@inproceedings{aicher-etal-2023-towards,
title = "Towards Breaking the Self-imposed Filter Bubble in Argumentative Dialogues",
author = "Aicher, Annalena and
Kornmueller, Daniel and
Matsuda, Yuki and
Ultes, Stefan and
Minker, Wolfgang and
Yasumoto, Keiichi",
editor = "Stoyanchev, Svetlana and
Joty, Shafiq and
Schlangen, David and
Dusek, Ondrej and
Kennington, Casey and
Alikhani, Malihe",
booktitle = "Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue",
month = sep,
year = "2023",
address = "Prague, Czechia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.sigdial-1.56",
doi = "10.18653/v1/2023.sigdial-1.56",
pages = "593--604",
abstract = "Human users tend to selectively ignore information that contradicts their pre-existing beliefs or opinions in their process of information seeking. These {``}self-imposed filter bubbles{''} (SFB) pose a significant challenge for cooperative argumentative dialogue systems aiming to build an unbiased opinion and a better understanding of the topic at hand. To address this issue, we develop a strategy for overcoming users{'} SFB within the course of the interaction. By continuously modeling the user{'}s position in relation to the SFB, we are able to identify the respective arguments which maximize the probability to get outside the SFB and present them to the user. We implemented this approach in an argumentative dialogue system and evaluated in a laboratory user study with 60 participants to show its validity and applicability. The findings suggest that the strategy was successful in breaking users{'} SFBs and promoting a more reflective and comprehensive discussion of the topic.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="aicher-etal-2023-towards">
<titleInfo>
<title>Towards Breaking the Self-imposed Filter Bubble in Argumentative Dialogues</title>
</titleInfo>
<name type="personal">
<namePart type="given">Annalena</namePart>
<namePart type="family">Aicher</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Kornmueller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuki</namePart>
<namePart type="family">Matsuda</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stefan</namePart>
<namePart type="family">Ultes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wolfgang</namePart>
<namePart type="family">Minker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Keiichi</namePart>
<namePart type="family">Yasumoto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue</title>
</titleInfo>
<name type="personal">
<namePart type="given">Svetlana</namePart>
<namePart type="family">Stoyanchev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shafiq</namePart>
<namePart type="family">Joty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Schlangen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ondrej</namePart>
<namePart type="family">Dusek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Casey</namePart>
<namePart type="family">Kennington</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Malihe</namePart>
<namePart type="family">Alikhani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Prague, Czechia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Human users tend to selectively ignore information that contradicts their pre-existing beliefs or opinions in their process of information seeking. These “self-imposed filter bubbles” (SFB) pose a significant challenge for cooperative argumentative dialogue systems aiming to build an unbiased opinion and a better understanding of the topic at hand. To address this issue, we develop a strategy for overcoming users’ SFB within the course of the interaction. By continuously modeling the user’s position in relation to the SFB, we are able to identify the respective arguments which maximize the probability to get outside the SFB and present them to the user. We implemented this approach in an argumentative dialogue system and evaluated in a laboratory user study with 60 participants to show its validity and applicability. The findings suggest that the strategy was successful in breaking users’ SFBs and promoting a more reflective and comprehensive discussion of the topic.</abstract>
<identifier type="citekey">aicher-etal-2023-towards</identifier>
<identifier type="doi">10.18653/v1/2023.sigdial-1.56</identifier>
<location>
<url>https://aclanthology.org/2023.sigdial-1.56</url>
</location>
<part>
<date>2023-09</date>
<extent unit="page">
<start>593</start>
<end>604</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Towards Breaking the Self-imposed Filter Bubble in Argumentative Dialogues
%A Aicher, Annalena
%A Kornmueller, Daniel
%A Matsuda, Yuki
%A Ultes, Stefan
%A Minker, Wolfgang
%A Yasumoto, Keiichi
%Y Stoyanchev, Svetlana
%Y Joty, Shafiq
%Y Schlangen, David
%Y Dusek, Ondrej
%Y Kennington, Casey
%Y Alikhani, Malihe
%S Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue
%D 2023
%8 September
%I Association for Computational Linguistics
%C Prague, Czechia
%F aicher-etal-2023-towards
%X Human users tend to selectively ignore information that contradicts their pre-existing beliefs or opinions in their process of information seeking. These “self-imposed filter bubbles” (SFB) pose a significant challenge for cooperative argumentative dialogue systems aiming to build an unbiased opinion and a better understanding of the topic at hand. To address this issue, we develop a strategy for overcoming users’ SFB within the course of the interaction. By continuously modeling the user’s position in relation to the SFB, we are able to identify the respective arguments which maximize the probability to get outside the SFB and present them to the user. We implemented this approach in an argumentative dialogue system and evaluated in a laboratory user study with 60 participants to show its validity and applicability. The findings suggest that the strategy was successful in breaking users’ SFBs and promoting a more reflective and comprehensive discussion of the topic.
%R 10.18653/v1/2023.sigdial-1.56
%U https://aclanthology.org/2023.sigdial-1.56
%U https://doi.org/10.18653/v1/2023.sigdial-1.56
%P 593-604
Markdown (Informal)
[Towards Breaking the Self-imposed Filter Bubble in Argumentative Dialogues](https://aclanthology.org/2023.sigdial-1.56) (Aicher et al., SIGDIAL 2023)
ACL