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Abstract

Video-grounded dialogue systems aim to in-
tegrate video understanding and dialogue un-
derstanding to generate responses that are rel-
evant to both the dialogue and video context.
Most existing approaches employ deep learn-
ing models and have achieved remarkable per-
formance, given the relatively small datasets
available. However, the results are partially ac-
complished by exploiting biases in the datasets
rather than developing multimodal reasoning,
resulting in limited generalization. In this pa-
per, we propose a novel approach of Compo-
sitional Counterfactual Contrastive Learning
(C3) to develop contrastive training between
factual and counterfactual samples in video-
grounded dialogues. Specifically, we design
factual/counterfactual samples based on the
temporal steps in videos and tokens in dia-
logues and propose contrastive loss functions
that exploit object-level or action-level vari-
ance. Different from prior approaches, we fo-
cus on contrastive hidden state representations
among compositional output tokens to opti-
mize the representation space in a generation
setting. We achieved promising performance
gains on the Audio-Visual Scene-Aware Di-
alogues (AVSD) benchmark and showed the
benefits of our approach in grounding video
and dialogue context.

1 Introduction

Visual dialogue research (Das et al., 2017; Seo
et al., 2017; De Vries et al., 2017; Chattopadhyay
et al., 2017; Alamri et al., 2019a) aims to develop
intelligent systems that can reason and answer ques-
tions about visual content in a multi-turn setting.
Compared to traditional visual question answer-
ing (VQA) (Antol et al., 2015; Gao et al., 2015;
Malinowski and Fritz, 2014; Zhu et al., 2016), vi-
sual dialogues bridge the gap between research
and practical applications by allowing turn-based
human-machine interactions. Recently, many deep
learning approaches have been proposed to develop
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Figure 1: An example of video-grounded dialogue

visual dialogue systems and achieved remarkable
performance (Schwartz et al., 2019; Hori et al.,
2019; Le et al., 2019; Li et al., 2021b). How-
ever, as these methods are heavily trained on rela-
tively small datasets (Das et al., 2017; Alamri et al.,
2019a), they are subject to inherent bias from the
datasets and limited generalization into real-world
applications (Zhang et al., 2016; Goyal et al., 2017).
While training on large-scale data can alleviate this
problem, visual dialogues are expensive to procure
and require manual annotations. This challenge
becomes more obvious in highly complex visual
dialogue tasks such as video-grounded dialogues
(Alamri et al., 2019a; Le et al., 2021) (Figure 1).

In recent years, we have seen increasing re-
search efforts in contrastive learning to improve
deep learning performance (Wu et al., 2018; Henaff,
2020; Chen et al., 2020; He et al., 2020). The com-
mon strategy of these methods is an objective func-
tion that pulls together representations of an anchor
and “positive” samples while pushing the repre-
sentations of the anchor from “negative” samples.
These methods are specifically beneficial in self-
supervised image representation learning. Specifi-
cally, these methods often do not require additional
annotations by augmenting data of existing samples
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to create “positive” and “negative” samples. We
are motivated by this line of research to improve vi-
sual dialogue systems and propose a framework of
Compositional Counterfactual Contrastive Learn-
ing (C3). C3 includes loss functions that exploit
contrastive training samples of factual and counter-
factual data that are augmented to be object-variant
or action-variant.

Compared to traditional deep learning tasks, a
major challenge of applying contrastive learning
(Wu et al., 2018; Henaff, 2020; Chen et al., 2020;
He et al., 2020) in video-grounded dialogues lies
in the complexity of the task. Specifically, in a
discrimination task of image classification, given
an image, positive samples are created based on
non-adversarial transformations on this image e.g.
by cropping inessential parts without changing the
labels, and negative samples are randomly sam-
pled from other image instances. However, such
transformations are not straightforward to apply on
visual dialogues, each of which consists of a video
of spatio-temporal dimensions, a dialogue of multi-
ple turns, and an output label in the form of natural
language at the sentence level. In visual dialogues,
the random sampling method, in which negative
samples are created by swapping the input video
and/or dialogue context with random components
from other training samples, becomes too naive. In
domains with high data variance like dialogues or
videos, a system can easily discriminate between
such positive and negative instances derived using
previous approaches.

To mitigate the limitations of conventional con-
trastive learning in video-grounded dialogues, we
propose a principled approach to generate and con-
trol negative and positive pairs by incorporating
compositionality and causality (an overview of our
approach can be seen in Figure 2 and 3). Specif-
ically, we develop a structural causal model for
visual dialogues by decomposing model compo-
nents by object and action-based aspects. We then
create hard negative samples of grounding videos
by masking temporal steps that are relevant to ac-
tions mentioned in target output responses. Hard
negative dialogue samples are created by masking
tokens that are referenced to the entity mentioned in
target output responses. Positive samples of videos
and dialogues are developed similarly by masking
irrelevant temporal steps or tokens for them to re-
main factual. Finally, based on an object or action-
based variance between factual and counterfactual

pairs, we only select specific hidden state represen-
tations of the target dialogue response sequence,
to apply contrastive loss functions. Compared to
existing approaches, our method has better control
of data contrast at the granularity of object and
action variance. We conducted experiments with
comprehensive ablation analysis using the Audio-
Visual Scene-Aware Dialogues (AVSD) benchmark
(Alamri et al., 2019a) and showed that our method
can achieve promising performance gains.

2 Related Work

Counterfactual Reasoning. Related to our work
is the research of counterfactual reasoning. One
line of research focuses on generating plausible
counterfactual data to facilitate model training or
evaluation. (Zmigrod et al., 2019; Garg et al., 2019;
Vig et al., 2020) introduced data augmentation
methods that convert gender-inflected sentences or
remove identity-based tokens from sentences. The
augmented data is used to study model stereotyping
and improve fairness in model outputs. (Kaushik
et al., 2020) crowd-sourced human annotations to
minimally revise documents such that their senti-
ment labels are flipped. (Zeng et al., 2020; Wang
and Culotta, 2020; Madaan et al., 2020) introduced
data augmentation to improve model robustness in
entity recognition and text classification tasks.

More related to our work are counterfactual aug-
mentation methods in generative tasks. (Qin et al.,
2019) introduced a new benchmark for counterfac-
tual story rewriting. (Li et al., 2021a) explored
augmented counterfactual dialogue goals to evalu-
ate dialogue state tracking models. (Baradel et al.,
2020) proposed a synthetic 3D environment for
learning the physical dynamics of objects in coun-
terfactual scenarios. Different from prior tasks, in
the task of video-grounded dialogue, a target re-
sponse is not easy to be flipped/negated, and hence,
supervised learning is not straightforward. We pro-
pose to automatically develop counterfactual and
factual samples and improve representation learn-
ing via unsupervised learning.

Contrastive Learning. Our work is related to
the research of contrastive learning in deep learn-
ing models. The research is particularly popular in
self-supervised learning of image representations
(Wu et al., 2018; Hjelm et al., 2019; Henaff, 2020;
Chen et al., 2020; He et al., 2020; Khosla et al.,
2020). These methods do not require additional
annotations but aim to improve representations
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Figure 2: SCMs of video-grounded dialogues: Left: Basic SCM without factorization. Middle: SCM factorized
by visual and textual context. Right: SCM factorized by object and action-level information. I: video input, Q:
question input, H: dialogue history, C: contextualized information, and A: target response. For simplicity, we do
not demonstrate independent noise variables U and the subscript t.

through loss functions. The loss functions are of-
ten inspired by noise contrastive estimation (NCE)
(Gutmann and Hyvärinen, 2010) and applied in
lower-dimensional representation space. In the lan-
guage domain, similar loss functions have been
introduced to improve word embeddings (Mnih
and Kavukcuoglu, 2013) and sentence embeddings
(Logeswaran and Lee, 2018). More related to our
work is (Huang et al., 2018; Liu and Sun, 2015;
Yang et al., 2019; Lee et al., 2021), introducing
positive and negative pairs of sentences for con-
trastive learning in generative tasks such as lan-
guage modelling, word alignment, and machine
translation. In the multimodal research domains,
our work is related to contrastive learning methods
introduced by (Zhang et al., 2020; Gokhale et al.,
2020; Liang et al., 2020; Gupta et al., 2020). Specif-
ically, our work complements (Zhang et al., 2020)
by incorporating causality into contrastive learn-
ing. However, we focus on a very different task of
video-grounded dialogues that involves turn-based
question-answering. The task requires multimodal
reasoning performed on both dialogue context and
video context. Moreover, we improve models by
tightly controlling data variance by adopting com-
positionality and our loss functions optimize hid-
den state representations of decoding tokens by
their object or action-based semantics.

3 Method

3.1 Problem Definition

In a video-grounded dialogue task (Alamri et al.,
2019a; Le et al., 2021), the inputs consist of a di-
alogue D and the visual input of a video I. Each
dialogue contains a sequence of dialogue turns,
each of which is a pair of question Q and answer

A. At each dialogue turn t, we denote the dia-
logue context Ht as all previous dialogue turns
Ht = {(Qi,Ai)}|i=t−1

i=1 . The output is the answer
Ât to answer the question of the current turn Qt.
The objective of the task is the generation objective
that output answers of the current turn:

Ât = argmax
At

P (At|I,Ht,Qt; θ) (1)

3.2 Structural Causal Model
We first cast a visual dialogue model as a structural
causal model (SCM) (Pearl, 2009) to explore the
potential factors that affect the generation of tar-
get dialogue responses in a dialogue system. By
definition, an SCM consists of random variables
V = {V1, ..., VN} and corresponding independent
noise variables U = {U1, ..., UN}. We assume an
SCM of a directed acyclic graph (DAG) structure.
In this structure, causal functions are defined as
F = {f1, ..., fN} such that Vi = fi(Pi, Ui) where
Pi = {Vp} ⊂ V are the parent nodes of Vi in
the DAG. Using this definition of SCM, we de-
velop three SCM structures for a video-grounded
dialogue system in Figure 2.

The Basic SCM is directly derived from the
objective function (1). The VL-SCM adopts a
question-aware reasoning process that partitions
visual and language reasoning based on question
information as the common cause. A limitation
of VL-SCM is that it does not account for the in-
teractions of components such as object and ac-
tion abstracts that are embedded in visual con-
text CI and linguistic context CH . This drawback
becomes more significant in scenarios in which
question information is highly dependent on prior
turns in the dialogue history. Specifically, in ques-
tions that involve references, including object refer-
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Figure 3: Counterfactual generation: An overview of our factual and counterfactual dialogue/video generation.

ences (“does she interact with the woman in red?”)
and action references (“what does the boy do af-
ter that?”), VL-SCM is not optimal to integrate
dialogue and video context to solve component
references such as “she” and “that”. To address
this drawback, we propose an OA-SCM that is
factorized by object-action contextual information
(Figure 2, right). The causal functions fobjH and
factH can be a simple text parser that map tokens
into object-based tokens or action-based tokens s.t.
Hobj = fobjH (H) and Hact = factH (H). Similarly,
fobjI and factI are causal functions that map bound-
ing boxes or temporal steps into object-based or
action-based contents. In Section 3.3, we show
that OA-SCM structure provides a framework to
develop partially counterfactual training samples.

3.3 Counterfactual Augmentation
An overview of our augmentation process can be
seen in Figure 3.

Decomposing observational target response.
First, at each dialogue turn t, the ground-truth dia-
logue response At are passed to a syntactic parser
such as the Stanford parser system 1. The output in-
cludes grammatical components, such as subjects,
verbs, and modifiers, in the form of a dependency
tree. We prune the dependency tree to remove
inessential parts and extract a set of object phrases
At,obj , and action-based phrases At,act.

Generating counterfactual dialogue. Based
on At,obj , we apply a pretrained reference reso-
lution model e.g. (Clark and Manning, 2016), to
the dialogue contextHt to identify any references
from past dialogue turns to any objects in At,obj .

1https://nlp.stanford.edu/software/
lex-parser.shtml

For instance, in Figure 2, the object “he” identified
in At are mapped to different token positions in
prior dialogue turns, e.g. “his” in the text span “his
hand” in the second question turn. All referenced
tokens in dialogue context Ht are replaced by a
MASK vector and the resulting dialogue context is
denoted as counterfactual sample H−t . We also
used the pretrained reference resolution model to
select any object tokens inHt that are not mapped
to At,obj . These objects are considered irrelevant
to At and they are replaced by the MASK vector
fromHt and the resulting dialogue is denoted as a
factual sampleH+

t .

Generating counterfactual video. To create a
counterfactual video sample, we first identify the
temporal steps from the video that are semanti-
cally relevant to action phrases in At,act. We ob-
tain the annotation of temporal action spans from
video, which can be retrieved from a pretrained
temporal localization model (Shou et al., 2016) or
is readily available in existing video benchmarks
(Sigurdsson et al., 2016). The action span annota-
tions consist of a set of action labels Yi,act, each
of which is mapped to a start and end time (tsi , t

e
i ).

Temporal segments that are deemed necessary to
generate At is the union of all time spans from
the set S = {(tsj , tej)} for all Yj,act that is semanti-
cally similar toAt,act. To identify similar pairs, we
adopted cosine similarity scores between pretrained
Glove embedding vectors of Yj,act and At,act. Dur-
ing video feature encoding, any features of tem-
poral steps sampled within S are replaced with
a MASK vector, and resulting video features are
noted as encoded features of counterfactual video
I−. Factual video I+ are created similarly but for
video parts irrelevant to At, that is I \ S.

https://nlp.stanford.edu/software/lex-parser.shtml
https://nlp.stanford.edu/software/lex-parser.shtml
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By the definition of OA-SCM from Section
3.2, we can denote H−t = H−t,obj + Ht,act and
H+

t = H+
t,obj +Ht,act; and I− = Iobj + I−act and

I+ = Iobj + I+act. Note that we follow (Hsieh
et al., 2018) and assume object information such
as object appearance and shape are typically em-
bedded in any video frame. In this case, Iobj is
unchanged and can be obtained from either I \ S
or S. In Section 3.4, we show that these partially
counterfactual formulations enable a compositional
contrastive learning approach.

3.4 Contrastive Learning
In this section, we introduce a contrastive learn-
ing method that exploits the compositional hidden
states between factual and counterfactual samples.
We extend the objective function (1) to express the
auto-regressive decoding process:

Ât = argmax
At

P (At|I,Ht,Qt; θ)

= argmax
At

LA∏
m=1

Pm(wm|At,<m, I,Ht,Qt; θ)

Each target responseA is represented as a sequence
of token or word indices {wm}|m=L

m=1 ∈ |V|, where
L is the sequence length and V is the vocabulary
set. The conditional probability Pm is defined as:

Pm = softmax(Wkm + b) ∈ R|V| (2)

km = θdecode(wm−1, θencode(I,Ht,Qt)) (3)

where km is the hidden state at decoding position
m and d is the embedding dimension of the hidden
state. In this generative setting, we then explain 2
different ways of contrastive learning:

Sentence-level contrast. This approach learns
the representations of the hidden states by contrast-
ing a linear transformation of an aggregated vector
of hidden states following an NCE framework:

Lsentnce = − log
esim(z,z+)

esim(z,z+) + esim(z,z−)
(4)

where sim(, ) is the cosine similarity score and
z is the output of an aggregation function Agg:
z = Agg(U) where U ∈ Rdnce×LA and
um = MLPnce(km) ∈ Rdnce . z+ and z−

are obtained similarly by passing k+m and k−m to
the same MLP and aggregation function. k+m
and k−m are obtained by passing factual and
counterfactual video pairs into (3): k+m =
θdecode(wm−1, θencode(I+,Ht,Qt)) and k−m =

θdecode(wm−1, θencode(I−,Ht,Qt)). In cases of
augmentation with factual and counterfactual dia-
logues, we obtain k+m and k−m by replacingH with
H+ and H− in (3). Agg is an aggregation func-
tion that collapses hidden states into a single vector,
e.g. average pooling (Lee et al., 2021; Zhang et al.,
2020). We follow (Khosla et al., 2020) to normalize
z, z+, z− to lie on the unit hypersphere. To reflect
this contrastive learning approach against the VL-
SCM, we can assume C ∼= K and (4) essentially
exploits the contrast between C+ and C−.

Compositional contrast. We note that the
above approach does not consider compositionality
in the target output response A. Since we are us-
ing the same observational output wm−1 to obtain
km, k−m, and k−m, we can remove the Agg func-
tion and apply a token-level pairwise contrastive
loss between pairs of (zm = um, z

+
m = u+m) and

(zm = um, z−m = u−m). In this strategy, we formu-
late a loss function for action variance between I+
and I−, and one for object variance between H+

andH−:

Lactnce = −
1

|Dact|
∑

i∈Dact

log
esim(zi,z

+
i )

esim(zi,z
+
i ) + esim(zi,z

−
i )

Dact = {idx(wi) : wi−1 ∈ At,act} (5)

Lobjnce = −
1

|Dobj |
∑

j∈Dobj

log
esim(zj ,z

+
j )

esim(zj ,z
+
j ) + esim(zj ,z

−
j )

Dobj = {idx(wj) : wj−1 ∈ At,obj} (6)

where idx(wm) returns the index of wm in At.
Note that in (5) and (6), we adopt a hypothetical
strategy by obtaining hidden states given input to-
kens are either inAt,act orAt,obj . An alternative ap-
proach is to consider hidden states that are expected
to produce prospective tokens wm ∈ At,act/At,obj ,
i.e. D′act = {index(wi) : wi ∈ At,act} and
D′obj = {index(wj) : wj ∈ At,obj}. We con-
ducted experiments with both strategies and ex-
plained our findings in the next section. Note
that we can connect the compositional contrastive
learning approach against the OA-SCM (Section
3.2) by denoting Cact ∼= {ki}∀i ∈ Dact and
Cobj ∼= {kj}∀j ∈ Dobj . Therefore, (5) essentially
exploits the contrast between C+act and C−act, and (6)
for the contrast between C+obj and C−obj .

4 Experiments

Dataset and Experimental Setup. We used
the Audio-Visual Sene-Aware Dialogue (AVSD)
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Train Trainvideo
aug Traindial

aug Val Valvideoaug Valdialaug Test
#Dialogs 7,659 7,145 6,411 1,787 1,709 1,557 1,710
#(I,Ht,Qt,At) 76,590 28,163 18,397 17,870 7,383 4,912 6,745

Table 1: Summary of the AVSD benchmark with augmented counterfactual video/dialogue data

dataset (Alamri et al., 2019b) to benchmark video-
grounded dialogue systems. The dataset contains
10-turn dialogues, each of which is grounded on
one video from the Charades dataset (Sigurdsson
et al., 2016). We used the standard visual features
I3D (Carreira and Zisserman, 2017) to represent
the video input. Note that compared to (Alamri
et al., 2019b), we followed the setting of AVSD
in the 7th Dialogue System Technology Challenge
(DSTC7) (Yoshino et al., 2019), which requires
generating a response rather than selecting from a
candidate set. We also did not use video caption
as an input as the caption is typically not easy to
obtain in applications. A summary of the dataset
can be seen in Table 1.

All model parameters, except the visual feature
extractor of a pretrained I3D model, are initial-
ized with uniform distribution (Glorot and Bengio,
2010). Our approach can be applied to different
model architectures, as long as the hidden states of
individual decoding tokens are available for con-
trastive learning. We used MTN (Le et al., 2019),
which is a Transformer adaptation of the traditional
RNN-based dialogue systems, as our base model.
Finally, we evaluated models with objective met-
rics, including BLEU (Papineni et al., 2002), ME-
TEOR (Banerjee and Lavie, 2005), ROUGE-L (Lin,
2004), and CIDEr (Vedantam et al., 2015). These
metrics are found to correlate well with human
judgment (Alamri et al., 2019b).

Creating Counterfactual Data. We created
counterfactual data for the training split and vali-
dation split of the AVSD benchmark. Specifically,
from the original data, we identified invalid sam-
ples that are not sufficient for factual and coun-
terfactual transformations. Examples of invalid
samples are ones with ambiguous actions in target
responses (e.g. “I am not sure what he is doing”),
or ones without object references to prior turns (e.g.
“there is only a single person in the video”). These
samples are discarded and the remaining data is
processed as described in Section 3.3. The overall
statistics of augmented train and validation splits
can be seen in Table 1. Note that the number of
samples with augmented videos and dialogues are

different as some samples contain valid actions
but no object references (e.g. “the man is walking
around the kitchen”), and vice versa.

Evaluating with Counterfactual Data. First,
using augmented data, we evaluated models trained
only with the original data. Motivated by (Kaushik
et al., 2020; Vig et al., 2020; Agarwal et al., 2020),
we designed this set of experiments to gauge the
model performance under adversarial (counterfac-
tual) samples and favourable (factual) samples and
to observe the effects of our transformation meth-
ods. Specifically, we trained an MTN model (Le
et al., 2019) on the original training data and evalu-
ate the model on an augmented validation set. To
fairly compare the results, we create a shared vali-
dation set in which each sample is augmented with
both video and dialogue factual and counterfac-
tual pairs. Essentially, this set is the intersection
Valv+d

aug = Valvideoaug ∩ Valdialaug . Using the CIDEr
metric (Vedantam et al., 2015), We noted the MTN
model pretrained on original training data achieves
0.996 and 1.086 score in the original test and val-
idation set respectively. However, as noted from
Table 2, the performance drops to 0.779 when eval-
uating on the validation set Valv+d

aug even with the
original video-dialogue pair (I,H). This perfor-
mance drop indicates that the subset contains more
challenging instances that require reasoning in dia-
logues and videos.

The performance decreases to 0.760 when tested
with I− and increases to 0.782 when tested with
I+, keeping the H unchanged. When tested with
videos that are masked at random temporal steps
I−rand, the result only reduces to 0.773, less than
I−. This illustrates higher counterfactual im-
pacts in I− than in I−rand. We also observed that
model performance with counterfactual videos I−
is higher than cases with no video at all, I0. This
observation demonstrates the factorization formu-
lation of our SCM in which I− is partially coun-
terfactual, containing useful information, i.e. Iobj ,
than I0, to support response generation.

When tested with dialogue transformations, we
have similar observations with H−, H+, H−rand,
andH0. Specifically, following our SCM structure,
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Video augmentation + original dialogue Video augmentation + no dialogue
(I,H) (I−,H) (I0,H) (I+,H) (I−rand,H) (I,H0) (I−,H0) (I0,H0) (I+,H0) (I−rand,H0)
0.779 0.760 0.733 0.782 0.773 0.724 0.708 0.693 0.722 0.710
Dialogue augmentation + original video Dialogue augmentation + no video
(I,H) (I,H−) ((I,H0) (I,H+) (I,H−rand) (I0,H) (I0,H−) (I0,H0) (I0,H+) (I0,H−rand)
0.779 0.764 0.724 0.788 0.778 0.733 0.722 0.693 0.739 0.734

Table 2: Validation results with augmentation data: I: original video input, I−/+: counterfactual/factual video
following Section 3.3, I−rand: counterfactual video by masking random temporal steps, I0: no video input; H:
original dialogue input, H−/+: counterfactual/factual dialogue following Section 3.3, H−

random: counterfactual
dialouge by masking random tokens,H0: no dialogue input. All results are in CIDEr score.

# Contrast
pair

Contrast
loss

Hidden
states B-1 B-2 B-3 B-4 M R C

A - - - 0.695 0.558 0.455 0.376 0.253 0.534 0.996
B I+, I− NCE Dact 0.709 0.577 0.476 0.398 0.262 0.549 1.040
C I+, I− NCE D′act 0.697 0.565 0.462 0.381 0.254 0.538 1.003
D I+, I− NCE Dobj 0.701 0.565 0.462 0.383 0.256 0.541 1.011
E I+, I− NCE D 0.699 0.566 0.465 0.386 0.253 0.539 1.008
F I+, I−rand NCE Dact 0.693 0.563 0.464 0.388 0.254 0.538 1.010
G I+, I0 NCE D 0.700 0.566 0.463 0.383 0.256 0.538 1.019
H I+, I0

rand NCE D 0.695 0.563 0.463 0.385 0.253 0.538 0.998
I I+, I− S-NCE Dact 0.695 0.567 0.467 0.389 0.255 0.54 1.014
J I+, I− L1-PD Dobj 0.705 0.569 0.465 0.385 0.258 0.543 1.005

Table 3: Contrastive learning with counterfactual videos: We experimented with variants of contrastive video
pairs, hidden state sampling, and contrast loss. Metrics: B-n: BLEU-n, M: METEOR, R: ROUGE-L, C: CIDEr.

we show thatH− is partially counterfactual. To iso-
late the impacts of video/dialogue augmentations,
we also tested models with tuples that are paired
with zero dialogue context/video input (H0/I0). In
these isolated experiments, we still observe consis-
tent performance patterns among different variants
of augmented video/dialogues, validating our fac-
torization SCM and the effectiveness of augmenta-
tion techniques.

Contrastive Learning with Counterfactual
Videos. In these experiments, we combined the
task objective loss with our proposed contrastive
learning approach that exploits action-based data
contrast between I+ and I−. From Table 3, we
have the following observations: 1) First, when
applying contrastive learning on augmented coun-
terfactual data following our NCE function (5)
(Row B), the model outperforms one which was
trained with only original training data (Row A).
This demonstrates the positive impacts of our C3

learning approach through better generated target
responses. 2) When using the indices of hidden
states based on prospective tokens (D′act) (Row C),
the performance gain decreases. This can be ex-
plained as hidden states in D′act positions represent
contextual information that potentially, but not ab-
solutely, generate an action token. However, hidden
states in Dact positions already assume a hypothet-

ical input action token (wi−1 in (5)), and hence, a
contrastive learning on these hidden states is more
stable. 3) we observed marginal performance gains
when changing hidden state indices to indices of
object tokens Dobj (Row D) or to hidden states of
all tokens D (Row E). This observation verifies our
factorized SCM framework as I− and I+ are for-
mulated to be action-variant specifically. Training
them based on object variance or generic variance
might lead to unstable representation learning and
trivial performance gains.

4) Consistent with our observations from Ta-
ble 2, contrastive learning applied to counterfac-
tual videos with random masked temporal steps
I−rand (Row F) results in very low performance
gain. 5) When we applied contrastive learning be-
tween I+ and naive counterfactual samples, in-
cluding zero video input I0 (Row G) or video
input sample from other training instance I0rand
(Row H), the results only increases marginally com-
pared to results with I−. 6) We experimented
with sentence-level contrast (S-NCE) (as in (4))
in which all hidden states are considered and col-
lapsed to a single vector, as similarly used by (Lee
et al., 2021; Zhang et al., 2020). We observed that
this loss formulation (Row I), is not effective in
our task, illustrating the benefits of using compo-
sitional representations of decoding tokens. 7) Fi-
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# Contrast
pair

Contrast
loss

Hidden
states B-1 B-2 B-3 B-4 M R C

A - - - 0.695 0.558 0.455 0.376 0.253 0.534 0.996
B H+, H− NCE Dobj 0.705 0.571 0.470 0.393 0.260 0.545 1.029
C H+, H− NCE D′obj 0.701 0.569 0.469 0.392 0.256 0.540 1.023
D H+, H− NCE Dact 0.699 0.561 0.453 0.369 0.251 0.538 0.963
E H+, H− NCE D 0.707 0.571 0.466 0.385 0.258 0.542 1.020
F H+, H−rand NCE Dobj 0.693 0.557 0.452 0.370 0.253 0.536 0.957
G H+, H0 NCE D 0.705 0.570 0.466 0.387 0.258 0.542 1.022
H H+, H0

rand NCE D 0.696 0.563 0.462 0.383 0.254 0.536 1.005
I H+, H− S-NCE Dobj 0.696 0.561 0.458 0.378 0.252 0.538 0.999
J H+, H− L1-PD Dact 0.699 0.569 0.468 0.390 0.255 0.543 1.008

Table 4: Contrastive learning with counterfactual dialogues: We experiment with variants of contrastive dia-
logues pairs, hidden state sampling, and loss. Metrics: B-n: BLEU-n, M: METEOR, R: ROUGE-L, C: CIDEr.

Model Visual
Features B-1 B-2 B-3 B-4 M R C

Baseline (Hori et al., 2019) I3D 0.621 0.480 0.379 0.305 0.217 0.481 0.733
JMAN (Chu et al., 2020) I3D 0.648 0.499 0.390 0.309 0.240 0.520 0.890
FA-HRED (Nguyen et al., 2018) I3D 0.648 0.505 0.399 0.323 0.231 0.510 0.843
Student-Teacher (Hori et al., 2019) † I3D 0.675 0.543 0.446 0.371 0.248 0.527 0.966
MSTN (Lee et al., 2020) † I3D - - - 0.379 0.261 0.548 1.028
BiST (Le et al., 2020) RX 0.711 0.578 0.475 0.394 0.261 0.550 1.050
RLM-GPT2 (Li et al., 2021b) † ‡ I3D 0.694 0.570 0.476 0.402 0.254 0.544 1.052
MTN (Le et al., 2019) I3D 0.695 0.558 0.455 0.376 0.253 0.534 0.996
MTN +C3 (I+/−) I3D 0.709 0.577 0.476 0.398 0.262 0.549 1.040
MTN +C3 (H+/−) I3D 0.705 0.571 0.470 0.393 0.260 0.545 1.029

Table 5: Overall results: † incorporates additional video background audio inputs. ‡ indicates finetuning methods
on pretrained language models. Metrics: B-n: BLEU-n, M: METEOR, R: ROUGE-L, C: CIDEr.

nally, to utilize any object-level invariance between
I+ and I−, we applied a pairwise L1 distance loss
Lact =

∑
i ‖sim(zi, z

+
i )− sim(zi, z

−
i )‖1 to min-

imizes distances of hidden states of Dobj positions
(Row J). However, the performance gain of this
loss is not significant, demonstrating representation
learning through data variance is a better strategy.

Contrastive Learning with Counterfactual
Dialogues. From Table 4, we observed consistent
observations as compared to prior experiments with
counterfactual videos. Essentially, our results illus-
trate the impacts of C3 that specifically contrasts
object-level information betweenH− andH+.

Overall Results. In Table 5, we reported the
results of our models which we trained on an MTN
backbone (Le et al., 2019) incorporated our pro-
posed C3 learning approach with counterfactual
videos or dialogues. Our models achieve very
competitive performance against models trained
on the same data features e.g. MSTN (Lee et al.,
2020), as well as models pretrained with a large
language dataset e.g. RLM-GPT2 (Li et al., 2021b).
We also observed that the performance gain of C3

with I+/− is higher than that with H+/−. As we
showed the benefits of augmented counterfactual

dialogues and videos, we will leave the study to
unify both augmented data types for a hybrid con-
trastive learning approach for future work. In this
paper, we showed that either dialogues or videos
can be augmented and used to improve contextual
representations through contrastive losses based on
object-based or action-based variance.

For example factual/counterfactual
videos/dialogues, please refer to the Appendix.

5 Discussion and Conclusion

In this work, we proposed Compositional Coun-
terfactual Contrastive Learning (C3), a contrastive
learning framework to address the limitation of
data in video-grounded dialogue systems. We in-
troduced a factorized object-action structural causal
model, described a temporal-based and token-
based augmentation process, and formulated con-
trastive learning losses that exploit object-level and
action-level variance between factual and counter-
factual training samples. In our proposed approach,
we train models to minimize the distance between
compositional hidden state representations of fac-
tual samples and maximize the distance between
counterfactual samples.
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We noted our proposed C3 still entails some
limitations. we describe these limitations and sug-
gest potential ways to overcome them for future
extension. First, in our approach, we made the as-
sumption of independence between Cobj and Cact
to mask tokens/video segments as a way to gen-
erate counterfactual data samples. However, in
many cases, this assumption might be too strong.
Therefore, our approach might disrupt the natu-
ral data distribution and create negative noise in
model training. A more advanced counterfactual
data generation should be able to better capture
the nature of counterfactual scenarios, avoiding the
above assumption and generalizing the model bet-
ter. Secondly, in our approach, we require external
text-processing tools to decompose the input com-
ponents. More sophisticated tools could be used
to improve data quality of counterfactual/factual
examples. Finally, after this work was completed,
there have been several more advanced approaches
following MTN (Le et al., 2019). As our approach
is model-agnostic, we encourage readers to review
and adapt our work to these more advanced models.

6 Broader Impacts

In this work, we described C3, a novel con-
trastive learning approach that exploits action-
based and object-based variance between counter-
factual video/dialogue pairs. We demonstrated the
benefit of this approach in the video-grounded di-
alogue domain, which is typically suffered from
dataset scarcity. We want to emphasize that our
method should be used strictly to improve dataset
quality and obtain model performance gains. For
instance, a chatbot that incorporates C3 can gener-
ate high-quality responses that better match human
questions. Our method should not be used for ma-
licious purposes, such as creating chatbots to steal
information or make scam calls.

Considering the widespread application of AI in
the real world, the adoption of our method can lead
to better dialogue systems that improve the quality
of life for many people. For instance, a better chat-
bot embedded in electronic devices will improve
both user experience and productivity. Conversely,
the adoption of dialogue systems might lead to
the potential loss of jobs in domains such as cus-
tomer call centres. In high-risk domains such as
autonomous vehicles, applications of our method
can improve virtual assistant applications in the
vehicles. As the products might directly affect

human safety, any applications of C3 should be
tested to account for different scenarios, whether
the method works as intended or not, and mitigate
consequences when the output is incorrect. We
advise that any plan to apply our method should
consider carefully all potential groups of stakehold-
ers as well as the risk profiles of applied domains
to maximize the overall positive impacts.
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QRWQ3_4,
A2771_3
A2771_8
PRQSR_5
PRQSR_7

Original video 

Original dialogue history
Q1: is the woman already in the room ? A1: yes she is already in the room. Q2: is there any other people ? A2: no other people in the 
video. Q3: is she talking in the video ? A3: no she isn’t talking in this video. Q4: is there any music heard ? A4: no music is heard 
there.

Question and answer of current turn (detected actions are highlighted): 
Q5: does the woman eat or drink anything? A5: she takes a cup from the fridge but didn’t drink.

Factual video (I+)

MASK MASK MASK MASK

Counterfactual video (I-)

MASKMASKMASK MASK

MASK

Figure 4: Example factual and counterfactual video

Counterfactual video (I-)

Factual video (I+)

QRWQ3_4,
A2771_3
A2771_8
PRQSR_5
PRQSR_7

Original video 

Original dialogue history
Q1: how many people can you see ? A1: there is only one person . Q2: is it indoors ? A2: yes , the entire video is indoors . Q3: is it 
daylight ? A3: yes , it is daylight outside . Q4: is the person happy ? A4: yes , she is laughing . to herself . Q5: is it in a house or 
apartment ? A5: i cannot tell if it is an apartment or home . Q6: is the person watching tv or reading a book ? A6: she is looking at her 
phone . Q7: how old does the person seem to be ? A7: she looks like early twenties . Q8: is she sitting down or standing up ? A8: she 
is sitting on the stairs then stands up and leaves . Q9: are the stairs covered with carpet ? A9: no , they are bare , no carpet .

Question and answer of current turn (detected actions are highlighted): 
Q10: can you see her getting out of the dwelling ? A10: no , you can only see her walk away .

MASK MASK

MASKMASK MASK

MASK

Figure 5: Example factual and counterfactual video
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Original video

Original dialogue history
Q1: is there only one guy in this whole video? 
A1: yes I can see only one guy in the video
Q2: can you tell what he‘s cooking? 
A2: nothing clear he pour some water in bowl and on stove
Q3: what’s in the silver packet at the end? 
A3: he opened medicine in the box
Q4: does he boil the water?
A4: yes it seems in the video

Question and answer of current turn (detected objects are 
highlighted)
Q5: does he eat any of that medicine?
A5: no he opened the medicine that’s all in video

QRWQ3_4,
A2771_3
A2771_8
PRQSR_5
PRQSR_7

Factual dialogue history (H+)
Q1: is there only one guy in this whole video? 
A1: yes I can see only one guy in the video
Q2: can you tell what he‘s cooking? 
A2: nothing clear he pour [MASK] in bowl and on stove
Q3: what’s in the silver packet at the end? 
A3: he opened medicine in the box
Q4: does he boil the water?
A4: yes it seems in the video

Counterfactual dialogue history (H-)
Q1: is there only one guy in this whole video? 
A1: yes I can see [MASK]
Q2: can you tell what [MASK] ‘s cooking? 
A2: nothing clear [MASK] pour some water in bowl and on 
stove
Q3: what’s in the silver packet at the end? 
A3: [MASK] opened [MASK] in the box
Q4: does [MASK] boil the water?
A4: yes it seems in the video

Figure 6: Example factual and counterfactual dialogue history

QRWQ3_4,
A2771_3
A2771_8
PRQSR_5
PRQSR_7

Original video

Original dialogue history
Q1: is the guy in the red shirt dancing? 
A1: no , he is using the towel to dust the window.
Q2: is that a women to right of him watching him? 
A2: yes that is a woman.
Q3: what was he doing before dusting the window? 
A3: he turns around, then picks up the towel. 
Q4: what did he do after dusting the window?
A4: he doesn’t stop, he does it for the remainder of the video.
Q5: was there any talking in the video? 
A5: yes, a woman speaks in a foreign language, at the 
beginning of the video only. 
Q6: can you tell who she was talking to? 
A6: to the man who ends up dusting the window.
Q7: does the woman do anything besides talk to the man 
dusting?
A7: no, she doesn’t, it might be the female behind the camera 
speaking.
Q8: is the window he’s dusting dirty?
A8: can tell if is or not. 

Question and answer of current turn (detected objects are 
highlighted): 
Q9: is he using only the towel on the window or does he have a 
cleaner like a spray bottle? 
A9: only the towel he’s using.

Factual dialogue history (H+)
Q1: is the guy in the red shirt dancing? 
A1: no , he is using the towel to dust the window.
Q2: is that a women to right of him watching him? 
A2: yes that is a woman.
Q3: what was he doing before dusting the window? 
A3: he turns around, then picks up the towel. 
Q4: what did he do after dusting the window?
A4: he doesn’t stop, he does it for the remainder of the video.
Q5: was there any talking in the video? 
A5: yes, [MASK] speaks in a foreign language, at the 
beginning of the video only. 
Q6: can you tell who [MASK] was talking to? 
A6: to [MASK]
Q7: does [MASK] do anything besides talk to [MASK] dusting?
A7: no, she doesn’t, it might be the female behind the camera 
speaking.
Q8: is the window he’s dusting dirty?
A8: can tell if is or not. 

Counterfactual dialogue history (H-)
Q1: is [MASK]? 
A1: no , [MASK] is using the towel to dust [MASK].
Q2: is that a women to right of [MASK] watching [MASK]? 
A2: yes that is a woman.
Q3: what was [MASK] doing before dusting [MASK]? 
A3: [MASK] turns around, then picks up the towel. 
Q4: what did [MASK] do after dusting [MASK]?
A4: [MASK] doesn’t stop, [MASK] does it for the remainder of 
the video.
Q5: was there any talking in the video? 
A5: yes, a woman speaks in a foreign language, at the 
beginning of the video only. 
Q6: can you tell who she was talking to? 
A6: to the man who ends up dusting [MASK].
Q7: does the woman do anything besides talk to the man 
dusting?
A7: no, she doesn’t, it might be the female behind the camera 
speaking.
Q8: is [MASK] he’s dusting dirty?
A8: can tell if is or not. 

Figure 7: Example factual and counterfactual dialogue history


