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Abstract

The bulk of work adapting transformer models
to open-domain dialogue represents dialogue
context as the concatenated set of turns in nat-
ural language. However, it is unclear if this
is the best approach. In this work, we inves-
tigate this question by means of an empirical
controlled experiment varying the dialogue con-
text format from text-only formats (all recent
utterances, summaries, selected utterances) as
well as variants that are more structurally dif-
ferent (triples, AMR). We compare these for-
mats based on fine-tuned model performance
on two downstream tasks—knowledge selec-
tion and response generation. We find that sim-
ply concatenating the utterances works as a
strong baseline in most cases, but is outper-
formed in longer contexts by a hybrid approach
of combining a summary of the context with
recent utterances. Through empirical analy-
sis, our work highlights the need to examine
the format of context representation and offers
recommendations on adapting general-purpose
language models to dialogue tasks.

1 Introduction

The bulk of existing work in adapting transformer
models to open-domain dialogue represents the
dialogue context as the concatenated set of turns
in natural language (Zhang et al., 2019b; Roller
et al., 2021; Shuster et al., 2022). While the self-
attention mechanisms of these models are able to
capture the context from these flat representations,
it remains unclear if this is the best approach (Li
et al., 2021). Studying the format of context rep-
resentation would help improve performance on
downstream tasks such as response generation and
external knowledge selection and could also po-
tentially inform the pretraining of general-purpose
dialogue models. Additionally, as the length of con-
versations increases (Gopalakrishnan et al., 2019;

∗ Work done during summer internship at Amazon Alexa
AI.

Xu, 2021), these are truncated based on the limit
imposed by the positional encodings on transform-
ers. We also know that not all of the utterances
are equally relevant so succinctly representing the
relevant information in the context given the cur-
rent conversation state and filtering out the noise
from prior interactions would help to model pro-
vide more coherent responses.

In this work, we empirically investigate the di-
alogue context representation in the text space for
using sequence-to-sequence models. To prioritize
broad coverage, we vary the the format of the con-
text using both natural language-only formats (e.g.,
using all recent utterances or summaries) as well
as formats that are more structurally different (e.g.,
extracting knowledge triples from the utterances)
(Section 2) and compare these based on down-
stream task performance.

We find that concatenating all recent utterances
is a strong baseline. However, in longer dialogues,
combining recent utterances with a summary of the
past context obtains the best performance. This
shows the benefit of the complementary long and
short view of dialogue context. We also observe
that improving summary quality and introducing
external elements about the coherence of the con-
text result in a further gain of downstream perfor-
mance. This study and related findings can be ex-
tended to combine with elements from the broader
definition of context (Bunt, 1999), such as social
cues and guidelines (Gupta et al., 2022b), which
were previously not included in dialogue datasets.

2 Approach

We study the effect of the representation of di-
alogue context on downstream dialogue tasks—
knowledge selection and response generation. In
order to do so, we run a controlled experiment fine-
tuning sequence-to-sequence models on the two
tasks verbalised into the text-to-text setup, while
varying only the format in which the dialogue con-
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text is represented.
The first broad category of representations con-

sists of directly using the dialogue utterances. We
include the concatenated past dialogue utterances,
truncated when necessary, as Plaintext represen-
tation. This includes all the past turns delineated
using a special token when applicable. We also
include Windows of recent turns where we only
use the most recent n utterances as the context.

To test if models require only the knowledge
items within the dialogue utterances, we extract
(subject, object, relation) Triples from the utter-
ances as the context. To see if models benefit from
more structured information, we convert the utter-
ances into AMR graphs (Banarescu et al., 2013).

Finally, we examine if the information from the
context can be distilled using summarization (Feng
et al., 2021; Gliwa et al., 2019a; Khalifa et al.,
2021). One method is to convert the utterances
from both speakers into an abstractive Summary
using a separate summarization model.1 And while
a summary might contain all the required high-level
information from the dialogue context, it loses the
local discourse-level information from recent utter-
ances. To mitigate this, we create a hybrid Sum-
mary + Utterances format by appending the Sum-
mary with Windows of Turns. We also include an
extractive summary in the form of Selected Turns
from the context using pointwise mutual informa-
tion, a proxy for relevance, with respect to the most
recent turn (Padmakumar and He, 2021).

We provide further implementation details about
each of the methods in Appendix C and illustrate
an example converted to each of them in Figure 1.

3 Experiments

3.1 Datasets and Metrics

Knowledge Selection To evaluate performance
on knowledge selection, we report results on the
Wizard of Wikipedia (WoW) (Dinan et al., 2018)
dataset, which consists of dialogue between a wiz-
ard (expert) and apprentice (novice) where the wiz-
ard selects knowledge items (sentences) to form a
response. In the sequence-to-sequence setup, we
frame this as a classification task on individual
knowledge items as follows.
Input: <context> </s> <knowledge item>
Output: “Relevant” for the gold knowledge

1In particular, we use a BART-large model finetuned on
SAMSum(Gliwa et al., 2019b).

item given that context, and “Not Relevant’
otherwise.

In addition to all the context formats from Sec-
tion 2, we include another baseline called Plaintext
with Documents where the gold documents that
were used to generate previous wizard turns were
appended to the utterances in the dialogue context.

Metrics: We report accuracy/F1-score of each
label in lieu of instance-based classification per-
formance. To report retrieval performance, we
score the individual knowledge items for a particu-
lar context using the token probabilities assigned
to “Relevant” and select the most relevant item.
We then evaluate if this matches the checked sen-
tence from the dataset, akin to Recall@1 when this
is framed as a retrieval problem. We also report a
more relaxed metric that evaluates if this item is
from the checked document from the dataset.

Response Generation We report results on
WoW, Multi-Session Chat (MSC) (Xu et al., 2021)
and Topical Chat (TCS) (Gopalakrishnan et al.,
2019) where the objective is to generate the gold
response given the context. For WoW, the task is a
knowledge-grounded dialogue where the responses
were formed using the gold knowledge item from
the dataset. The task for TCS is also knowledge-
grounded response generation, but not all turns are
accompanied by relevant knowledge items. For
MSC, the task is for the partners to converse about
their own interests and discuss information about
each others’ interests across multiple sessions. We
concatenate utterances from all past sessions with
a special token indicating a session break.2

Input: <context> </s> <optional knowledge item>
Output: Gold response from the dataset.

Metrics We report perplexity of the gold utter-
ances w.r.t. the finetuned models and the BertScore
(Zhang et al., 2019a) between the generated re-
sponse and the target utterance.

3.2 Model Training

For each of the datasets, we convert all of the train
examples into the different context representations
from Section 2 and report finetuned T5 (Raffel
et al., 2020) performance. We use the T5-base
(220M parameters) and Large (770M parameters)
variants. While the models trained in Zhang et al.
(2019b); Peng et al. (2022) have examined further

2For MSC, the Summary baseline(s) use the released sum-
maries for past sessions coupled with a model generated sum-
mary for the utterances in the current session.

https://huggingface.co/philschmid/bart-large-cnn-samsum
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A: I was born in Greece but moved to the US when I
was really young, so I don't remember a whole lot
about it.

W: That's too bad. Greece has a long coastline along
the Mediterranean Basin. That's the 11th longest
coastline in the world, in fact!

A: Very interes�ng! What else do you know about
Greece? I'm intrigued!

W: It was once referred to as the Hellenic Republic!

A: Really, where did it get that name from? 

...                                                                                    
A: Very interes�ng! What else do you know about
Greece? I'm intrigued!

W: It was once referred to as the Hellenic Republic!

A: Really, where did it get that name from? 

....                                                                                    
A: Really, where did it get that name from? 

A was born in Greece but moved to the US when she
was young. W men�oned that Greece has a long
coastline along the Mediterranean Basin, the 11th
longest coastline in the world according to the World
Mari�me Ins�tute, and was once called the Hellenic
Republic.

A: I was born in Greece but moved to the US when I
was really young, so I don't remember a whole lot
about it.
...
W: It was once referred to as the Hellenic Republic!

A: Really, where did it get that name from? 

A was born in Greece but moved to the US when she
was young. W men�oned that Greece has a long
coastline along the Mediterranean Basin, the 11th
longest coastline in the world according to the World
Mari�me Ins�tute, and was once called the Hellenic
Republic. </s>

A: Very interesting! What else do you know about
Greece? I'm intrigued!

W: It was once referred to as the Hellenic Republic!

A: Really, where did it get that name from?

A: (c / contrast-01\n :ARG1 (b / bear-02\n ....

W: (m / mul�-sentence\n :snt1 (b / bad-07\n:ARG1 
(t / that)\n ...

A: (m / mul�-sentence\n :snt1 (ii / interest-01\n ... 

W: (r / refer-01\n :ARG1 (ii / it)\n :ARG2 (c /

country\n ...

A: (g / get-01\n :ARG0 (ii / it)\n :ARG1 (t / thing\n ...

A: (I, born, Greece), (I, moved to, US) (I, don’t 
remember, Greece) 
W: (Greece, has, longest coastline)

A: (you, do know about, Greece)

W: (It, was referred to as, Hellenic Republic)

A: (it, did get, name) 

Dialogue
Context

Using
Dialogue

Utterances

Parsing/ 
Extraction

Based
Methods

Distilling
Context

with
Summaries

Plaintext Last Turn

3-Turn

AMR
Triples

Summary

Retrieved Turns

Summary + 3-Turn

Figure 1: Example illustrating the conversion a dialogue into all the context representation methods evaluated in our
experiments. The original set of utterances indicated by Plaintext. We perform an empirical controlled experiment
evaluating the fine-tuned dialogue model performance on each of these context representation formats.

pretraining on dialogue, this would bias the model
to additionally favor the Plaintext baseline. As a
result, we choose T5, noting that absolute perfor-
mance might improve further by adding dialogue-
specific pertaining. When tokenizing the context,
we allow for up to 1024 tokens and truncate ear-
lier utterances in case of an overflow. We optimize
cross-entropy loss on the output tokens in the de-
sired format based on the dataset. We run finetun-
ing for 10 epochs with an early stopping criteria
based on validation loss. For each context repre-
sentation, we select the best learning rate sweeping
from 1e−3 to 1e−6. In the text-to-text setup, we
run inference with greedy decoding kept uniform

across the representations. Our experiments were
run on a p3.8xlarge and a p3.16xlarge
EC2 instances containing 4 and 8 Tesla V100 GPUs
respectively.

4 Results

Table 1 and Table 2 show the results comparing
context representation formats on knowledge selec-
tion and response generation respectively.

Plaintext is a strong baseline, which is outper-
formed by Summaries+Utterances on longer dia-
logues From Table 1 and Table 2, we see that the
Plaintext representation provides a strong baseline
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Plaintext Plaintext w
Docs

Last Turn 3-Turn Selected
Turns

AMR Triples Summary Summ + 1
Turn

Summ + 3
Turn

Summ + 5
Turn

Overall 0.959 / 0.963 0.958 / 0.960 0.960 / 0.962 0.960 / 0.963 0.965 / 0.966 0.961 / 0.965 0.961 / 0.963 0.963 / 0.964 0.958 / 0.960 0.954 / 0.958 0.957 / 0.961Accuracy

Relevant 0.331 / 0.265 0.355 / 0.289 0.278 / 0.234 0.307 / 0.261 0.282 / 0.244 0.265 / 0.264 0.268 / 0.263 0.286 / 0.231 0.301 / 0.253 0.369 / 0.297 0.353 / 0.281

F1 Scores Relevant 0.196 / 0.170 0.202 / 0.188 0.169 / 0.150 0.184 / 0.165 0.192 / 0.172 0.160 / 0.158 0.166 / 0.163 0.174 / 0.155 0.183 / 0.159 0.191 / 0.167 0.194 / 0.170

Checked
Sentence

0.159 / 0.116 0.171 / 0.129 0.114 / 0.111 0.120 /0.105 0.138 / 0.118 0.097 / 0.085 0.101 / 0.086 0.116 / 0.099 0.128 / 0.111 0.143 / 0.118 0.147 / 0.116
Recall@1
of Most
Relevant
Item

Checked
Passage

0.238 / 0.174 0.265 / 0.201 0.186 / 0.165 0.165 / 0.146 0.214 / 0.178 0.138 / 0.124 0.140 / 0.126 0.160 / 0.150 0.199 / 0.177 0.234 / 0.191 0.222 . 0.185

Table 1: Evaluation of context representation methods on WoW knowledge selection. Each cell has two numbers
corresponding to results on the random split (left) and topic split (right) of the validation set. All metrics are
rounded off to three decimal places and the highest in each row is bold. We include only the overall accuracy and
classification metrics of the Relevant label here. For metrics on all labels see Table 7 in Appendix E.

Plaintext Last Turn 3 Turn 5 Turn Selected
Turns

AMR Triples Summary Summ + 1
Turn

Summ + 3
Turns

Summ + 5
Turns

WoW
Bertscore 0.905 / 0.904 0.903 / 0.901 0.903 / 0.902 0.904 / 0.902 0.903 / 0.900 0.895 / 0.890 0.898 / 0.894 0.902 / 0.900 0.903 / 0.901 0.905 / 0.903 0.904 / 0.903

Perplexity 6.978 / 7.545 7.446 / 8.084 7.398 / 8.011 7.304 / 7.885 7.177 / 7.783 7.987 / 8.623 7.803 / 8.510 7.477 / 8.115 7.261 / 7.836 7.050 / 7.660 7.028 / 7.601

MSC
Bertscore 0.873 0.861 0.864 0.872 0.865 0.854 0.858 0.866 0.869 0.871 0.873

Perplexity 12.246 15.262 14.701 14.024 14.565 16.245 15.782 13.985 13.69 13.011 12.205

TCS
Bertscore 0.871 / 0.868 0.869 / 0.867 0.870 / 0.869 0.871 / 0.869 0.869 / 0.869 0.865 / 0.864 0.866 / 0.865 0.868 / 0.866 0.869 / 0.867 0.870 / 0.868 0.871 / 0.868

Perplexity 12.313 /
14.443

13.293 /
15.950

13.045 /
15.650

12.847 /
15.023

12.778 /
15.237

13.587 /
16.290

13.402 /
16.117

12.899 /
15.262

12.686 /
15.013

12.538 /
14.812

12.181 /
14.342

Table 2: Evaluation of context representation methods on response generation. For WoW, each cell has two numbers
corresponding to results on the random split and topic split of the validation set. For MSC, we report results on all
the turns of the validation set. For TCS, the two numbers correspond to the frequent and rare splits respectively. All
metrics are rounded off to three decimal places and the highest in each row is bold.

for both knowledge selection and response genera-
tion. When we examine the Last Turn and 3-Turn
columns, we see the trend that increasing the win-
dow size predictably improves performance, but
these lag behind Plaintext. This shows that trans-
formers are able to leverage the additional infor-
mation from more recent utterances in the context.
However, we see that Plaintext is outperformed
by the Summary + 5-turn method on the longer
dialogue datasets, MSC and TCS. This shows that
past the limit imposed on current transformer en-
coders by the positional embeddings, summarizing
all available information outperforms a truncated
set of recent utterances. Finally, we see that Sum-
mary + 5-turn outperforms Summary alone on all
the datasets. These findings highlight the comple-
mentary Long and Short views of dialogue context
from summaries and recent utterances respectively.

Improving the quality of summaries results in
better downstream performance To observe
the effect of summary quality, we point out two
comparisons. On MSC, we compare the response
generation performance using both the gold human-
written summaries and model-generated summaries
(released with the dataset). The perplexity for re-
sponse generation reduces by using higher quality,
human-written summaries (Table 5). Secondly, we

can view the Selected Turns baseline as an extrac-
tive summary of the dialogue context that consis-
tently outperforms windows of text of the same
number of turns (here Selected Turns and 3-turn
are comparable). Combined with the observation
of the complementary nature of summaries and re-
cent turns, a future direction highlighted through
our work is to use downstream task performance
as a means to evaluate dialog summarization.

Natural language-based approaches outperform
the more structure-oriented variants We ob-
serve that AMR and Triples are consistently out-
performed by all the other utterance-based and
summary-based variants. This is potentially ex-
plained by the higher similarity of the natural lan-
guage formats to the pretraining data of sequence-
to-sequence models.3

Positive Scaling Trends One of the main advan-
tage of using sequence-to-sequence transformers
is that as pretrained models get better, we can ex-
pect improved performance in downstream tasks.
We observe a simple version of this when compar-
ing results on the different context representation
methods with T5-base and T5-large in Table 3 and

3These methods are at a disadvantage in the text-to-text for-
mat and could be improved by different methods of encoding
the extracted information.
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Plaintext Last Turn Retrieved Turns Summ + 3 Summ + 5

Base Large Base Large Base Large Base Large Base Large

F1 Scores Relevant 0.196 / 0.170 0.187 / 0.170 0.169 / 0.150 0.177 / 0.159 0.192 / 0.172 0.210 / 0.185 0.191 / 0.167 0.212 / 0.189 0.194 / 0.170 0.205 / 0.181
Recall@1
of Most
Relevant
Item

Match to ’Checked
Sentence’

0.159 / 0.116 0.203 / 0.156 0.114 / 0.111 0.131 / 0.110 0.138 / 0.118 0.163 / 0.135 0.143 / 0.118 0.161 / 0.135 0.147 / 0.116 0.160 / 0.131

Match to ’Checked
Passage’

0.238 / 0.174 0.326 / 0.258 0.186 / 0.165 0.191 / 0.162 0.214 / 0.178 0.285 / 0.231 0.234 / 0.191 0.255 / 0.219 0.222 . 0.185 0.252 / 0.199

Table 3: Evaluation of knowledge selection as a function of model size—T5-Base vs Large for 5 different context
representations. We largely observe positive scaling trends on both retrieval metrics and classification F1-scores.
Table 9 in Appendix E shows the same table with metrics for all labels.

Plaintext Retrieved Turns Last Turn Summ + 5 Turns

Base Large Base Large Base Large Base Large

WoW Perplexity 6.978 / 7.545 5.989 / 6.371 7.177 / 7.783 6.151 / 6.574 7.446 / 8.084 6.754 / 7.226 7.028 / 7.601 6.001 / 6.412

TCS Perplexity 12.313 / 14.443 9.811 / 11.279 12.778 / 15.237 10.101 / 12.980 13.293 / 15.950 11.456 / 14.374 12.181 / 14.342 9.792 / 11.113

Table 4: Evaluation of response generation as a function of model size—T5-Base vs Large for 4 different context
representations. We observe positive scaling trends across each of the representations

Table 4. Performance improves using the scaled up
model uniformly for response generation and on
retrieval metrics in knowledge selection.

Providing additional content as part of the
context improves performance Augmenting the
Plaintext baseline with document level information
for WoW results in further improvement in both
classification and retrieval scores. In this work,
we only considered the utterances in the dialogue
itself to be a part of the context. However a broader
definition of context for dialogue includes not just
the turns but also discourse information, social
context, or the relationship between the speakers,
and even physical context, or cues from the relative
physical positions and actions of the speakers
(Bunt, 1999). Our work indicates that a promising
future direction of dialogue research could involve
collecting and summarizing all this additional rich
information to be used by dialogue models.

We present additional results in Appendix E and
discuss some limitations that inform future direc-
tions in Appendix A.

5 Related Work

When adapting transformers to dialogue tasks, the
most common approach is to simply concatenate
dialogue utterances (Zhang et al., 2019b; Adiwar-
dana et al., 2020; Roller et al., 2021; Bao et al.,
2021; Gupta et al., 2022a; Shuster et al., 2022). For
longer dialog datasets where the entire conversa-
tion cannot be encoded, summaries of past sessions
are a helpful way to provide all the relevant infor-
mation needed to continue the conversation (Xu

et al., 2022). While AMR graphs have been used
to perturb individual utterances in order to evaluate
coherence in dialogue (Ghazarian et al., 2022), to
the best of our knowledge, AMR and Knowledge
Triples have not been used to represent the con-
text. We include them for wider coverage. In the
dialogue space, retrieval has largely been used to
identify relevant knowledge items to be included
for response generation (Shuster et al., 2021). Prior
work has examined matching candidate responses
with multiple utterances for selection, the weight-
ing learned in effect attending to ‘relevant’ turns
(Wu et al., 2016; Zhang et al., 2018), however,
we explicitly select turns as a means of represent-
ing the dialogue context across both of our open
domain dialogue tasks. To our knowledge, ours
is the first controlled experiment to evaluate dif-
ferent textual context representation methods for
sequence-to-sequence models.

6 Conclusion

In this work, we present an empirical controlled
study examining dialogue context representation
for transformer models on open-domain dialogue
tasks. While concatenating all previous turns, as is
often adopted, is a strong baseline, combining sum-
maries of the overarching context with recent utter-
ances yields the best results in longer dialogues.
Additionally improving the quality of the sum-
maries being used and introducing further back-
ground information into the context further im-
prove performance. This provides us with new
directions to work on including dialogue summa-
rization and considering the broader definition of
context for use in open-domain dialogue.
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A Limitations

Coverage of Context Representations We ac-
knowledge that the list of context representation
formats we examine is non-exhaustive and each par-
ticular context format could be further optimized.
For instance, for AMR we only cover the semantic
representations within a single utterance. There are
other types of structural aspects in dialogues like
discourses, turn-taking, and so on which could be
incorporated. We report results comparing these
in order to inform subsequent model training/pre-
training as well as subsequent analysis of a similar
nature.

Using Only Verbalized Representations In this
work, we only cover context representation formats
that are verbalized in natural language. It is unclear
if encoding the information either into a special-
ized dialogue transformer architecture or as a graph
would result in improved performance. We choose
the verbalized format as it is the most general pur-
pose which can be used to adapt many different
language models (Liang et al., 2022).

Adapting Retrieval Tasks for Text-to-Text Mod-
els Adapting language models to retrieval tasks
such as knowledge selection can be done either
by running inference on individual examples or
by combining all candidates along with the input
context. Liang et al. (2022) perform a compari-
son of these variants in the few-shot setting for a
large number of tasks and observe no clear win-
ning format so we proceed with separate inference
on knowledge items. Here, to isolate the role of
the context representation, we fix the format of the
task and study the effect of dialogue context on
performance

Evaluation We acknowledge that we report per-
formance using automatic metrics on a single run
for both sets of tasks and human evaluation would
allow for a more holistic understanding of the capa-
bilities of models, particularly on response genera-
tion. Human evaluation and running multiple sets
of fine-tuning runs for each of the different formats
would be expensive. In this work, we restricted
ourselves to the same in order to focus on compar-
ing and identifying trends in performance between
a wider range of different context representation
formats.
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B Potential Risks

Our work discusses ways to adapt sequence-to-
sequence transformer models for open-domain di-
alogue. The main associated risk comes from the
black-box nature of these models. The text that is
generated is pretty heavily influenced by the pre-
training data. The models fine-tuned in this paper
are open-sourced T5 checkpoints which may con-
tain biases from the C4 (Raffel et al., 2020) cor-
pus. Additionally, the advent of closed-access and
limited-access language models such as GPT3 and
Anthropic-LM comes with more uncertainty as the
pretraining and training processes of these models
are not as well documented (Liang et al., 2022).

C Context Representations

Context Representation Formats We vary the
context in the following ways in an attempt to en-
sure coverage of different formats. The first broad
category of representations consists of directly us-
ing dialogue utterances.

• Plaintext: The simplest, and most widely
used, manner in which we can represent the
dialogue context is just the concatenated set
of past dialogue utterances. This includes all
turns from past sessions delineated using a
special token when applicable. 4

• Windows of Turns: Here we only use the
most recent n utterances as the context. As
we increase n, we provide more local context
about the dialogue.

Aside from including the utterances themselves,
to evaluate if models benefit from more structured
information we include the following representa-
tions:

• AMR: We convert each utterance into an
AMR graph (Banarescu et al., 2013) and
use the verbalised form as the context.
The AMR parses the text into a directed
acyclic graph, explicitly conveying the
relationships as edges between the var-
ious concept nodes in the text. We use
the model_parse_xfm_bart_large
model from amrlib to convert the utterances
into the corresponding AMR. We acknowl-
edge that performance in our experiments
could be affected by the quality of AMR

4Dataset specific details are provided in Section 3.1

conversions. We refer readers to the original
library for performance benchmarking of the
text-to-AMR model.

• Knowledge Triples: To test if models re-
quire only the knowledge items within the
dialogue context, and not the whole ut-
terance, we extract (subject, object,
relation) triples from the utterances as
the context. We use OpenIE5 to extract triples
and use a simple unigram overlap heuristic to
filter out duplicates. If two triples have a uni-
gram overlap of over 0.7, only one is selected.

Finally, we examine if the information from the
dialogue context can be distilled while retaining
the natural language format using summarization.

• Summary: We summarise all of the dialogue
utterances from both speakers abstractively
using a finetuned transformer model. In par-
ticular, we use a BART-large model finetuned
on SAMSum(Gliwa et al., 2019b). As indi-
cated in Section 4, performance depends on
the quality of the summarization model. This
model was not trained by the authors of this
work. We refer readers to the model card on
HuggingFace for evaluation of the model it-
self.

• Summary + Utterances: While a summary
might contain all the high-level information
from the dialogue context, it loses the local
discourse-level information from recent utter-
ances which provide cues on how to use the
high-level information. We create this hybrid
short+long form context representation by ap-
pending the Summary with Windows of Turns.

• Retrieved Turns: While the aforementioned
setups contain abstractive summaries of the
dialogue context, we also include an extrac-
tive summary generated by selecting relevant
turns using pointwise mutual information to
the most recent turn (Padmakumar and He,
2021). In order to select relevant turns, we
calculate the PMI of all utterances with re-
spect to the Last Turn and combine the 2 most
relevant turns, in order to obtain an extractive
summary of the context.

An example converted to each of the above formats
is provided in Figure 1.

https: //github.com/bjascob/amrlib
https://huggingface.co/philschmid/bart-large-cnn-samsum
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D Details for Responsibility Checklist

D.1 License and Usage of Scientific Artifacts

The Wizard of Wikipedia (Dinan et al., 2018) and
MSC (Xu et al., 2021) datasets made available
through ParlAI that is shared under the MIT Li-
cense which permits usage of the data for research
such as our work. Topical Chat (Gopalakrishnan
et al., 2019) is shared using the Community Data
License Agreement - Sharing, Version 1.0 which
also permits the usage of the data in this manner.
These datasets are commonly used in the commu-
nity and are collected while ensuring that it was
properly anonymized and does not contain any of-
fensive language. We do not perform additional
checks for either of the same. T5 (Raffel et al.,
2020), used for all our finetuning experiments, is
released under the Apache 2.0 license which per-
mits its use for research. The model used for dia-
logue summarization and amrlib are both shared
under the MIT license which permits such usage as
does OpenIE which is shared under the Open IE 5
Software License Agreement. All of the artifacts,
both models and datasets, were used as intended
by the original authors.

D.2 Coverage and Statistics of the Data

All of the datasets contain only English data,
largely collected from American English speak-
ers conversing in a one-on-one conversation. The
specifics of the settings where the conversations
are collected are well documented and can be re-
ferred to in the original works (Dinan et al., 2018;
Xu et al., 2021; Gopalakrishnan et al., 2019). Wiz-
ard of Wikipedia consists of 18, 430 documents
(166, 787 utterances total, 74, 092 of which were
wizard turns used in knowledge selection) in the
train set. The results were reported on the ran-
dom split (981 documents, 3, 939 wizard turns) and
topic split (967 documents, 3, 927 wizard turns)
of the validation data. For MSC, there are 4000
train conversations (spread across multiple ses-
sions) with 161, 440 turns and we report results
on the validation set (1001 conversations, 53, 332
turns). In Topical Chat, there are 8628 train con-
versations consisting of 188378 utterances and we
report results on the frequent (539 conversations,
11681 turns) and rare (539 conversations, 11692
turns) splits of the validation data.

Human
Written

Summary

Model
Generated
Summary

All Turns Perplexity 12.129 12.205

First Response in Session Perplexity 10.199 10.257

Table 5: Performance on MSC improves when using the
gold, human-written summaries as opposed to model-
generated summaries.

Truncated
Examples

Examples wo
Truncation

Perplexity 14.381 12.564

Bertscore 0.8641 0.8722

Table 6: Response generation performance on MSC
examples adapted into the Plaintext representation and
divided based on whether these are truncated.

E Additional Results

We report a more comprehensive version of the
knowledge selection results from Table 1 in Table 7
and response generation from Table 2 in Table 8.

Effect of Scaling Model Size Table 9 and Ta-
ble 10 contain the full comparison of results when
we switch from T5-Base to T5-Large.

Quality of Summaries In order to ablate the
quality of summaries used, we compared response
generation performance on the MSC dataset, com-
paring the Summary + 5-Turn baseline when the
gold, human-written summaries are used as op-
posed to the model generated summaries released
in the original dataset. From Table 5 we observe
that the higher quality summaries result in further
improvement in performance.

Effect Of Truncation Here we aim to empir-
ically verify that truncation of context has an ad-
verse effect on model performance. We select those
examples in the second session of the MSC dataset
when adapted using the Plaintext representation
and divide these into whether or not the context
was truncated. This particular set of examples was
chosen because, out of all the sessions, this was the
one which had a relatively large fraction of exam-
ples in both of these buckets—27.6% of examples
were truncated. From Table 6 we clearly see that
those examples which suffer from truncation have
a drop in performance.
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Plaintext Plaintext w
Docs

Last Turn 3-Turn 5-Turn Selected
Turns

AMR Triples Summary Summ + 3
Turn

Summ + 5
Turn

Overall 0.959 / 0.963 0.958 / 0.960 0.960 / 0.962 0.960 / 0.963 0.960 / 0.962 0.965 / 0.966 0.961 / 0.965 0.961 / 0.963 0.963 / 0.964 0.954 / 0.958 0.957 / 0.961

NR 0.969 / 0.973 0.965 / 0.966 0.970 / 0.972 0.970 / 0.972 0.969 / 0.972 0.975 / 0.976 0.973 / 0.976 0.970 / 0.972 0.974 / 0.975 0.963 / 0.967 0.966 / 0.971
Item Clas-

sification
Accuracy

R 0.331 / 0.265 0.355 / 0.289 0.278 / 0.234 0.307 / 0.261 0.318 / 0.277 0.282 / 0.244 0.265 / 0.264 0.268 / 0.263 0.286 / 0.231 0.369 / 0.297 0.353 / 0.281

NR 0.979 / 0.981 0.977 / 0.979 0.979 / 0.981 0.980 / 0.981 0.979 / 0.980 0.982 / 0.982 0.977 / 0.980 0.978 / 0.980 0.981 / 0.982 0.977 / 0.978 0.978 / 0.980Item Clas-
sification
F1 Scores R 0.196 / 0.170 0.202 / 0.188 0.169 / 0.150 0.184 / 0.165 0.187 / 0.171 0.192 / 0.172 0.160 / 0.158 0.166 / 0.163 0.174 / 0.155 0.191 / 0.167 0.194 / 0.170

Match to
’Checked
Sentence’

0.159 / 0.116 0.171 / 0.129 0.114 / 0.111 0.120 /0.105 0.127 / 0.106 0.138 / 0.118 0.097 / 0.085 0.101 / 0.086 0.116 / 0.099 0.143 / 0.118 0.147 / 0.116

Recall@1
of Most
Relevant
Item

Match to
’Checked
Passage’

0.238 / 0.174 0.265 / 0.201 0.186 / 0.165 0.165 / 0.146 0.179 / 0.153 0.214 / 0.178 0.138 / 0.124 0.140 / 0.126 0.160 / 0.150 0.234 / 0.191 0.222 . 0.185

Table 7: Evaluation of context representation methods on knowledge selection. Each cell has two numbers
corresponding to results on the random split and topic split of the validation set. All metrics are rounded off to three
decimal places and the highest in each row is bold.

Plaintext Last Turn 3 Turn 5 Turn Selected
Turns

AMR Triples Summary Summ + 1
Turn

Summ + 3
Turns

Summ + 5
Turns

WoW
Bertscore 0.905 / 0.904 0.903 / 0.901 0.903 / 0.902 0.904 / 0.902 0.903 / 0.900 0.895 / 0.890 0.898 / 0.894 0.902 / 0.900 0.903 / 0.901 0.905 / 0.903 0.904 / 0.903

Perplexity 6.978 / 7.545 7.446 / 8.084 7.398 / 8.011 7.304 / 7.885 7.177 / 7.783 7.987 / 8.623 7.803 / 8.510 7.477 / 8.115 7.261 / 7.836 7.050 / 7.660 7.028 / 7.601

MSC

All
Bertscore 0.873 0.861 0.864 0.872 0.865 0.854 0.858 0.866 0.869 0.871 0.873

Perplexity 12.246 15.262 14.701 14.024 14.565 16.245 15.782 13.985 13.69 13.011 12.205

1st
Bertscore 0.875 0.868 0.862 0.863 0.863 0.859 0.863 0.876 0.873 0.874 0.875

Perplexity 10.386 15.627 15.118 13.998 14.409 16.109 15.704 10.143 10.988 10.876 10.257

TCS
Bertscore 0.871 / 0.868 0.869 / 0.867 0.870 / 0.869 0.871 / 0.869 0.869 / 0.869 0.865 / 0.864 0.866 / 0.865 0.868 / 0.866 0.869 / 0.867 0.870 / 0.868 0.871 / 0.868

Perplexity 12.313 /
14.443

13.293 /
15.950

13.045 /
15.650

12.847 /
15.023

12.778 /
15.237

13.587 /
16.290

13.402 /
16.117

12.899 /
15.262

12.686 /
15.013

12.538 /
14.812

12.181 /
14.342

Table 8: Evaluation of context representation methods on response generation. For WoW, each cell has two numbers
corresponding to results on the random split and topic split of the validation set. For MSC, we report results on all
the turns (All), and for the first turn in each session (1st). For TCS, the two numbers correspond to the frequent and
rare splits respectively. All metrics are rounded off to three decimal places and the highest in each row is bold.

Plaintext Last Turn Retrieved Turns Summ + 3 Summ + 5

Base Large Base Large Base Large Base Large Base Large

Item Clas-
sification
Accuracy

Overall 0.959 /
0.963

0.944 /
0.950

0.960 /
0.962

0.967 /
0.968

0.965 /
0.966

0.964 /
0.965

0.954 /
0.958

0.964 /
0.965

0.957 /
0.961

0.957 /
0.961

NR 0.969 /
0.973

0.951 /
0.954

0.970 /
0.972

0.977 /
0.979

0.975 /
0.976

0.973 /
0.976

0.963 /
0.967

0.973 /
0.975

0.966 /
0.971

0.965 /
0.970

R 0.331 /
0.265

0.445 /
0.402

0.278 /
0.234

0.245 /
0.212

0.282 /
0.244

0.329 /
0.275

0.369 /
0.297

0.333 /
0.255

0.353 /
0.281

0.382 /
0.305

Item Clas-
sification
F1 Scores

NR 0.979 /
0.981

0.971 /
0.968

0.979 /
0.981

0.983 /
0.984

0.982 /
0.982

0.981 /
0.982

0.977 /
0.978

0.981 /
0.982

0.978 /
0.980

0.978 /
0.978

R 0.196 /
0.170

0.187 /
0.170

0.169 /
0.150

0.177 /
0.159

0.192 /
0.172

0.210 /
0.185

0.191 /
0.167

0.212 /
0.189

0.194 /
0.170

0.205 /
0.181

Recall@1
of Most
Relevant
Item

Match to ’Checked
Sentence’

0.159 /
0.116

0.203 /
0.156

0.114 /
0.111

0.131 /
0.110

0.138 /
0.118

0.163 /
0.135

0.143 /
0.118

0.161 /
0.135

0.147 /
0.116

0.160 /
0.131

Match to ’Checked
Passage’

0.238 /
0.174

0.326 /
0.258

0.186 /
0.165

0.191 /
0.162

0.214 /
0.178

0.285 /
0.231

0.234 /
0.191

0.255 /
0.219

0.222 .
0.185

0.252 /
0.199

Table 9: Evaluation of knowledge selection as a function of model size. We report performance on T5-Base and
Large for 5 different context representations. We observe positive scaling trends, where the larger model performs
better, uniformly for retrieval metrics and generally across the classification metrics for the Relevant label.

Plaintext Retrieved Turns Last Turn Summ + 5 Turns

Base Large Base Large Base Large Base Large

WoW
Bertscore 0.905 / 0.904 0.907 / 0.906 0.903 / 0.900 0.904 / 0.902 0.903 / 0.901 0.904 / 0.902 0.904 / 0.903 0.906 / 0.904

Perplexity 6.978 / 7.545 5.989 / 6.371 7.177 / 7.783 6.151 / 6.574 7.446 / 8.084 6.754 / 7.226 7.028 / 7.601 6.001 / 6.412

TCS
Bertscore 0.871 / 0.869 0.873 / 0.872 0.869 / 0.869 0.872 / 0.871 0.869 / 0.867 0.871 / 0.870 0.871 / 0.868 0.874 / 0.873

Perplexity 12.313 / 14.443 9.811 / 11.279 12.778 / 15.237 10.101 / 12.980 13.293 / 15.950 11.456 / 14.374 12.181 / 14.342 9.792 / 11.113

Table 10: Evaluation of response generation as a function of model size. We report performance on T5-Base and
Large for 4 different context representations. We observe positive scaling trends, where the larger model performs
better particularly on perplexity scores.


