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Abstract

This paper evaluates various character align-
ment methods on the task of sentence-level
standardization of dialect transcriptions. We
compare alignment methods from different sci-
entific traditions (dialectometry, speech pro-
cessing, machine translation) and apply them to
Finnish, Norwegian and Swiss German dialect
datasets. In the absence of gold alignments, we
evaluate the methods on a set of characteris-
tics that are deemed undesirable for the task.
We find that trained alignment methods only
show marginal benefits to simple Levenshtein
distance. On this particular task, eflomal out-
performs related methods such as GIZA++ or
fast_align by a large margin.

1 Introduction

In recent research, a wide range of charac-
ter transduction tasks (Wu and Cotterell, 2019)
have been studied, such as modernization of
historical spellings, correction of non-standard
spellings in user-generated content, lemmatization,
or grapheme-to-phoneme conversion (G2P). While
most work aims at creating and improving genera-
tive models that produce the target representation
given its source representation, we focus in this
paper on the task of aligning characters when both
representations are given. Character alignment is a
key step in the training pipeline of certain charac-
ter transduction models such as those based on the
statistical machine translation (SMT) paradigm.

Other lines of research have been concerned with
finding distances between strings, e.g., to compare
different dialectal pronunciations (dialectometry)
or to identify cognate pairs in corpora of related lan-
guages. While most research in these areas focuses
on finding the optimal distance metric for a given
task, we rather look at the alignments produced by
these distance metrics here. Indeed, character align-
ments are a by-product of distance computations
and readily available.

In most cases, both character transduction and
distance computation are performed at word level,
i.e., one word at a time. However, we argue that
it is beneficial to carry them out at sentence level
(if appropriate corpora are available) to enable con-
textual disambiguation, to avoid relying on pre-
existent tokenization and to capture assimilation
effects at word boundaries.

In this work, we focus on sentence-level stan-
dardization of dialect transcriptions. We compare
character alignment methods from different sci-
entific traditions and apply them to corpora of
transcribed dialectal speech from three languages,
namely Finnish, Norwegian and Swiss German.
In the absence of gold alignments, we evaluate
the alignment methods on a set of characteris-
tics (e.g., the amount of vowel-to-consonant align-
ments) that are deemed undesirable for dialect-to-
standard character alignment.

2 Alignment Methods

Character alignment methods have been proposed
for different purposes in different fields, but all of
them can be meaningfully applied to sentence-level
dialect-to-standard alignment.

Dialectometry The core idea of dialectometry is
to obtain abstract representations of dialect land-
scapes from large numbers of individual features
(see e.g. Nerbonne and Kretzschmar, 2003; Wiel-
ing and Nerbonne, 2015). One way to achieve this
is to compute distances between phonetic transcrip-
tions of a given word in different dialects, followed
by aggregating the distances over all words of the
dataset. Levenshtein distance (Levenshtein, 1966)
is generally used as a starting point for such un-
dertakings, but over the years, several extensions
have been proposed, such as vowel-sensitive Lev-
enshtein distance, or the possibility to learn the
edit weights from a corpus (Heeringa et al., 2006).
While most work focuses on the obtained distance
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docs sents words sents/doc words/doc words/sent chars/word |C∪| |C∩|
SKN 99 51,254 841,859 518 8504 16.4 5.7 243 70
NDC 648 145,961 1,937,905 225 2991 13.3 4.4 93 84
ArchiMob 6 11,959 93,450 1993 15575 7.8 5.3 49 33

Table 1: Key figures of the three datasets. The table shows the absolute number of documents, sentences and words,
as well as the average number of sentences per document, words per document, words per sentence, and characters
per word. |C∪| refers to the size of the union of dialectal and standardized character sets, |C∩| to their intersection.

values and their correlation to existing dialecto-
logical findings, Wieling et al. (2009) specifically
evaluate the alignments obtained by such distance
metrics.

Cognate identification Similar distance metrics
have been employed for identifying cognates in
large corpora of related languages (e.g. Mann and
Yarowsky, 2001; Kondrak and Sherif, 2006).

Grapheme-to-phoneme conversion Many text-
to-speech systems contain a G2P component that
turns words spelled in conventional orthography
into sequences of phoneme symbols that corre-
spond to the actual pronunciation of the word.
Before neural sequence-to-sequence models were
used, the standard approaches for G2P relied on
stochastic transducers or HMMs with weights
learned from training data using expectation-
maximization (EM). For example, Ristad and Yian-
ilos (1998) introduced a stochastic memoryless
transducer. Jiampojamarn et al. (2007) proposed
an extension to this model that also covers multi-
character graphemes and phonemes.

Statistical machine translation Word alignment
is a crucial ingredient of the SMT paradigm intro-
duced at the beginning of the 1990s (Brown et al.,
1993). GIZA++, an open-source aligner that has
become standard over the years, uses a pipeline of
increasingly complex word alignment models (Och
and Ney, 2000). Follow-up work such as fast_align
(Dyer et al., 2013) and eflomal (Östling and Tiede-
mann, 2016) introduced simpler, faster and less
memory-hungry alignment approaches with only
minor sacrifices in accuracy.

Although designed to align words in sentence
pairs, the word alignment models can also operate
on single characters. This approach has become
popular as character-level SMT and has been used
e.g. to translate between closely-related languages
(Tiedemann, 2009) or for historical text moderniza-
tion (Scherrer and Erjavec, 2013).

3 Data

We use existing dialect corpora from Finnish, Nor-
wegian and Swiss German for our experiments:

SKN – Finnish The Samples of Spoken Finnish
corpus (Suomen kielen näytteitä, hereafter SKN)
(Institute for the Languages of Finland, 2021) con-
sists of 99 interviews conducted mostly in the
1960s. It includes data from 50 Finnish-speaking
locations, with two speakers per location (with one
exception). The interviews have been transcribed
phonetically on two levels of granularity (detailed
and simplified) and normalized manually by lin-
guists. We use the detailed transcriptions here.1

NDC – Norwegian The Norwegian Dialect Cor-
pus (Johannessen et al., 2009, hereafter NDC) was
compiled between 2006 and 2010 in the context of
a larger initiative to collect dialect data of the North
Germanic languages. Typically, four speakers per
location were recorded, and each speaker appears
both in an interview with a researcher and in an
informal conversation with another speaker. The
recordings were transcribed phonetically and there-
after semi-automatically normalized to the Bokmål
standard.2

ArchiMob – Swiss German The ArchiMob cor-
pus (Scherrer et al., 2019) consists of oral history
interviews conducted between 1999 and 2001. It
contains 43 phonetically transcribed interviews, but
only six of them were normalized manually. We
only use these six documents for our experiments.

Some quantitative information about the datasets
is given in Table 1. One may note that ArchiMob
has the longest documents and NDC the shortest.
On the other hand, ArchiMob has the shortest sen-
tences. SKN has the most detailed transcriptions

1Details about the availability of the corpora are given in
Table 6 in the appendix.

2The publicly available phonetic and orthographic tran-
scriptions are not well aligned. We use (and provide) an
automatically re-aligned version of the corpus, cf. Table 6.
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SKN:
mä oon syänys "seittemän

“
"silakkaa , ’aiva niin , ’häntä erellä .

minä olen syönyt seitsemän silakkaa , aivan niin , häntä edellä .
‘I have eaten seven herrings, that’s right, tail first’

NDC:
å får eg sje sjøra vår bil før te påske
og får jeg ikke kjøre vår bil før til påske
‘and I don’t get to drive our car until Easter’

ArchiMob:
aber meer hènd den furchpaari finanzijelli schwirigkaite gchaa
aber wir haben dann furchtbare finanzielle schwierigkeiten gehabt
‘but then we had terrible financial difficulties’

Table 2: Example sentence pairs from the three datasets.
The top row presents the phonetic dialectal transcription,
the middle row the standardized version, and the bottom
row provides an English gloss. Although the number of
transcribed and standardized tokens is the same in the
three shown examples, we do not presuppose this for
our experiments. Likewise, we do not presuppose that
the data is aligned at token level.

and therefore the largest character vocabulary. Ta-
ble 2 provides some example sentences.

4 Experimental Setup

4.1 Data Preparation

We reformat the three datasets in such a way that
the utterances are split into sequences of characters
and that the word boundaries are marked with a
special symbol (_), as exemplified in Figure 1.

_ å _ f å r _ e g _ s j e _ s j ø r a _
_ o g _ f å r _ j e g _ i k k e _ k j ø r e _

Figure 1: Tokenized example sentence, dialectal tran-
scription above and orthographic normalization below.

Since all alignment methods are unsupervised
and there are no gold alignments for evaluation,
we do not split the data into training and test sets.
We train one alignment model per document, using
the dialectal transcriptions as the source and the
orthographic normalizations as the target.

4.2 Alignment Methods

We apply the following alignment methods:

• Levenshtein distance with default edit opera-
tion weights (leven).

• Weighted Levenshtein distance using PMI
scores as edit operation weights (Wieling
et al., 2009). We extract the PMI scores from
the concatenation of all Levenshtein-aligned
documents of a corpus (leven-pmi).

• Stochastic memoryless unigram transducer
with weights trained iteratively on sin-
gle documents (Ristad and Yianilos, 1998)
(unigram).3

• Stochastic memoryless bigram transducer (Ji-
ampojamarn et al., 2007); we override the
default settings and allow deletions and in-
sertions, as well as mappings of two bigrams
(bigram).

• GIZA++ with default parameters.
• fast_align with default parameters.
• eflomal with default parameters.
• eflomal can extract prior alignment probabil-

ities from a previously aligned dataset to ini-
tialize a new alignment model. We concate-
nate all documents of a corpus to extract the
probabilities (eflomal-priors).

To summarize, our experiments cover one un-
trained model (leven), five models trained on
document-level data (unigram, bigram, GIZA++,
fast_align, eflomal) and two models trained on
corpus-level data (leven-pmi, eflomal-priors).

4.3 Symmetrization

Word alignment algorithms can only produce one-
to-many alignments, but no many-to-one align-
ments. Therefore, it is standard practice to run
the models twice, once in the “forward” direction
and once in the “reverse” direction. The produced
alignments are then symmetrized, e.g., by taking
the intersection if precision is favored, or the union
if recall is favored. Heuristics such as the popular
grow-diag-final-and method produce a more bal-
anced result (Och and Ney, 2003). For consistency,
we apply symmetrization to all methods.

4.4 Adding Adjacent Identicals

_ A m e r i i k k a s a _

_ A m e r i k a s s a _

Figure 2: Additional alignments (dashed lines) are
added to the initial alignments (solid lines) on the basis
of consecutive identical characters (in bold).

Levenshtein-based models only produce one-
to-one alignments, but leave inserted and deleted
characters unaligned. To reduce the amount of

3We use the implementation by (Jiampojamarn et al., 2007)
available at https://github.com/letter-to-phoneme/
m2m-aligner.
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unaligned characters, we add a simple heuristic
that identifies two consecutive identical characters
on one side and, if one of them is unaligned, in-
troduces a new many-to-one alignment link (see
Figure 2 for an example).

4.5 Evaluation Criteria
In a similar study, Wieling et al. (2009) compare
various alignment methods with a set of manually
verified gold alignments. Unfortunately, such anno-
tations are not available for the three datasets used
in this work. Instead, we gather four statistics about
various phenomena that we consider undesirable
for the given task, and rank the alignment methods
according to these phenomena. They include:

U-src proportion of unaligned source characters,
U-tgt proportion of unaligned target characters,
V-C proportion of vowel-to-consonant and

consonant-to-vowel alignments (disre-
garding semi-vowels, nasals, laterals and
suprasegmentals),

X proportion of crossing alignment pairs (swaps).

We aggregate these proportions over all docu-
ments of a given dataset.

Note that we do not expect the optimal values
of these proportions to be 0. The expected values
depend on the languages and dialects, and reliable
estimates would require access to a gold-aligned de-
velopment set. However, based on our knowledge
of the languages and dialects, we estimate V-C to
lie below 1% and X below 0.2%. U-tgt is expected
to be higher than U-src,4 but both proportions are
unlikely to exceed 15%.

Besides these quality indicators, we also report
run times (on 1 CPU) and memory usage of the
alignment methods.5

5 Results

5.1 Symmetrization Strategies
Table 3 exemplifies the effect of different sym-
metrization strategies on the basis of eflomal and
the SKN dataset, but similar results are obtained for
the other methods and datasets. It can be seen that
recall-focused strategies (union) provide the lowest
number of unaligned characters, whereas precision-
focused strategies (intersection) show the lowest

4In SKN, U-src may be higher than U-tgt because of the
suprasegmentals occurring in the source.

5The code for all experiments is available at
https://github.com/Helsinki-NLP/dialect-align-
sigmorphon23.

amounts of vowel-consonant alignments and cross-
ing alignments. The grow-diag-final-and (gdfa)
strategy is largely similar to union, but greatly re-
duces the number of crossing alignments. We find
that gdfa provides the best compromise overall
and select this symmetrization method for all sub-
sequent experiments.

forward reverse intersect union gdfa

U-src 9.39 9.51 13.77 7.53 7.63
U-tgt 6.00 7.18 11.11 4.64 4.76
V-C 0.17 0.15 0.11 0.21 0.20
X 0.50 0.49 0.02 1.00 0.12

Table 3: Impact of alignment symmetrization strate-
gies. All values are percentages and refer to eflomal
alignments on the SKN dataset.

5.2 Adding Adjacent Identicals

Table 4 shows that the adjacent-identicals heuristic
effectively reduces the number of unaligned char-
acters on both source and target sides, but leaves
the other measures largely unaffected. In the fol-
lowing, we add this heuristic to all Levenshtein-
and unigram-based methods and apply it after sym-
metrization with gdfa.

SKN NDC ArchiMob

–aai +aai –aai +aai –aai +aai

U-src 9.27 8.85 5.09 1.25 4.57 2.65
U-tgt 6.18 5.22 8.10 7.92 13.76 12.78
V-C 0.31 0.31 0.36 0.38 1.37 1.34
X 0.00 0.00 0.00 0.00 0.02 0.02

Table 4: Impact of adding adjacent identicals (+aai) on
Levenshtein alignment. All values are percentages.

5.3 Method Comparison

The comparison between the eight alignment meth-
ods enumerated in Section 4.2 is shown in Table 5.

Two methods, GIZA++ and fast_align, yield
unrealistically high proportions of unaligned char-
acters, leaving half of all characters unaligned in
the worst case. The same methods also show
higher-than-expected amounts of swaps. On the
other hand, the bigram transducer produces unex-
pectedly large amounts of vowel-consonant align-
ments. These three methods can therefore not
be recommended for character alignment with the
used parameters.
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Leven Leven+PMI unigram bigram GIZA++ fast_align eflomal eflomal+priors

SKN U-src 8.85 8.11 9.83 9.60 39.99 50.13 7.63 7.67
U-tgt 5.22 4.67 6.47 7.35 38.56 48.66 4.76 4.65
V-C 0.31 0.46 0.07 8.51 0.20 0.24 0.20 0.25
X 0.00 0.00 0.00 0.05 0.75 0.26 0.12 0.40

NDC U-src 1.25 1.11 1.95 5.17 15.34 26.64 2.49 3.22
U-tgt 7.92 7.54 8.85 8.13 21.03 31.59 7.51 7.45
V-C 0.38 0.46 0.15 6.36 0.39 1.26 0.43 0.38
X 0.00 0.00 0.00 0.07 0.39 0.32 0.02 0.13

ArchiMob U-src 2.65 2.66 13.54 3.74 7.45 13.91 2.33 3.67
U-tgt 12.78 12.85 23.59 10.51 17.52 23.95 9.14 12.61
V-C 1.34 1.39 0.63 7.81 0.71 1.48 2.00 1.22
X 0.02 0.00 0.00 0.07 0.50 0.63 0.12 0.14

CPU time (hh:mm) 0:30 11:17 20:20 105:27 30:36 0:45 12:32 16:18
Memory (MB) 69 76 1290 2350 58 34 263 268

Table 5: Evaluation of character alignment methods. All values are percentages, lower values are assumed to be
better. Values violating our expectations are shown in italics.

The Levenshtein-based and unigram models do
not permit swaps, leaving the corresponding mea-
sure at 0.6 Since this is a technical limitation of the
models, it should not be considered as an argument
in their favor.

Learning the weights over the entire corpus
(leven-pmi, eflomal-priors) does not consis-
tently improve (nor worsen) results. We would
have expected this approach to be useful especially
for SKN and NDC with their short texts. This also
contrasts with the findings of Wieling et al. (2009),
who obtained significant error rate reductions with
PMI-based Levenshtein distance. More thorough
inspection of the results will be required to explain
this divergence.

Three models (leven, unigram, eflomal) show
similar performance over our criteria. They can
be recommended in different situations. If cross-
ing alignments (swaps) are expected to occur in
the data, eflomal is the only recommended solu-
tion. If phonological consistency is highly rated,
the unigram transducer is the method of choice
because it produces the lowest rate of vowel-
consonant alignments, at the expense of slightly
higher amounts of unaligned tokens. Finally, plain
Levenshtein distance remains remarkably competi-
tive compared to the trained models. It is also one
of the fastest and least memory-hungry approaches.

6It is nevertheless possible to obtain swaps through sym-
metrization. It has also been proposed to add a swap transition
to Levenshtein distance, but preliminary experiments have
shown that this addition negatively affects the other measures.

6 Discussion

Our evaluation of character alignment methods is
based on a set of “undesirable characteristics” of
the task. In this section, we would like to discuss
some issues arising from this experimental setup.

In Swiss German and Finnish, a common pattern
is the lack of final n in the dialectal pronunciation.
For Swiss German müesse / müssen, two solutions
are available: (a) a one-to-many alignment contain-
ing both e–e and e–n, and (b) leaving n unaligned.
Although both options can be considered linguisti-
cally equivalent, our evaluation favors solution (a).
In the opposite direction, the same argument holds
for the suprasegmental symbols in the SKN corpus.

The transcription systems of Norwegian and
Swiss German are based on conventional orthogra-
phy and render some phonemes by multiple char-
acters (e.g. Norwegian sje / ikke). It is unclear
how alignment errors inside such multi-character
graphemes should be evaluated.

Alignment can be performed left-to-right or
right-to-left. For Norwegian æin / en, the former
yields æ–e and the latter i–e. Although symmetriza-
tion minimizes the effects of alignment direction,
its impact on the evaluation scores is not entirely
clear.

Despite these yet unsolved questions, we believe
that our evaluation provides interesting insights
into the performance of character alignment meth-
ods for sentence-level dialect-to-standard normal-
ization.
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Limitations

A major limitation of the current work is the ab-
sence of gold alignments for evaluating the differ-
ent methods. Gold alignments would also enable us
to provide more reliable estimates of the prevalence
of the evaluated phenomena in the three datasets.
We are not aware of any other similar corpora that
come with gold character alignments. The work
of Wieling et al. (2009) uses word lists, not entire
sentences.

Furthermore, our work currently only covers Eu-
ropean languages in Latin script. Some of the pre-
sented techniques also assume identical writing
systems in the transcribed and normalized layers.
Our setup may therefore not generalize well to the
dialectal variation and writing systems present in
other parts of the world. For example, the V-C
proportion cannot be easily determined in scripts
that do not specify all vowels. Although there is
an extensive amount of research in particular on
Arabic and Japanese dialects and their normaliza-
tion (e.g., Abe et al., 2018; Eryani et al., 2020), we
currently limit our experiments to data written in
Latin script.

Ethics Statement

All experiments are based on publicly available
corpora. Even though some of the corpora contain
personal information, they have been cleared for
publication. The reported experiments do not intro-
duce any new artifacts that would be problematic
from an ethical point of view.
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