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Abstract 

The process of lexical blending is difficult 
to reliably predict. This difficulty has been 
shown by machine learning approaches in 
blend modeling, including attempts using 
then state-of-the-art LSTM deep neural 
networks trained on character embeddings, 
which were able to predict lexical blends 
given the ordered constituent words  in  less 
than half of cases, at maximum. This 
project introduces a novel model 
architecture which dramatically increases 
the correct prediction rates for lexical 
blends, using only Polynomial regression 
and Random Forest models. This is 
achieved by generating multiple possible 
blend candidates for each input word 
pairing and evaluating them based on 
observable linguistic features. The success 
of this model architecture illustrates the 
potential usefulness of observable 
linguistic features for problems that elude 
more advanced models which utilize only 
features discovered in the latent space. 

1 Introduction 

1.1 Descriptive Research on Lexical Blends 

Lexical blends have long been noted as a 
linguistic phenomenon with little consistent 
predictability. Researchers have described many 
different factors which affect how much of two 
given input words will be preserved in the resulting 
blend. This is often described in terms of the 
“switchpoint,” or point at which each input word is 
truncated.  

Factors described in the literature include a 
tendency for words to split at syllable constituent 
boundaries (Gries 2012, Kelly 2009), an 
observation that blends tend to match the length of 

the 2nd input word (Bat-El 2006), and a finding that 
the prosodic structure (Arndt-Lappe & Plag 2013). 
None of these noted tendencies or a combination 
thereof has thus far been used to create a predictive 
model of blending. 

1.2 Predictive Models of Lexical Blends 

Researchers who have used data-driven 
methods to model blending have instead opted for 
the use phoneme-by-phoneme insertion and 
deletion counts or the use of character embeddings.  
The former of these approaches was used by Deri 
& Knight (2015) as part of a multi-tape FST model 
that used grapheme-phoneme alignments to train 
the model on transformations to the phoneme 
sequence and produce the correct orthographic 
output, achieving a maximum of 45.75% correct 
blend predictions.  

Gangal et. al. (2017) used the latter approach, 
training a then state-of-the-art LSTM deep neural 
network on character embeddings to attempt to 
generate English-like blends. This was shown to 
improve the rate of correct predictions to 48.75%, 
and found that the best performing models 
entertained multiple blend candidates and selected 
the most probable form, described as “exhaustive 
generation”, rather than using greedy decoding 
from the vector space. Both of these models often 
produced sequences which were phototactically 
invalid,  though sometimes these were 
orthographically plausible. 

Because of the overall limited success of the 
models, including only a small increase in 
performance between the models despite a large 
increase in model complexity, we have developed 
an alternative model architecture which utilizes the 
same grapheme/phoneme alignment system as 
Deri & Knight and the exhaustive generation 
strategy laid out by Gangal et. al., but uses 
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linguistically-motivated features which were 
directly observable from the input forms. The use 
of linguistically-informed feature spaces was 
shown to improve performance in blend prediction 
using a modified form of the Gangal et. al. LSTM 
architecture, though improvements were once 
again quite modest (Kulkarni & Wang 2018). This 
paper proposes a more dramatic change in 
architecture which uses a novel feature set based 
primarily on the descriptive blend characteristics of 
Arndt-Lappe & Plag (2013). 

For the purpose of this analysis, we constraint 
the blend structures entertained to only be those 
that follow typical English blend formation 
patterns by keeping some initial portion of the first 
word and some final portion of the second word. 
This model architecture was applied to 3 different 
corpora of lexical blends and was compared to 
previous model performance on each corpus, when 
applicable. 

2 Methods 

The model architecture laid out in this paper 
included the following elements: 

• A component to generate all plausible blend 
candidates from the two input words and 
extract linguistically-based feature values 
using grapheme/phoneme alignments and 
syllable structure information. 

•  A component which uses the extracted 
features to calculate the probability of being 
a valid blend for each blend candidate. 

• A feature to select the most probable 
candidate from each input word pairing. 

The generation process was performed by 
iteratively creating prefixes from the first input 
word and suffixes from the second input word 
using grapheme-phoneme alignments, such that the 
substring consisted of a contiguous sequence of 
phonemes and their corresponding graphemes. 
Each prefix was then concatenated with each suffix 
to produce the full candidate set for each input 
word pair.  

Feature values were calculated for each 
candidate using a set of phonemically-defined 
features, modified from Arndt-Lappe & Plag 
(2013).  Labels were assigned to each candidate 
based on whether the graphemes of the candidate 
matched the desired blend output. Candidates with 

feature values which were identical to a candidate 
already in the feature set were removed. 

Given the feature values for all candidates, we 
used Random Forest classifiers and Polynomial 
regression models to learn probabilities for each 
candidate based on the extracted feature values. 
Rather than assign each data instance to a class, 
probabilities are retained for each candidate so that 
the candidate with the maximum probability can be 
selected. Random Forest and Polynomial 
regression were chosen for this experiment  
because they are easier to train and interpret than 
deep neural approaches. 

Finally, a selection component was used to find 
the candidate from each input word pairing with the 
greatest probability of being a valid blend of 
English. This candidate was then chosen as the 
model’s predicted output for that input word 
pairing.  

2.1 Feature Set 

The model used features which were modeled 
after the most relevant cues for blends discussed in 
previous linguistic literature on blend formation 
and structure. Among these are features that track 

Feature names Description 
W1/W2 length number of syllables 
Candidate length number syllables 
Medial overlap whether candidate has 

contiguous phonemes shared 
by prefix/suffix  

W1/W2 left/right 
edge to primary 
stress 

number of syllables from 
input word edges to primary 
stress 

W1 left edge to 
switchpoint 

number of syllables from W1 
left edge to switchpoint 

W2 left edge to 
switchpoint 

number of syllables from W2 
right edge to switchpoint 

Switchpoint 
syllable bound 

whether switchpoint occurs at 
onset, nucleus, or coda 
boundary, or not at boundary 

W1/W2 primary 
stress preserved 

whether candidate preserves 
primary stress of input(s) 

W1/W2 segments 
preserved 

proportion of segments from 
each input preserved in 
candidate 

W1/W2 syllables 
preserved 

proportion of syllable nuclei 
from each input preserved in 
candidate 

Switchpoint at 
W2 primary 
stress syllable 

whether switchpoint in W2 
falls within primary syllable 
bearing primary stress 

Table 1:  Complete set of linguistically-based 
model features utilized in trials 
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whether the switchpoint aligns with syllable 
structure boundaries, the proportion of the input 
word that is preserved, and which word (if any) has 
it’s stress patterns preserved.  

 In addition to these phonological features 
derived directly from the phoneme representations 
of input words, the model uses the phonotactic 
markedness score calculated by the BLICK 
phonotactic learner, which returns a score to 
indicate how well a sequence of phonemes follows 
English phonotactics (Hayes 2012). This is 
expressed as a sum of weighted violations of 
MaxEnt grammar constraints learned from a large 
sample of  words from the CMU pronouncing 
dictionary (Hayes 2008). This feature was included 
to improve the phonotactic plausibility of output 
candidates. Specific names and descriptions for all 
model features are given in Table 1.  

3 Experiments 

The specific trials the model was used for are 
given here, along with the datasets utilized in 
training/testing for those trials. 

3.1 Datasets 

Three separate corpora were used in training 
and testing the model. The first two corpora were 
those used in the previous machine learning models 
of blending, Deri & Knight (2015) and Gangal et. 
al. (2017), respectively. These were both acquired 
through online resources such as Wikipedia, 
Wiktionary, and Urban Dictionary. The final corpus 
used comes from Shaw (2014) and is a curation of 
an earlier dictionary assembled by Thurner (1993). 
After filtering to meet the project design, 322 
blends were used in trials of the Deri & Knight 
corpus, 1092 were used from Gangal et. al., and 
1096 were used from Shaw. 

3.2 Trials Performed 

For each corpus, the model architecture was 
tested and evaluated using three different learners: 
LASSO regression, 2nd order Polynomial 
regression (with interaction terms), and Random 
Forest classifiers. Due to high collinearity among 
the feature set, we selected subset of the model 
features was  selected to minimize correlations and 
maximize coefficient values by removing measures 
of syllable proportion, word length, and syllable 
distances to the switchpoint from the feature set. 
Each learner was trained once using the full feature 

set and once using the manually selected subset of 
features. Each trial was validated using 10-fold 
cross validation. 

4 Results 

Model predictions were evaluated on the 
average percentage of blends correctly predicted 
and the average Levenshtein edit distance between 
the predicted output form and the correct blend 
form. 

4.1 Quantitative Results 

Models trained and tested on the Deri & 
Knight corpus outperformed the benchmark set by 
the multi-tape FST on both measures of model 
performance for every variation of the model. For 
the Gangal et. al. corpus, only the variation of the 
model using the LASSO regression learner failed 
to outperform the benchmark set by the LSTM 
model using character embeddings. The Shaw 
corpus demonstrated the highest performance of 
any model, with an average of 74.13% of blends 
correctly predicted with the best performing model 
trained on this corpus. 

Learner Features Correct Edit dist. 
LASSO Full 56.13% 1.05 
Polynomial Full 64.42% 0.72 
RF Full 60.39% 0.81 
LASSO Subset 55.21% 1.09 
Polynomial Subset 63.83% 0.79 
RF Subset 60.39% 0.83 
Previous benchmark 45.39% 1.59 

Table 2: Model Performance on D.&K. Corpus 

Learner Features Correct Edit dist. 
LASSO Full 47.72% 1.36 
Polynomial Full 59.51% 0.89 
RF Full 57.32% 0.89 
LASSO Subset 46.17% 1.43 
Polynomial Subset 54.21% 1.06 
RF Subset 57.32% 0.95 
Previous benchmark 48.75% 1.12 
Table 3: Model Performance on G. et. al. Corpus 

Learner Features Correct Edit dist. 
LASSO Full 66.09 0.93 
Polynomial Full 74.13% 0.58 
RF Full 73.96% 0.58 
LASSO Subset 64.17% 0.98 
Polynomial Subset 71.67% 0.66 
RF Subset 72.58% 0.65 

Table 4: Model Performance on Shaw Corpus 
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For all corpora, the model variations that used 
Polynomial regression learners outperformed all 
others, and models using full data set outperformed 
those with the manually curated subset, in spite of 
the high collinearity of the dataset. 
 A comparison of the highest performing 
models to date for all corpora is given in Figure 1. 

4.2 Qualitative Results 

Qualitative error analysis shows that the best 
performing model across all corpora, the 
Polynomial regression with full features trained on 
the Shaw corpus, tends to over-preserve phonemic 
material from both input words, rather than over-
delete. In a random sample of 100 instances in 
which this model selected an incorrect candidate, 
40 of them preserved too many contiguous 
segments from the first word, compared to 15 
instances in which the output candidate had a 
sequence from the first word which was too short. 
Similarly, the sample demonstrated that 33 
candidates had over-preserved segmental material 
from the second input word, compared to 18 
instances in which too many segments of the word 
were deleted.  In general, this resulted in a greater 
number of candidates that were longer than the 
desired output than candidates that were too short. 

5 Discussion 

5.1 Usefulness of Observable Features 

Results from the trials we have conducted so 
far provide a compelling argument for the potential 
usefulness of observable linguistic features in the 
generation of lexical blends. This, in turn, may 
provide a framework for dealing with similar 
linguistic processes which exhibit some degree of 
unpredictability or are infrequently attested in 
natural language text data and accordingly are 
difficult for models which rely on features obtained 
in the latent space. 
 Little work  has been done to date to tune 
hyperparameters or optimize the feature set used by 
the models. Future research into these areas could 
lead further improvements in the prediction rates 
that has already gained by using this model 
architecture, including research into measures to 
reduce the apparent model bias toward longer 
candidates. 

5.2 Potential Linguistic Applications 

The architecture may also be useful for 
testing hypotheses about blend generation. 
Because the learners used in this model 
architecture are more interpretable than neural 
networks, the actual feature weights and decision 
tree splits used by the model can be directly 
examined and can be used as a datapoint in 
evaluating the relative importance of different 
factors that affect blend formation. Given the fact 
that there are often many possible blends that 
speakers can produce from an input word pair 
before it enters the lexicon (Gries 2012), testing the 
model’s performance on novel blend forms and 
comparing it to blends produced by human 
speakers would be the most informative way to test 
how well this model truly does at replicating 
human-like blend generation behavior.  

Such a trial would also be informative 
in comparing this methodology against modern 
large language models, as it provides a chance to 
use genuinely held-out data to evaluate them. 
One drawback of this architecture is its lack of 
generalizability to low resource languages. 

5.3 Limitations of the Model Architecture 

  While  this methodology does not require 
the large amount of text data utilized by more 
advanced models, it does depend on access to 
grapheme/phoneme alignment information for all 
input words. This does limit the usefulness of the 
model for languages with little linguistically-
tagged data available, though the success of the 
small Deri & Knight corpus does indicate that 
the model architecture can be made to function 
effectively with a limited amount of  
annotated data. 

 

Figure 1: Maximum Model Correct Prediction 
Rates by Corpus 
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