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Abstract

Existing datasets for causality identification in
argumentative texts have several limitations,
such as the type of input text (e.g., only claims),
causality type (e.g., only positive), and the lin-
guistic patterns investigated (e.g., only verb
connectives). To resolve these limitations, we
build the WEBIS-CAUSALITY-23 dataset, with
sophisticated inputs (all units from arguments),
a balanced distribution of causality types, and
a larger number of linguistic patterns denoting
causality. The dataset contains 1485 examples
derived by combining the two paradigms of
distant supervision and uncertainty sampling
to identify diverse, high-quality samples of
causality relations, and annotate them in a cost-
effective manner.

1 Introduction

Causality identification is a vital task in natural
language processing that can contribute to differ-
ent downstream applications such as question an-
swering, fact-checking, and commonsense reason-
ing. The task which concerns identifying texts
with causality relations, the type of relations (posi-
tive or negative), and the concepts involved in the
relations, is studied in diverse domains including
biomedicine (Kyriakakis et al., 2019), education
(Stasaski et al., 2021), and recently computational
argumentation (Al-Khatib et al., 2020).

In computational argumentation, causality iden-
tification impacts fundamental tasks such as topic-
independent argument mining and building large-
scale argumentation graphs (Reisert et al., 2018).
Despite its importance, only a few annotated
datasets for identifying causality have been built
so far. Moreover, these datasets often focus only
on one argument component (e.g., claim), encode
bias towards the ‘positive’ type of causality, and/or
consider a limited number of linguistic patterns that
capture causality (e.g., verb connectives). As such,
developing robust supervised learning approaches

based on these datasets for causality identification
becomes more laborious.

This paper aims to expand and enrich the
available data for causality identification in argu-
mentative texts written in English with WEBIS-
CAUSALITY-23, a new dataset comprised of 1485
examples of more sophisticated input text (i.e., the
whole argument), covers more causality patterns,
and maintains a balanced distribution of causality
types. To this end, we develop an approach that
comprises two main steps: distant supervision and
uncertainty sampling. First, we identify 10,329
candidate sentences for causality via distant super-
vision. Next, we employ uncertainty sampling on
these candidates and manually annotate 1485 ar-
gumentative sentences (via crowdsourcing), 867
of which contain at least one causal relation. Of
these, 515 sentences are further annotated as con-
taining a positive cause-effect relation, and 536 as
containing a negative one. Many sentences encode
multiple relations, and involve diverse linguistic
patterns (see Section 3).

We train transformer-based classifiers using our
newly built dataset, and reach high effectiveness
in identifying causal relations compared to several
baselines. The developed resources in the paper
(e.g., data and code) are made freely available.1

2 The WEBIS-CAUSALITY-23 Dataset

In this section, we describe our method for con-
structing the dataset. In particular, we first outline
the distant supervision step, then, we discuss the
uncertainty sampling.

2.1 Distant Supervision
Distant supervision is the process of mining suit-
able training examples from weakly labeled data
sources using task-specific heuristics (Mintz et al.,

1https://github.com/webis-de/
SIGDIAL-23

https://github.com/webis-de/SIGDIAL-23
https://github.com/webis-de/SIGDIAL-23
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2009). These examples can then be used for su-
pervised learning of the task at hand. Here, we
employ distant supervision to find argumentative
sentences that are more likely to encode causality
relations, without being restricted to certain topics
or linguistic patterns. Specifically, we first collect
pairs of concepts that are involved in a causality
relation, using the corpus of Al-Khatib et al. (2020).
Second, we acquire a set of argumentative texts and
segment them into self-contained sentences. Lastly,
we extract the argumentative sentences that contain
at least one of the concept pairs.

Concept Pair Collection In this step, we utilize
the corpus of Al-Khatib et al. (2020) to collect
various concepts related to causality. The corpus
covers 4740 claims extracted from Debatepedia –
an online debate portal. Each claim is manually
annotated for the presence of a causality relation
(called ‘effect’), the type of the relation (positive or
negative), and the concepts that are involved in the
found relation. For example, the claim “legaliza-
tion of drugs increases drug consumption” exhibits
a positive effect relation involving the concepts of
legalization of drugs and drug consumption.

We carefully review these concepts and manu-
ally perform two filtering steps: (1) we simplify the
complex concepts (e.g., from “the state can regu-
late the sale” to “sale regulation”), and we (2) split
some concepts into multiple ones (e.g., “crime and
safety problems” is split into “crime” and “safety
problems”). Overall, we end up with 1930 unique
concepts grouped into pairs, each of which consists
of two concepts involved in the same relation (e.g.,

“legalizing marijuana” and “safety”).

Argumentative Data Acquisition and Simplifica-
tion We rely on the Args.me corpus (Ajjour et al.,
2019) as the source of the argumentative data. The
corpus includes 387,606 arguments from various
debates regarding controversial topics. The argu-
ments are derived from four popular debate por-
tals: Debatewise (14,353 arguments), IDebate.org
(13,522 arguments), Debatepedia (21,197 argu-
ments), and Debate.org (338,620 arguments).

To split the arguments into coherent and self-
contained sentences, we use Graphene (Cetto et al.,
2018), an open information extraction tool. This
tool performs discourse simplification, in which
an input sentence is syntactically simplified and
split (if necessary) into sentences with resolved co-
reference and high coherence. Altogether, the argu-

ments are segmented into 10,720,451 sentences.

Concept Pairs and Argumentative Data Match-
ing In this step, for each sentence in the acquired
argumentative data, we check whether it includes
any of the concept pairs. Using full-string matches
between the concepts and the sentences’ tokens (af-
ter stemming with Porter Stemmer (Porter, 1980)),
we obtain around 28,000 sentences that match at
least one concept pair. We additionally filter them
by removing duplicates, all hyperlinks, and special
characters contained in the sentences. Besides, on
manual inspection, we observed that matching with
generic concepts such as “individuals” or “corpo-
ration” lead to noisy sentences not actually con-
taining any causality relations and were therefore
excluded. As a result, we end up with 10,329 sen-
tences. To evaluate the filtering process, we check
a random sample of 100 sentences before and after
filtering. We observe an increase in the number of
sentences with causality relations (from 56 to 70).

2.2 Uncertainty Sampling
Uncertainty sampling is one of the strategies em-
ployed in active learning (Settles, 2012). Given
an initial classification model and a pool of unla-
beled samples, the goal is to select those samples
for labeling for which the classifier’s confidence is
lowest, i.e., the predicted class distribution is clos-
est to uniform, and thus maximize the information
gain to the model. Following this idea, we train
causality identification models on the labeled sam-
ples in the Al-Khatib et al. (2020) dataset, and use
the argumentative sentences acquired from the dis-
tant supervision step as the unlabeled pool. Next,
based on the confidence of these models, we sam-
ple a subset of the sentences and annotate them
manually via crowdsourcing.

Candidate Sentence Selection Causality identi-
fication is often comprised of three classification
sub-tasks; given an input text, (1) detect whether
the text contains a causality relation, (2) identify
the type of causality, and (3) determine the entities
or events representing the cause and effect relation.

For the first two sub-tasks, we develop several
classification models using the corpus of Al-Khatib
et al. (2020) containing labels for the causality rela-
tion (‘effect’), and the type of relation (positive or
negative). The models are based on XLNet (Yang
et al., 2019), RoBERTa (Liu et al., 2019), Distil-
BERT (Sanh et al., 2019), ALBERT (Lan et al.,
2019), BERT (Devlin et al., 2019), NBSVM (Wang
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and Manning, 2012), and Fasttext (Joulin et al.,
2016). The implementation is done using the Hug-
gingFace library (Wolf et al., 2020) with default set-
tings. In particular, RoBERTa and XLNet achieve
high effectiveness with F1 scores of 0.88 and 0.91
for the first and second tasks respectively, com-
pared to 0.81 and 0.86 achieved by the feature-rich
SVM approach of Al-Khatib et al. (2020). We
apply the two best-performing transformer-based
models (RoBERTa and XLNet) to the 10,329 ar-
gumentative sentences obtained from the distant
supervision step. Using these models’ confidence
scores, we distribute the sentences into nine bins:
the first bin represents the highest confidence for
the ‘no-causality’ class, and the last bin represents
confidence for the ‘causality’ class.

We aim to find sentences that encode new
causality patterns while maximizing the number
of sentences with the ‘negative-causality’ class.
Thus, our uncertainty sampling filters out the sen-
tences with high confidence for the ‘causality’, ‘no-
causality’, and ‘positive-causality’ classes. This
results in 1937 sentences for our manual annota-
tion.

Sentence-level Manual Annotation We conduct
an annotation task for causality identification via
Amazon Mechanical Turk for the 1937 sampled
sentences,which requires identifying all the causal-
ity relations in a sentence. In particular, for each
identified causality relation, the workers are asked
to specify the causality relation’s type, the con-
cepts involved in the relation, and the sentence’s
phrase(s) that indicate the presence and type of
the relation. The workers also have the option to
point out sentences that are not comprehensible
or/and include several grammatical errors. The
task instructions are carefully explained using writ-
ten guidelines and demonstration videos, covering
various causality relations with different linguistic
patterns.

We first ask three experts in computational lin-
guistics to annotate 100 sentences, and use their
feedback to refine the guideline and improve the an-
notation interface for the crowdsourcing task. Each
sentence is annotated by three different workers.
For quality control, we hire native English speak-
ers with a task approval rate of at least 98%. We
closely monitor and review the annotations, reject-
ing workers that perform poorly. In total, 285 work-
ers successfully participated in our task, resulting
in 1485 sentences with high-quality annotations.

Causality Positive Negative Multiple

Expert 0.34 0.66 0.70 0.28
Crowd 0.27 0.31 0.36 0.03

Table 1: Inter-annotator agreement (Krippendorff’s al-
pha) for the expert and crowdsourcing annotations.

We pay a fair hourly wage for the annotators.

3 Dataset Analysis

In this section, we present both qualitative and
quantitative analyses of the WEBIS-CAUSALITY-
23 dataset. The qualitative analysis encom-
passes an examination of inter-annotator agree-
ment, dataset statistics, and identified patterns
within the dataset. On the other hand, the quan-
titative analysis involves leveraging the constructed
dataset to develop a new causality classifier.

3.1 Qualitative Analysis
Inter-annotator Agreement The inter-annotator
agreement, measured using Krippendorff’s alpha
and presented in Table 1, provides insights into the
level of agreement among both experts and crowds.
While the crowd’s agreement is relatively lower
compared to experts, they still achieve a reasonable
level of agreement for causality and types (ranging
from 0.27 to 0.36). However, the crowd tends to
prioritize annotating only one relation per sentence,
potentially overlooking instances with multiple re-
lations. These findings highlight the subjective na-
ture of the task and the intricate linguistic patterns
within the sentences. It is worth noting that the ma-
jority of cases fall into the scenario where two out
of the three annotators agree, which significantly
helps in obtaining a reliable gold standard.

Dataset Statistics The annotations are aggre-
gated based on majority vote, with one exception:
we consider a sentence to have multiple relations as
long as at least one annotator found multiple rela-
tions there. Table 2 shows statistics for our dataset:
there is a high percentage of causal relations, es-
pecially of the negative type; a quarter of the sen-
tences contain more than one relation. This demon-
strates the cost-effectiveness of our construction
method; we obtain a rich set of causal sentences
by annotating only 1937 examples. The annotation
study costs around 400 EUR.

Dataset Inspection We manually examine the
dataset, exploring the causality linguistic patterns
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Expert Crowd

Causality
Overall 80 100% 1324 100%
Relation 48 60% 819 62%
No Relation 32 40% 505 38%

Relation Type
Overall 48 100% 819 100%
Positive 29 60% 486 59%
Negative 29 60% 507 62%

Multiple Relations
Overall 48 100% 819 100%
Single 34 71% 614 75%
Multiple 14 29% 205 25%

Table 2: Sentence statistics of the WEBIS-CAUSALITY-
23 dataset. Relation type percentages do not sum to 100
since sentences can have multiple relations.

X positive7−→ A, B
Social mediaX can fuel anxietyA and depression.B

X negative7−→ A, C, D; X positive7−→ B
GM foodsX are safe for human consumption, reduce pesti-
cide,A increase yield,B decrease cost,C and combat global
warming.D

X negative7−→ A, B, C, D; Y positive7−→ A, B, C, D
MarijuanaX can relieve certain types of pain,A nausea,B

vomitingC and other symptomsD caused by such illnesses as
cancer.Y

X negative7−→ Y; X positive7−→ <Z negative7−→ Y>
Genetic screeningX for the embryos can reduce the chance
of giving birth to more than one child;Y because clinicsZ

now want to prevent this by planting one embryo at a time
and they have to do this through genetic screening.

Table 3: Examples of the found patterns for causality in
the set of the sentences with multiple relations.

and the structure of the sentences with multiple
relations. As for the linguistic patterns, we look
at the list of phrases (provided by the annotators)
that indicate a causality relation, finding different
causal connectives such as verbs (“prevent, “pro-
mote”), verb phrases (“leads to”), conjunctions
(“because”), prepositional phrases (“because of,
due to”), and clauses (“the source of, is an addition
to, can be tied to, becomes a burden for”).

Besides, we find different patterns for causal-
ity in the sentences that contain multiple relations.
Examples of these patterns are shown in Table 3.
The examples exemplify diverse levels of complex-
ity in encoding relations within different argument
components. For instance, the last example demon-
strates relations found in a complete argument.

3.2 Quantitative Analysis
To evaluate the impact of our constructed dataset,
we employ it to develop a new classifier for causal-
ity identification. We compare the effectiveness of
this classifier to another one that is developed using
the corpus of Al-Khatib et al. (2020).

To build a classifier based on our new dataset,
we first split the dataset into training (80%) and test
(%20) sets. The split considers the topics of the
sentences, placing sentences with the same topic in
either the training or test sets.

For evaluation, we tackle the task of identifying
whether a sentence has causality relation(s), im-
plementing three classifiers based on the XLNet
model: (C1) this classifier is trained by the training
set of Al-Khatib et al. (2020), (C2) this classifier is
trained by the training set of our new constructed
dataset, and (C3) this classifier is trained by the
combination of the training sets of the new and
old classifiers. We focus on causality identification
because Al-Khatib et al. (2020) do not consider
multiple relations, making their dataset partially
incompatible for causality type identification.

We apply the three classifiers to the test set of
Al-Khatib et al. (2020) (D1), the test set of our new
dataset (D2), and both test sets combined (Table 4).
In general, the classifier trained on (D2) outper-
forms the baseline, and using the classifier that is
trained with the combined training set (C3) always
leads to the best effectiveness, which speaks for the
positive impact of our new dataset.

Classifier D1 D2 D1+D2

C1 0.88 0.63 0.82
C2 0.74 0.71 0.74
C3 0.89 0.75 0.85

Majority Class Baseline 0.64 0.53 0.62

(Al-Khatib et al., 2020) 0.81 - -

Table 4: F1 scores for causality identification. D1 is the
test set of Al-Khatib et al. (2020), D2 is our test set.

4 Related Work

In general, causality datasets are expensive to build,
scarce, small, biased towards one class, focused
on only a single aspect of causality (e.g., whether
a sentence has a causal relation or not), and in-
clude limited linguistic patterns (due to their sam-
pling method, e.g., via a seed list of causal verbs).
Recently, Xu et al. (2020) reviewed six publicly-
available datasets. The largest, AltLex (Hidey and
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McKeown, 2016), comprises nearly 45,000 sen-
tences, but they are annotated only for the pres-
ence of causal relations, and only 10% are causal;
the other five datasets are an order of magnitude
smaller, and exhibit similar bias.

In addition, the EventStoryLine Corpus (Caselli
and Vossen, 2017), which is frequently used in re-
lated work, comprises several thousand causal links
but no annotated negative samples. Additionally,
Al-Khatib et al. (2020) introduce a corpus com-
prising 4740 claims extracted from argumentative
texts, with 36% of these claims being annotated as
containing a causal relation. Given that this corpus
is the only one specifically focused on argumenta-
tive texts, we utilize it in our distance supervision
and uncertainty sampling techniques. Our objec-
tive is to achieve broader coverage of new causality
patterns through the incorporation of this corpus.

Du et al. (2022) present a human-annotated
dataset consisting of over 21,000 causal reasoning
questions, each accompanied by a natural language
explanation providing insight into the underlying
cause of the observed causation. Due to the scarcity
of multilingual datasets with reliable and consis-
tent annotations for event causality relations, Lai
et al. (2022) present a new multilingual dataset that
utilizes consistent annotation guidelines for five
typologically distinct languages.

Perhaps most closely related to our own work,
Zuo et al. (2020) propose a distant supervision-
based data augmentation framework to address the
data scarcity problem in causality. Whereas their
approach involves a fully automated causal event
pair extraction for distant supervision, we propose a
framework based on uncertainty sampling, aiming
to both improve the quality, and drive down the
cost of hand-labeled corpora.

5 Conclusion

In this paper, we present WEBIS-CAUSALITY-23,
a new dataset for causality identification in argu-
mentative texts that considers all argument units
(claims, premises) as inputs. The 1485 argumenta-
tive sentences in the dataset comprise a balanced
distribution of the positive and negative causality
types and encode diverse linguistic patterns de-
noting causality. Initial experiments on causality
identification using transformer-based classifiers
demonstrate the effectiveness of our smaller yet
high-quality dataset in comparison to a larger exist-
ing corpus with some limitations.

Our future plans involve utilizing our dataset to
extract causality relations from diverse argumenta-
tive resources on the Web. Our main objectives are
to construct a large-scale argumentation graph, en-
hance argument scheme classification, and improve
argument explanation and simplification methods.
Additionally, we intend to leverage this dataset to
develop a question-answering system specifically
designed to address causal questions.

References
Yamen Ajjour, Henning Wachsmuth, Johannes Kiesel,

Martin Potthast, Matthias Hagen, and Benno Stein.
2019. Data Acquisition for Argument Search: The
args.me corpus. In 42nd German Conference on
Artificial Intelligence (KI 2019), pages 48–59, Berlin
Heidelberg New York. Springer.

Khalid Al-Khatib, Yufang Hou, Henning Wachsmuth,
Charles Jochim, Francesca Bonin, and Benno Stein.
2020. End-to-end argumentation knowledge graph
construction. In The Thirty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2020, The Thirty-
Second Innovative Applications of Artificial Intelli-
gence Conference, IAAI 2020, The Tenth AAAI Sym-
posium on Educational Advances in Artificial Intel-
ligence, EAAI 2020, New York, NY, USA, February
7-12, 2020, pages 7367–7374. AAAI Press.

Tommaso Caselli and Piek Vossen. 2017. The Event
StoryLine Corpus: A New Benchmark for Causal
and Temporal Relation Extraction. In Proceedings of
the Events and Stories in the News Workshop, pages
77–86, Vancouver, Canada. Association for Compu-
tational Linguistics.

Matthias Cetto, Christina Niklaus, André Freitas,
and Siegfried Handschuh. 2018. Graphene:
Semantically-linked propositions in open information
extraction. In Proceedings of the 27th International
Conference on Computational Linguistics, COLING
2018, Santa Fe, New Mexico, USA, August 20-26,
2018, pages 2300–2311. Association for Computa-
tional Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Li Du, Xiao Ding, Kai Xiong, Ting Liu, and Bing Qin.
2022. e-CARE: a new dataset for exploring explain-
able causal reasoning. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 432–446,

https://doi.org/10.1007/978-3-030-30179-8_4
https://doi.org/10.1007/978-3-030-30179-8_4
https://aaai.org/ojs/index.php/AAAI/article/view/6231
https://aaai.org/ojs/index.php/AAAI/article/view/6231
https://doi.org/10/gghr9t
https://doi.org/10/gghr9t
https://doi.org/10/gghr9t
https://www.aclweb.org/anthology/C18-1195/
https://www.aclweb.org/anthology/C18-1195/
https://www.aclweb.org/anthology/C18-1195/
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2022.acl-long.33
https://doi.org/10.18653/v1/2022.acl-long.33


354

Dublin, Ireland. Association for Computational Lin-
guistics.

Christopher Hidey and Kathy McKeown. 2016. Iden-
tifying causal relations using parallel wikipedia arti-
cles. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics, ACL
2016, August 7-12, 2016, Berlin, Germany, Volume
1: Long Papers. The Association for Computer Lin-
guistics.

Armand Joulin, Edouard Grave, Piotr Bojanowski,
Matthijs Douze, Hérve Jégou, and Tomas Mikolov.
2016. Fasttext.zip: Compressing text classification
models. arXiv preprint arXiv:1612.03651.

Manolis Kyriakakis, Ion Androutsopoulos, Artur Saud-
abayev, and Joan Ginés i Ametllé. 2019. Transfer
learning for causal sentence detection. In Proceed-
ings of the 18th BioNLP Workshop and Shared Task,
BioNLP@ACL 2019, Florence, Italy, August 1, 2019,
pages 292–297. Association for Computational Lin-
guistics.

Viet Dac Lai, Amir Pouran Ben Veyseh, Minh Van
Nguyen, Franck Dernoncourt, and Thien Huu
Nguyen. 2022. MECI: A multilingual dataset for
event causality identification. In Proceedings of the
29th International Conference on Computational Lin-
guistics, pages 2346–2356, Gyeongju, Republic of
Korea. International Committee on Computational
Linguistics.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learn-
ing of language representations. arXiv preprint
arXiv:1909.11942.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Mike Mintz, Steven Bills, Rion Snow, and Daniel Ju-
rafsky. 2009. Distant supervision for relation ex-
traction without labeled data. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP, pages
1003–1011, Suntec, Singapore. Association for Com-
putational Linguistics.

Martin F. Porter. 1980. An algorithm for suffix stripping.
Program: electronic library and information system,
14(3):130–137.

Paul Reisert, Naoya Inoue, Tatsuki Kuribayashi, and
Kentaro Inui. 2018. Feasible annotation scheme for
capturing policy argument reasoning using argument
templates. In Proceedings of the 5th Workshop on
Argument Mining, pages 79–89, Brussels, Belgium.
Association for Computational Linguistics.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. In NeurIPS
EMC2̂ Workshop.

Burr Settles. 2012. Active Learning. Synthesis Lectures
on Artificial Intelligence and Machine Learning. Mor-
gan & Claypool Publishers.

Katherine Stasaski, Manav Rathod, Tony Tu, Yunfang
Xiao, and Marti A. Hearst. 2021. Automatically gen-
erating cause-and-effect questions from passages. In
Proceedings of the 16th Workshop on Innovative Use
of NLP for Building Educational Applications, pages
158–170, Online. Association for Computational Lin-
guistics.

Sida I. Wang and Christopher D. Manning. 2012. Base-
lines and bigrams: Simple, good sentiment and topic
classification. In The 50th Annual Meeting of the
Association for Computational Linguistics, Proceed-
ings of the Conference, July 8-14, 2012, Jeju Island,
Korea - Volume 2: Short Papers, pages 90–94. The
Association for Computer Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Jinghang Xu, Wanli Zuo, Shining Liang, and Xianglin
Zuo. 2020. A review of dataset and labeling methods
for causality extraction. In Proceedings of the 28th
International Conference on Computational Linguis-
tics, COLING 2020, Barcelona, Spain (Online), De-
cember 8-13, 2020, pages 1519–1531. International
Committee on Computational Linguistics.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V Le.
2019. Xlnet: Generalized autoregressive pretrain-
ing for language understanding. arXiv preprint
arXiv:1906.08237.

Xinyu Zuo, Yubo Chen, Kang Liu, and Jun Zhao. 2020.
Knowdis: Knowledge enhanced data augmentation
for event causality detection via distant supervision.
In Proceedings of the 28th International Confer-
ence on Computational Linguistics, COLING 2020,
Barcelona, Spain (Online), December 8-13, 2020,
pages 1544–1550. International Committee on Com-
putational Linguistics.

https://doi.org/10.18653/v1/p16-1135
https://doi.org/10.18653/v1/p16-1135
https://doi.org/10.18653/v1/p16-1135
https://doi.org/10.18653/v1/w19-5031
https://doi.org/10.18653/v1/w19-5031
https://aclanthology.org/2022.coling-1.206
https://aclanthology.org/2022.coling-1.206
https://www.aclweb.org/anthology/P09-1113
https://www.aclweb.org/anthology/P09-1113
https://doi.org/10.1108/eb046814
https://doi.org/10.18653/v1/W18-5210
https://doi.org/10.18653/v1/W18-5210
https://doi.org/10.18653/v1/W18-5210
https://doi.org/10.2200/S00429ED1V01Y201207AIM018
https://www.aclweb.org/anthology/2021.bea-1.17
https://www.aclweb.org/anthology/2021.bea-1.17
https://www.aclweb.org/anthology/P12-2018/
https://www.aclweb.org/anthology/P12-2018/
https://www.aclweb.org/anthology/P12-2018/
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.coling-main.133
https://doi.org/10.18653/v1/2020.coling-main.133
https://doi.org/10.18653/v1/2020.coling-main.135
https://doi.org/10.18653/v1/2020.coling-main.135

	Introduction
	The Webis-Causality-23 Dataset
	Distant Supervision
	Uncertainty Sampling

	Dataset Analysis
	Qualitative Analysis
	Quantitative Analysis

	Related Work
	Conclusion

