
Proceedings of the 24th Meeting of the Special Interest Group on Discourse and Dialogue, pages 370–380
September 11–15, 2023. ©2023 Association for Computational Linguistics

370

Reference Resolution and New Entities in Exploratory Data Visualization:
From Controlled to Unconstrained Interactions with a Conversational

Assistant

Abari Bhattacharya∗1, Abhinav Kumar∗1, Barbara Di Eugenio1,
Roderick Tabalba2, Jillian Aurisano3, Veronica Grosso1,

Andrew Johnson1, Jason Leigh2, and Moira Zellner4

1University of Illinois Chicago
{abhatt62, akumar34, bdieugen, vgross3, ajohnson}@uic.edu

2University of Hawaii at Manoa{tabalbar, leighj}@hawaii.edu
3University of Cincinnatijillian.aurisano@uc.edu

4Northeastern University m.zellner@northeastern.edu

Abstract
In the context of data visualization, as in other
grounded settings, referents are created by the
task the agents engage in and are salient be-
cause they belong to the shared physical setting.
Our focus is on resolving references to visual-
izations on large displays; crucially, reference
resolution is directly involved in the process
of creating new entities, namely new visualiza-
tions. First, we developed a reference resolu-
tion model for a conversational assistant. We
trained the assistant on controlled dialogues
for data visualizations involving a single user.
Second, we ported the conversational assistant
including its reference resolution model to a
different domain, supporting two users collabo-
rating on a data exploration task. We explore
how the new setting affects reference detection
and resolution; we compare the performance
in the controlled vs unconstrained setting, and
discuss the general lessons that we draw from
this adaptation.

1 Introduction

Conversation is understood in context. When the
world, whether real or simulated, can change be-
cause of the user’s actions, new entities are cre-
ated by the processes that change the world itself:
then, reference resolution, which links what the
user refers to with objects in the world, is crucial
for a dialogue system to effectively respond to the
user, including by creating new entities.

Our overall research program aims to develop
and deploy flexible conversational assistants to sup-
port users, whether causal or professional, and
whether alone or in teams, explore data via visu-
alizations on large screen displays - large screen
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displays better support exploration and collabora-
tion (Andrews et al., 2011; Rupprecht et al., 2019;
Lischke et al., 2020). In this paper, we focus on
new entity establishment via reference in such con-
texts. We start from the corpus Chicago-Crime-
Vis we collected a few years back (Kumar et al.,
2016, 2017) in which a user exploring crime data
in Chicago interacts with a Visualization Expert
(VE) whom they know to be a person generating
visualizations on the screen remotely from a sep-
arate room. On the basis of Chicago-Crime-Vis,
we designed and developed a version of our assis-
tant which was called Articulate2 (Aurisano et al.,
2016; Kumar et al., 2020) 1. We will report the
performance of Articulate2 on reference resolu-
tion, and especially reference establishment, with
respect to the transcribed and annotated Chicago-
Crime-Vis corpus, evaluated in an offline manner.
The second part of our paper discusses the chal-
lenges that arose when we ported Articulate2 to
a new setting: two collaborators work together to
assess COVID policies given geographic and de-
mographic features of the data, and interact exclu-
sively with the deployed Articulate+ (see Figure 1).
We will illustrate the many issues which degrade
performance, from speech processing errors, to the
adaptation of models to new domains, to the inher-
ently more complex setting in which the assistant
is now behaving like an overhearer of somebody
else’s conversations. For clarity, we will refer to
Articulate2 in the city crime domain as Art-City-
Asst, and to Articulate+ in the COVID domain, as
Art-COVID-Asst.

A disclaimer before we proceed: the purpose
1The first interface we developed in this space was called

Articulate (Sun et al., 2010).
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of this work was to adapt a previously developed
conversational assistant and to evaluate it in a more
unconstrained setting. We do not believe in chas-
ing after the latest shiny approach, including Chat-
GPT2, and undertake a potentially infinite loop of
changes which would never bring us to real user
studies. Additionally, we strongly believe in eco-
logically valid data, such as our Chicago-Crime-Vis
data. This data is by nature small, in fact tiny as
compared to most current datasets. We will return
to these issues in the Conclusions.

Figure 1: User setting for COVID data exploration, with
two collaborators

2 Related Work

2.1 Conversational assistants for data
visualization

Earlier work on conversational assistants for data
visualization include (Cox et al., 2001), which es-
tablished the benefits of using NL to generate vi-
sualizations for exploratory data analysis. In the
ensuing 20 years, several such systems emerged in
this area, see (Shen et al., 2023) for a systematic sur-
vey: e.g., DataTone (Gao et al., 2015a), FlowSense
(Yu and Silva, 2020), Eviza (Setlur et al., 2016a)
and DT2VIZ (Jiang et al., 2021). Lately, Large
Language Models (LLMs) have started being in-
tegrated into visualization tools (e.g., PandasAI
from OpenAI3), but not as part of a conversational
assistant that keeps track of dialogue history.

Our previous work - the Articulate assistant se-
ries. Our research program started more than 10
years ago with Articulate, one of the first conver-
sational assistants for creating data visualizations
(Sun et al., 2010), as also noted by (Shen et al.,

2https://openai.com/product/chatgpt
3https://www.kdnuggets.com/2023/05/pandas-ai-

generative-ai-python-library.html

2023). The first Articulate would only respond to
individual commands, but even so, users were 12
times faster when using Articulate to generate a
chart in comparison to a spreadsheet program (Mi-
crosoft Excel). Still, the commands that Articulate
would answer to were not grounded in actual hu-
man data; hence, we collected the Chicago-Crime-
Vis corpus (Aurisano et al., 2015; Kumar et al.,
2016, 2017) that informed a new prototype, Ar-
ticulate2, a multimodal system that could support
speech commands and gestures to facilitate data ex-
ploration tasks (Kumar et al., 2020; Kumar, 2022);
and whose reference resolution component we are
discussing in this paper. Subsequently, we ported
Articulate2 to the COVID domain, dubbed it Ar-
ticulate+ and developed two versions of the NLI:
Articulate+-PE and Articulate+-DM. Articulate+-
PE (Tabalba et al., 2023, 2022), was developed
independently (from scratch), and works by identi-
fying database properties or attributes mentioned
directly or indirectly in the utterances. To iden-
tify the chart types given the utterance, it uses
a Chart Classifier Neural Network trained on a
small dataset of utterances from a preliminary user
study using NLP.js library 4. However it lacks dia-
logue management as well as reference resolution.
The other version, Articulate+-DM, is Articulate2
ported to the COVID domain. To reiterate then, in
this paper we discuss the evaluation of Articulate2,
in its incarnation as Art-City-Asst evaluated offline
on the Chicago-Crime-Vis data (Section 5), and
in its second incarnation in the COVID domain as
Art-COVID-Asst evaluated in an actual user study
(Section 6).

2.2 Co-Reference Resolution

This field is as old and as vast as NLP; here we
focus on its applications to visualization, which
are hindered by several limitations: e.g., only ref-
erents to objects within the current visualization
are handled (Sun et al., 2010; Gao et al., 2015b;
Narechania et al., 2020), or only referents for
follow-up queries on a current visualization are
tracked (Reithinger et al., 2005; Setlur et al., 2016b;
Hoque et al., 2017; Srinivasan and Stasko, 2017).
As (Shen et al., 2023) concludes, "existing [ap-
proaches] mostly leverage NLP toolkits to perform
co-reference resolution. Although useful, they lack
detailed modeling of visualization elements" or, we
would add, of what has transpired earlier in the

4https://github.com/axa-group/nlp.js/
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dialogue. In contrast to this, we focus on reference
resolution within an environment in which visu-
alizations are dynamically added to and removed
from the screen, and can subsequently be referred
to. This requires accommodating context change,
a notion first introduced by (Webber and Baldwin,
1992) in their discussion of new entities that are the
results of physical processes as in cooking (e.g., the
dough resulting from mixing flour, butter and wa-
ter). In the 30 years since, not much work has been
done on how to accommodate the creation of new
entities5 (see (Wilson et al., 2016) for documents
and (Li and Boyer, 2016) for tutoring dialogues
about programming), and none in the visualization
domain. Note we do not focus on multimodal ref-
erence resolution, another vast area (Navarretta,
2011; Qu and Chai, 2008; Eisenstein and Davis,
2006; Prasov and Chai, 2008; Iida et al., 2011;
Kim et al., 2017; Sluÿters et al., 2022), even if we
will briefly touch on deictic gestures in Section 3.

3 Controlled Dataset: Chicago-Crime-Vis

Our Chicago-Crime-Vis corpus comprises multi-
modal interaction for 16 subjects that explored pub-
lic crime data in our city to better deploy police offi-
cers.6 As noted, they spoke with a human VE who
remotely created visualizations on a large screen,
was not visible and did not speak back. The cor-
pus contains 3.2K utterances. Since the user was
encouraged to reason out loud about the patterns
discovered via visualization, conversational turns
often start with think aloud, followed by what we
call an actionable request (AR) for the VE.

Using ANVIL (Kipp, 2001, 2014), we annotated
449 CARs (contextual actionable requests), cov-
ering 1545 utterances: a CAR consists of setup,
i.e. think aloud prior to the AR (up to and includ-
ing utterances that mention data attributes, if any);
the AR; and the conclusion, the think aloud subse-
quent to the AR (also based on data-attribute men-
tions). While each AR is just one utterance, each of
set-up and conclusion may include more than one
—on average, 1.8 and 2 respectively. (See Table 1,
Chicago-Crime-Vis(H) column for the distribution
of set-ups and ARs annotated in the dataset). Fig-

5Work in formal pragmatics that models extra-linguistic
context exists - e.g. see (Stojnic et al., 2013; Hunter, 2014),
but as far as we know, it has not been used to model references
in actual physical contexts.

6We acknowledge that this task may be fraught in the era
of Black Lives Matter in the United States. This data was col-
lected prior to 2020, when the current awakening as concerns
policing and racism surfaced to public consciousness.

Chicago-
Crime-Vis (H) COVID (A) COVID (T)

Set-up 218 73 149
AR 449 1296 2563

Table 1: Total count of Set-ups and ARs in the 3 user
studies —H: Human; A: Automatic; T: Transcript

ure 2 shows two CARs from our corpus, which we
will use as our running example.

Figure 2: Excerpt comprising two CARs;references
shown in red and slot fillers in green. In CAR #1 visu-
alization "08 − 3" is specified via temporal axis DAY
associated with slot filler "week" and similarly CRIME
for "crimes". CAR #2 creates "09" substituting tempo-
ral axis DAY in "08−3" with MONTH, associated with
slot filler "month of year". The identifiers are internal
to the system but not visible to the users.

Each AR is annotated for user intent with one
of 8 Dialogue Acts (DA) labels (with excellent
intercoder agreement on the 8-way annotation,
k = 0.74), including: WINMGMT for window
management operations, e.g., closing, or minimiz-
ing; CREATEVIS for creating a new visualization
from scratch; MODIFYVIS for creating a new vi-
sualization based on an existing one. The tran-
scribed corpus is publicly available7, and so is an
augmented dataset built to alleviate data scarcity,
comprising a 10-fold increase to 160 subjects cov-
ering approximately 15K utterances obtained via
delexicalization and paraphrasing.

Referring Expression Annotation. We anno-
tated both text (NPs) and gestural references to
visualizations. Hand gestures were coded with var-
ious labels (e.g., the kind of gesture, the objects
pointed to on the screen, and so on); approximately

7https://github.com/uic-nlp-lab/Chicago-crime-vis-
corpus
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Category Setup AR
Overall 19 109
Single Referents 18 86
Single Targets 14 66

Table 2: Chicago-Crime-Vis text reference distribution

a third were identified as referential when they co-
occur with text references. We labeled a total of
294 references in the 449 CAR’s, of which 176
textual, and 118 gesture. We obtained an excellent
intercoder agreement of κ = 0.85 with 2 judges on
the full interaction from one subject. Given lack
of space, and because in our unconstrained setting
gestures were not addressed, we will not discuss
gestures further. Table 2 shows the text reference
distribution where within the 176 text references
(of which 19 appear in set-up, 109 in AR, and 58
in conclusions). We also annotated 680 phrases
as slot fillers corresponding to data attributes (i.e.,
slots) in our knowledge ontology (KO). The KO
was semi-automatically constructed via external
sources such as our city portal, augmented with
synsets extracted from Wordnet8 and Babelnet 9;
it comprises 3.5K total terms categorized into 11
parent types such as CRIME TYPE, NEIGHBOR-
HOOD, TIME etc, of which about half are common
nouns and about half proper nouns pertaining to
Chicago.

4 Co-Reference: Detection, Resolution,
and New Entity Establishment

We briefly discuss the NLP engine (in the context
of the full conversational assistant, see Figure 3),
focusing on its reference resolution component -
full details on the NLP engine can be found in
(Kumar et al., 2020; Kumar, 2022). The NLU
pipeline relies on an information state architecture
with dialogue state tracking. After speech recog-
nition (please see below for further discussion),
traditional parsing and semantic role labeling are
performed, and then a semantic frame is computed
(see below). The dialogue management module is
responsible for: classifying the intent of the user as
one of the 8 DAs mentioned in Section 3; perform-
ing reference resolution; and updating and main-
taining the dialogue history (DH). The NLP engine
transforms the user request (when appropriate) into
an SQL query; and in a visualization specification

8https://wordnet.princeton.edu/
9https://babelnet.org/

that is passed to Vega-Lite210, a separate visualiza-
tion interface software, to create a visualization of
the data returned by the SQL query and add it to
the display.

Figure 3: The Conversational Assistant—in its COVID
incarnation, with two collaborators. The annotated ar-
rows denote the workflow of the architecture, the num-
bers signify the order of events when the users interact
with the conversational assistant.

4.1 Semantic Frame Construction

Each time a visualization is mentioned in the dia-
logue (whether it refers to a previous one or not)
our model looks for slots in the request to form its
semantic frame. We find phrases that are in close
proximity in the embedding vector space to terms
in the KO, by using a domain targeted word embed-
ding model (WEM)11. Subsequently the candidate
words are pruned based on linguistic patterns us-
ing the SpaCy12 dependency parse of the entire
utterance to form the final list of slot fillers. For
example in the AR in CAR #2 in Figure 2, the
prepositional phrase “for months of year” contains

“month” and “year”, both of which are known as
temporal slots in KO. Here, the terms are merged to
form “months of year”, and mapped to the parent
slot MONTH - see User Action (1) in Figure 4.

10https://vega.github.io/vega-lite/
11100-dimensional continuous bag-of-word model trained

on 5GB of online articles and wikipedia pages related to crime.
12http://spacy.io
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Figure 4: The user (inside the circle) currently has visu-
alization "08−3" on the screen and is asking to construct
a new visualization "09"(in dashed lines since it is being
built - visualization identifiers are internal to the system
but not visible to the users). Reference resolution op-
erates in four stages. NLU creates user action (1); the
DM uses DH (2) to create agent action (3); finally the
state tracker updates DH (4).

4.2 Dialogue Manager (DM)

The DM executes a dialogue policy which aside
from making back-end decisions such as forming
an SQL query for data retrieval, also seeks to pop-
ulate unknown frame attribute values - semantic
frames are constructed in response to either a CRE-
ATEVIS or a MODIFYVIS DA, and in the case of
MODIFYVIS, reference resolution may be used
to fill some of those unknown values. When the
semantic frame is complete, the state tracker adds
it as a new entry to the DH while the system also
outputs a json object (which we call a visualization
specification) that instructs Vega-Lite2 to accord-
ingly update the screen.

For example, in Figure 4, in CAR 1, AR #1 "Can
we see the breakdown of the whole week for all
crimes"? has resulted in updating both the DH and
the screen with a new linechart (the new visualiza-
tion "08 − 3"). After AR #1, the DH contains a
single entry for "08− 3" and its specifications in a
frame-slot format, including: the user intent (CRE-
ATEVIS), the type of plot, and its semantic frame
in terms of attributes that were mentioned (crime,
week) - see Dialogue History 2 in Figure 4. Note

that IDs like "08−3" are for internal reference, and
not shown to the user, but are included in Figures 2
and 4 for ease of exposition.

When AR #2 is processed and a MODIFYVIS
DA is recognized, a new frame is created (see
Agent Action 3 in Figure 4); while user in-
tent (MODIFYVIS) and some slots (MONTH) are
filled, others are left empty either because of under-
specification by the user (e.g., axes labels, plot type,
and so on) or they require additional processing by
the DM; in this particular case, the previous visu-
alization "08− 3" will be found as the referent for
this graph and both CRIME will be added as an
additional slot, and the plot type will be inferred to
be line chart (see below) - see Dialogue History 4
in Figure 4.

Next, we describe reference detection and reso-
lution.

4.2.1 Reference Detection
We trained a sequence tagging model to detect
text references (DTR). The model predicts tags
using the standard IOB2 format (i.e., "B-REF"/"I-
REF"/"O-REF" for beginning of / inside / outside
text reference respectively). We trained a simple
CRF model that uses POS tags as features, and
two baseline models, BiLSTM-CRF and BERT-
CRF. Further, to remedy data insufficiency - there
are only 176 text references appearing across 449
CARs in the corpus, we investigated Sequential
Transfer Task Learners and Multi Task Learners,
in both cases, as applied to BiLSTM-CRF and
BERT-CRF. As transfer or additional task, we use
a NER task based on our augmented dataset, which
is also automatically labelled for 23 NER tags,
based on the B/I/O scheme: the "B" and "I" tag
for each of the 11 parent slots in the KO (e.g., B-
visualization, I-visualization) plus "O" tag (the slot
names are known because they are manually la-
belled in the 449 CARs and delexicalization main-
tains their type).

4.2.2 Reference Resolution
To understand to which visualization the current
referring expression refers, we use heuristics based
on recency and similarity. The slot fillers from
the frame of the current referring expression and
from the candidate visualizations in the DH are
transformed into visualization vectors, ie, they are
projected onto an embedding space along 11 di-
mensions, corresponding to the 11 slots in the KO,
using the WEM mentioned earlier. Before compar-
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ing the two visualization vectors, a recency factor is
applied. If n represents the total entries in the DH,
then the visualization vectors of the most recent n

2
entries in the DH are associated with a multiplica-
tive factor of 1.0 signifying that they are equally
preferred. The latter n

2 entries in the DH however
are associated with a linear decrease by a factor of
1
n . Finally, cosine similarity is used to score each
visualization in the DH relative to the referring
expression and the visualization with the highest
score is selected, as long as it exceeds a cut-off of
0.40 (established empirically).

For example in Figure 4, the DH contains only
an entry for "08− 3" (other earlier visualizations
must have been closed and are not relevant any
more). Since the cosine similarity score between
"08−3" and the current semantic structure exceeds
0.4, "08 − 3" is chosen as the referent for this
graph.

4.2.3 New Entity Establishment
Once the referent of the specific referring expres-
sion has been established, a new visualization
("09") is constructed using the referent’s frame rep-
resentation to infer missing information ("08−03").
Explicit information in the current request is used
to replace identical slots: e.g. MONTH, which was
used to resolve the referring expression via WE
embedding and cosine similarity among semantic
structures, replaces WEEK as the temporal axis
in "09". Information that is unspecified in the re-
quest but present in the referred-to visualization
is imported to establish the new visualization; in
this particular case, CRIME is added to the slot list
because "08− 3" of the previous request includes
it. Finally, to generate the new visualization corre-
sponding to a referring expression, the chart type
(heat map, line chart, or bar graph) also needs to
be inferred; it is simply copied from the referent,
resulting in the new linechart "09" being added to
the screen, and the updated entry being added to
DH (#4 in Figure 4).

5 Constrained Evaluation on
Chicago-Crime-Vis

The results we present now were obtained by man-
ually evaluating the pipeline, which was run on the
transcribed Chicago-Crime-Vis data in an offline
manner: hence, we did not have to contend with
speech errors, or with error propagation, since for
every utterance, the DH up to that point was reset
to a correct state if necessary. Currently, our model

focuses on references occurring in setup and AR for
detection, and in AR only for evaluation of seman-
tic frame correctness. Additionally, we focus on
single referents and single targets: e.g. in "Can you
bring up the graph behind the River North one?"
the user refers to two visualizations; whereas "well
I would like to see battery by day of week, bat-
tery by month, and battery by year." results in 3
new corresponding visualizations. However, our
model only adds one of these visualizations to the
dialogue history (DH) as part of the evaluation. Ta-
ble 2 presents text reference counts only for setup
and ARs (hence, excluding 58 references in con-
clusion). Single referents account for about 94.7%
of references in setup and for about 80% of those
in ARs. Finally, when filtering on single targets,
we are left with the 80 text references (last row in
table) on which we will focus.

5.1 Detection
Notwithstanding the lack of training data, the CRF
performed the best, achieving a 61.2% F1 on the B-
REF, I-REF, O-REF task. This is statistically signif-
icantly better than any other models (the next best
is Multitask BERT-CRF with F1= 43.5%). Hence,
the CRF model is used in the subsequent steps in
the pipeline. The five-fold cross validation accu-
racy of this CRF model on the Chicago-Crime-Vis
data is shown in Table 3.

5.2 Resolution
Accuracy on resolving text references for varying
WINDOW sizes is shown in Table 4. If one only
takes into account the visualization introduced by
the preceding AR (recall that we currently don’t
deal with multiple references), accuracy is 85.3%
for set-up and 74.4% for AR. Interestingly, in the
Chicago-Crime-Vis corpus, users also refer to the
most recent visualization over 75% of the time.
However, when we provide unlimited window size
(∞ means all referent visualization candidates are
eligible), resolution of references in ARs decreases;
this suggests our linear decay function may need
further tuning to better model the user preference
behavior.

5.3 Semantic Frame Accuracy
We report the performance of semantic structure
construction as concerns CREATEVIS and MODI-
FYVIS AR’s. Our model achieved a slot accuracy
metric (Takanobu et al., 2020) of 66.2% for seman-
tic slots: this concerns the specification of the slots
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Chicago-
Crime-Vis COVID (A) COVID (T)

Set-up 60.0 50.0 33.3
AR 55.0 25.0 45.8

Table 3: Evaluation of reference detection model.
Chicago-Crime-Vis: five-fold cross validation accuracy
calculated on Single Targets of Table 2; COVID (A):
Accuracy in real-time user study; COVID (T): Accuracy
on correct transcripts of real-time user study. COVID
(A) and COVID (T) evaluated on a significant sample
size

Setup Window AR Window
1 ∞ 1 ∞

Chicago-
Crime-Vis 85.3 85.3 74.4 68.3

COVID (T) - - 36.3 54.0

Table 4: Resolution accuracy for varying window sizes.
COVID (T) evaluated on a significant sample size

of the Visualization Frame(VH) in the DH, and in-
cludes slots that were explicit in the utterance, and
those that were inferred. Given the example in Fig-
ure 2, for "08− 3" the two slot values are "crime"
and "week", and for "09" "month" (explicit) and
"crime", inferred via reference resolution. Table 5
reports the number of VFs for which a certain per-
centage of slots has been correctly recognized, by
quartile. The 100% quartile is equivalent to the
Joint Goal Accuracy (JGA) metric used in some of
the Dialogue State Tracking challenges, which com-
pares the predicted dialog states to the ground truth
at each dialog turn, and the output is considered
correct if and only if all the predicted values exactly
match the ground truth (Takanobu et al., 2020). For
the Chicago-Crime-Vis, these were manually an-
notated when annotating for references, and the
results are computed by evaluating the resolution
pipeline turn by turn, with the gold-standard DH up
to the previous turn: in 131 of those (55%), all slots
were correctly recognized; in 83% of these VFs,
at least 75% of the slots were correct; only in 17
(7%) of these 238 VFs, no slots were correctly rec-
ognized. Beyond Joint Goal Accuracy, we report
partial accuracy to provide a more nuanced anal-
ysis of the assistant’s performance, which cannot
be simply measured in a binary "Correct/Incorrect"
fashion: in an dialogue based application for data
exploration like ours, a partially recognized vizual-
ization frame can generate charts which may help
the users move forward. Papers exploring similar
views are Selfridge et al. (2011) and Schlangen

0% 25% 50% 75% 100% Total
(JGA) VF

Chicago-
Crime-Vis 17 5 19 66 131 238

COVID (A) 22 1 25 8 66 122
COVID (T) 23 4 25 15 75 142

Table 5: Distribution of Visualization Frames wrt %
correct slots. COVID (A) and COVID (T) evaluated on
a significant sample size

et al. (2009), where partial speech recognition and
reference resolution were found to be beneficial
for dialogue systems that react satisfactorily to the
user.

6 Unconstrained setting: User studies in a
COVID domain

A realistic evaluation of the NLP Architecture was
conducted through user studies: pairs of partic-
ipants interact with the conversational assistant
(Art-COVID-Asst) to perform two open-ended ex-
ploratory data analysis tasks, concerning which
factors may affect COVID mitigation strategies,
such as access to doctors or elderly population.
Overall, 15 groups of 2 participants, performed the
two tasks in a specified sequence, within a time
limit of 25 minutes per task. The participants, aged
18+ , were recruited from UIC and were mostly
graduate students. With their consent, we audio
and video recorded them, and collected logs gen-
erated by the back-end code of Art-COVID-Asst
for analysis purpose. As shown in Figure 1, they
are sitting and wearing a mike; also, each has a
mouse with which they are able to reposition and
click the visualizations on the screen. We encour-
aged the users to freely interact with each other
and with Art-COVID-Asst, and we did not provide
specific instructions about the tasks, the interface,
or the collaboration. The system is designed to
"always listen" to the participants, whether or not
they are addressing the assistant directly. This is
implemented using the Web Speech API13.

It was relatively simple to port Art-City-Asst to
Art-COVID-Asst (Figure 3 shows the architecture)
and mostly required to update the KO. For the
COVID data, we identify 13 semantic slots like
“COVID vulnerability rank", “Access to doctors",
"Diabetes risk", “Uninsured rate" etc. and the pos-
sible values for these slots. As earlier, we enlarged
the KO with synonyms for each slot and their val-
ues by using Wordnet and Babelnet to generate

13https://wicg.github.io/speech-api/
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these synonyms. The generated KO has a vocabu-
lary of 710 terms. This, as we describe in Section 4
forms the backbone of semantic slot filling and new
entity establishment. We keep the same Dialogue
Manager as before and use the best Reference De-
tection model built using the Chicago-Crime-Vis
corpus, namely, the CRF model. The Reference
resolution algorithm also remains the same. Finally
for screen rendering of the generated charts, the rel-
evant data obtained from the database is converted
to Vega-Lite grammar.

6.1 Findings of the User Study

To evaluate the reference detection and resolution
pipeline in this setting, in principle we only need
the log of the interactions to assess real-time per-
formance wrt the utterances from the conversations
of the participants. However, after we realized that
speech recognition errors were a major bottleneck
in the real-time study, we conducted additional ex-
periments on the transcripts. These are generated
using the Whisper speech recognition model 14 fol-
lowed by light manual inspection. The corrected
transcripts are then fed to the back-end code of the
conversational assistant and new logs are gener-
ated. We name this version of the user study data
as COVID (T) (for Transcript), while the real-time
logs are named COVID (A) (for Automatic).

Since, as we noted earlier, reference detection
applies to set-up and ARs, Table 1 shows the distri-
bution of setups and requests in these two versions
along with those from the Chicago-Crime-Vis cor-
pus. An important difference is that set-ups and
ARs for Chicago-Crime-Vis were manually anno-
tated, whereas these are the results of automatic
recognition for the COVID study (whether A or T).
The table shows that there are many more set-ups
in the Chicago-Crime-Vis data; this difference is
significant, as confirmed by χ2 = 489.9511, p <
0.00001 (with Bonferroni correction). There may
be various reasons for this, one being that the classi-
fiers that recognize setup and ARs were trained on
the augmented Chicago-Crime-Vis corpus and per-
form worse here to start with. However, it is also
possible that in fact, think aloud that feels natural
when somebody is by themselves is not in a collab-
orative situation: a set-up by definition doesn’t talk
about a data attribute, but we surmise that the two
collaborators are more focused on data attributes

14https://github.com/openai/whisper - it became available
in September 2022, after our conversational assistant was
developed and hence could not be used for the user study.

than on thinking aloud, precisely because they are
interacting with another person.

For the purpose of the evaluation, we need to
manually verify the results returned by the refer-
ence pipeline. Given the size of the data, we obtain
two samples, one from COVID (A) (# utterances:
3096) and one from COVID (T) (# utterances:
8440). A significant sample size is computed for
both with 95% confidence interval and 5% mar-
gin of error. This results in a random sample of
340 (11%) utterances for COVID (A), and of 370
(4.38%) utterances for COVID (T). Subsequently,
we use COVID (A) and COVID (T) to refer to these
samples of the respective groups, not to the whole
group; all evaluation and analysis are done on these
samples only.

6.1.1 Reference Detection
Table 3 shows the accuracy of the detected refer-
ences in Set-up and Request utterances of COVID
(A) and COVID (T). As expected, the performance
degrades in a real-time user study scenario. Unlike
the controlled study setting with one participant,
when two people collaborate for an exploratory
task, three things happen. First they talk to each
other; next, they make requests to the system and
finally they draw conclusions. These make refer-
ence detection in utterances extremely complex. In
the case of COVID (A), we also attribute the lack
of accuracy to speech-recognition errors.

6.1.2 Reference Resolution
We limit the evaluation of the reference resolution
pipeline to COVID(T) as there were no references
resolved during the actual study—DAs of around
44% of those utterances with detected references
were misclassified (note that useful visualizations
may have been created all the same in response to
those specific utterances, but not because a refer-
ence resolution was resolved). After conducting
a thorough manual inspection of the issue we find
the speech recognition errors to be the major road-
block yet again. However using the corrected tran-
script (COVID (T)) we get a comparatively better
performance as shown in Table 4. Since in this
study setting, only ARs where references are de-
tected are resolved, we limit our evaluation to ARs
only. Contrary to the constrained Chicago-Crime-
Vis setting, where considering only the previous
AR was the better strategy, here limiting window
size to 1 results in lower accuracy. We observe that
in a more real scenario, especially when two peo-
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ple are involved in the conversation, there are more
relevant entries in the dialogue history. This may
also be due to the nature of the interaction with
the large screen: in Chicago-Crime-Vis, the user
was standing in front of the large display, and often
fairly close so that they would in fact mostly focus
on only a portion of the display; in the COVID
study, the two collaborators were sitting at about 6
ft from the screen (see Figure 1), and hence all visu-
alizations on the screen are more readily available
to them.

6.1.3 Semantic Frame Accuracy
For the user study settings of Art-COVID-Asst, VFs
were recognized for utterances having DAs CRE-
ATEVIS and MODIFYVIS. Similar to what we ob-
served in the controlled setting of Chicago-Crime-
Vis (as described in Section 5.3) in Table 5, more
than 50% VFs had all their semantic slots recog-
nized as fully correct in the unconstrained settings
with Art-COVID-Asst. In fact, we see compara-
ble performances of COVID (A) and COVID (T)
across all quartiles. This shows that irrespective of
the problematic performance of the speech-to-text
algorithm, more than 60% VFs had 75% or more
slots correctly filled and more than 80% VFs had
at least 50% slots correctly identified. This also
explains the reasonable success of the user study
that we observed despite the subpar performance
of the speech-to-text algorithm. This is attested by
questionnaires the users filled. On a 5 point Likert
scale, mean scores of 4 and 3 were respectively
obtained for usefulness of the charts generated, and
for ease of command system use.

7 Conclusions and Future Work

We have presented a reference resolution model
for conversational assistants that help user in ex-
ploratory data visualization. In particular, the
model resolves visualization references in the con-
text of the current interaction, crucially tracking
visualizations constantly being added to the screen.
The model is central to the creation of new visual-
izations: visualization features encoded in the DH
as slot values, help the model know how to refer to
a visualization later on. We have also shown how
the initial assistant, Art-City-Asst, was ported to
a completely different domain. We presented the
evaluation of the reference pipeline in both settings,
the constrained Chicago-Crime-Vis and the "wild"
COVID setting, in which two collaborators were
exploring COVID data. We are fully aware that

our results are not compared to an external base-
line, but we contend that evaluations in grounded
settings are important, and do not require creating
some artificial baseline or evaluating the pipeline
on existing reference resolution datasets.

Not surprisingly, the user evaluation brought sev-
eral issues to the fore. First, we discovered that the
speech API that we had chosen did not work very
well (it would have been impossible to change it
during the user study even if we had noticed it).
Whereas this is unfortunate, we were able to ob-
tain correct transcripts and run a second evaluation.
Second, the nature of the interaction and the setting
affected the conversations and the results: for ex-
ample, we found many fewer set-ups in the COVID
data, but on the other hand, more references to
referents further back in the conversation.

Potential extensions for future work include
ways to better model user behavior for referring to
more distant visualizations and using sophisticated
machine learning approaches in our resolution al-
gorithm to take advantage of the rich visualiza-
tion feature space in our case. Additionally, in the
COVID user study users don’t use hand gestures
to interact with the screen, however they do use
their mouses to click and reposition visualizations,
hence bringing multimodality to the fore; not to
mention gaze that can be approximated with head
movement tracking, that another researcher in the
group is investigating (see the instrumented caps in
Figure 1).

Finally, as we had mentioned in the introduction,
our goal was to evaluate our assistant in a realis-
tic user study, and not jump into experiments with
Large Language Models. However, we have started
experiments in that respect, both as concerns the
specific modules in our pipeline (for example, the
embeddings of the semantic slots) and the system
as a whole. So far, we have noticed that while Chat-
GPT (released exactly after we finished the COVID
user study) is able to generate charts in response
to specific language instructions, if appropriately
connected to visualization software, it is not able to
resolve referring expressions, i.e., to create a new
visualization whose specification is partly derived
from the referent. But this will be the topic of a
future paper.
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