpful and distracting

DMs. There are no substantial differences between

top-down and bottom-up here for GUM v9.

Turning to the FULL model, we see that syntac-

tic function is still very important: it beats gold

label for bottom-up models and follows it for top-

down. Some relations are easier than others, or

different subsequent conditions apply to them, and

this matters about as much as the syntactic attach-

ment type. Number of children (a measure of tree

centrality vs. leaf status) is third, only then fol-

lowed by length and genre, which are still quite

helpful. Number of descendants (which is corre-

lated with children) follows for top-down, but is

far lower for bottom-up parsers. We then see OOV

rate outranking DMs, which outrank less impor-

tant features, such as the no longer crucial inter-

sentential/inter-paragraph status, which are also

highly correlated with some of the features above

(syntax for the former, number of children for the

latter, since many children are typical of paragraph

head units). Finally distractors are second to last,

far below DMs, also because they are rare.

These models indicate that predicting errors

without knowing the gold tree is challenging, but

a gain of 7–9% over baseline is still possible,

mainly by looking at syntactic structure, which

indicates inter-/intra-sentential status—a predictor

much more valuable than DM marking. By con-

trast, when looking at gold trees, hard parts can

most easily be associated with hard relations and

syntactic environments, but combining all of the

available features leads to an impressive ability to

predict where parser models will likely go wrong,

with ∼18% gain over baseline.

4.3 The Nature and Meaning of Distractors

Although the previous results suggest distractors

play a minor role, their independent correlation

with errors and the fact that DMs are generally

relevant to discourse relations, raise questions re-

garding their very existence: why do they appear

and how exactly do they affect parsers?

To begin with the second question, we examined

the 174 distractors in GUM. For most bottom-up

models, 108/174 (62.1%) were still erroneous, and

107/174 (62.1%) instances from the top-down mod-

els were erroneous. We then decided to manually
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label whether the majority model-predicted label

was consistent with the distractor: if the gold re-

lation is ELABORATION, the distractor is but, and

the prediction is ADVERSATIVE, then prediction is

consistent with the distractor, but if the prediction

is CONTINGENCY, then it is not. We use PDTB’s

mapping of connectives to classes to match DMs

to relations.

For 74/108 cases (68.5%) from the bottom-up

models and 68/107 cases (63.6%) from the top-

down models, the majority label was consistent

with the distractor—in other words, the parser may

be predicting based on a DM which would nor-

mally signal a competing relation. This brings us

to the second question: if the relations signaled

by distractors are incorrect, why are the distractors

present? As an example, we consider two such

cases from GUM, shown in (4)–(5).

(4) [if Steven didn’t see it as weird]
gold:EXPLANATION

−−−−−−−−−−→
pred:CONTINGENCY

[why

should it bother us?]GUM_fiction_teeth

(5) [so the reason seems to be that there are things
out there that put even these kaiju to shame

]
gold:EVALUATION

←−−−−−−−−−
pred:ADVERSATIVE

[But even this presents a problem

]GUM_reddit_monsters

In (4), the gold tree has the ‘if’-clause as a jus-

tification for why it ‘shouldn’t bother us’, which

makes sense pragmatically; but formally, the clause

seems like a legitimate conditional marked by if,

and parsers predict CONTINGENCY. In (5), the

annotation focuses on the evaluative meaning of

the words ‘a problem’, while parsers, probably pro-

voked by But, predict ADVERSATIVE.

We thus suspect that multiple, concurrent rela-

tions may actually hold in data where distractors

appear, which is a standard possibility in frame-

works like PDTB, where relations are identified

based on the presence of DMs. If this applies in

RST as well, then in a sense, such parser errors

are not really errors at all. Because RST enforces a

strict tree constraint, the only way to find out would

be to look at alternative RST trees.

In order to do just this, we utilize RST-DT’s

official double-annotated subset, which has trees

from a second annotator for 53 documents. This

subset overlaps only 5 documents in the RST-DT

test set, which contain only 12 distractors, mean-

ing that the scope of this last analysis is limited;

however, in examining these 12 distractors, we dis-

covered that 75% (9/12) actually corresponded to

relations selected as the primary RST relations

by the second annotator in the double annotated

data. In other words, the double annotated data

confirms that, at least in the case of the RST-DT

test set, a large majority of distractors do in fact

correspond to multiple concurrent relations, which

were identified by an experienced RST annotator.

5 Conclusion

This study has several important implications.

Firstly and unsurprisingly, the explicit/implicit dis-

tinction from shallow discourse parsing is mirrored

in RST parsing difficulty, and the dataset released

in this paper can help study it further. However,

explicit marking is clearly less consequential than

intra-sentential status, with which explicitness it

correlated. Secondly, OOV rate plays a less impor-

tant role than we initially suspected, while genre ef-

fects remain robust, suggesting that diverse genres

may matter more than subject matter. Our results

also indicate that current architectures do not differ

substantially in what they get right or wrong, and

with scores being so similar, differences reduce to

computational efficiency and personal preference.

Finally, the study of distractors suggest that

RST’s tree constraint may mix some cases of mul-

tiple concurrent relations with parsing errors, when

parsers are actually identifying viable relations.

This suggests that we may want to consider ways

of allowing and adding concurrent relations to RST

parses.

We also note that although the error prediction

models evaluated in Section 4.2 were primarily de-

veloped in order to gain a greater understanding

of the issues in discourse parsing, they could have

some practical applications.7 Predicting regions

of low certainty in discourse parses can: 1) as-

sist by highlighting low confidence regions in user-

facing downstream applications; 2) flag potential

problems during annotation of resources, especially

when relying on NLP (Gessler et al., 2020) or less

trained annotators/crowd workers (Scholman et al.,

2022; Pyatkin et al., 2023); and 3) help guide ad-

ditional resource acquisition, either automatically

using active learning (to prioritize documents pre-

dicted to have parsing problems for manual anno-

tation, cf. Gessler et al. 2022) or using qualitative

evaluation in deciding what data to collect in terms

of the relative importance of genres, presence of

OOV items, etc.

7We thank an anonymous reviewer for noting this.
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A Validation Performance

Table 6 shows our reproduced 5-run average pars-

ing performance on the dev partition of each cor-

pus. GUM v9 has an established dev partition

following the UD English GUM treebank. While

RST-DT does not have an established dev parti-

tion, we followed previous work by taking 10% of

training data stratified by the number of EDUs in

each document (Guz and Carenini, 2020), which

remained the same in the training for both parsers.

The list of document names used as development

data can be found in the repository of the paper for

reproducibility purposes.

corpora GUM v9 RST-DT

metrics S N R S N R

BOTTOM-UP

Guz and Carenini (2020)
67.9 64.8 46.8 76.0 64.9 55.2

TOP-DOWN

Liu et al. (2021)
69.3 56.3 48.1 75.0 64.6 55.7

Table 6: Validation Performance on GUM v9 and RST-

DT with Gold Segmentation (5 run average).
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