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Abstract

The 2023 SIGMORPHON–UniMorph shared
task on typologically diverse morphological in-
flection included a wide range of languages: 26
languages from 9 primary language families.
The data this year was all lemma-split, to al-
low testing models’ generalization ability, and
structured along the new hierarchical schema
presented in (Batsuren et al., 2022). The sys-
tems submitted this year, 9 in number, showed
ingenuity and innovativeness, including hard
attention for explainability and bidirectional
decoding. Special treatment was also given
by many participants to the newly-introduced
data in Japanese, due to the high abundance of
unseen Kanji characters in its test set.1

1 Introduction

As a long-running shared task, the SIGMORPHON-
UniMorph task on morphological inflection is a
major engine behind the surging interest in com-
putational morphology, as it facilitated both the
building of UniMorph as a large multilingual mor-
phological dataset, and the development and testing
of morphological inflection models. In its first few
installments (Cotterell et al., 2016, 2017, 2018; Vy-
lomova et al., 2020) the focus of the task was first
and foremost on generalization across languages,
with the their number raising steadily from 10 lan-
guages in the task of 2016 to 90 languages in 2020.

Later studies, both in the 2021 shared task
(Pimentel et al., 2021) and otherwise (Goldman
et al., 2022a), discovered that the impressive re-
sults achieved by systems submitted to these tasks
were in large part due the presence of test lemmas
in the train set. As a result, the 2022 shared task
(Kodner et al., 2022) focused on generalization to
both unseen lemmas and unseen feature combina-
tions.

1Data, evaluation scripts, and predictions are available at:
https://github.com/sigmorphon/2023InflectionST

In this task we continue to test systems on the
challenging lemma-split setting while circling back
to the inclusivity objective that guided the task from
its inception. To this end, we employ the hierarchi-
cal annotation schema of UniMorph 4.0 (Batsuren
et al., 2022) that allows more natural annotation
of languages with complex morphological struc-
tures such as case stacking and polypersonal agree-
ment. This year we include 26 languages from
9 primary language families: Albanian, Amharic,
Ancient Greek, Arabic (Egyptian and Gulf), Arme-
nian, Belarusian, Danish, English, Finnish, French,
Georgian, German, Hebrew, Hungarian, Italian,
Japanese, Khaling, Macedonian, Navajo, Russian,
Sámi, Sanskrit, Spanish, Swahili and Turkish. The
inclusion of Japanese, written in Kanji characters
that are rarely shared across lemmas, compelled all
systems this year to find ways to deal with unseen
characters in the test set.

In total, 9 systems were submitted by 3 teams,
both neural and non-neural models, and they were
compared against 2 baselines, neural and non-
neural as well. The submitted systems experi-
mented with innovative ideas for morphological
inflection as well as for sequence-to-sequence mod-
eling in general. Girrbach (2022) introduced an
elaborate attention mechanism between static repre-
sentations for explainability, and Canby and Hock-
enmaier (2023) experimented with a new type of
decoder for transformer models that is able to de-
code from both left to right and vise versa simulta-
neously. Lastly, Kwak et al. (2023) improved the
non-neural affixing system used as a baseline.

The results show that although on average sys-
tems achieve impressive results in inflecting unseen
lemmas, some languages still present a substantial
challenge, mostly extinct languages like Ancient
Greek and Sanskrit or low resourced languages like
Navajo and Sámi. In addition, the results point to
a dependency on the writing system that could be
further explored in future shared tasks.
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Family Subfamily ISO
639-2

Language Source of Data Annotators

Afro- Semitic afb Arabic, Gulf Obeid et al. (2020) Salam Khalifa
Nizar HabashAsiatic arz Arabic, Egyptian

amh Amharic Gasser (2011) Michael Gasser
heb Hebrew Wiktionary Omer Goldman

Indo- Albanian sqi Albanian Wiktionary Kirov et al. (2016)
European Armenian hye Eastern Armenian Wiktionary Hossep Dolatian

Balto-Slavic bel Belarusian Wiktionary Ekaterina Vylomova
mkd Macedonian Wiktionary Ekaterina Vylomova
rus Russian Wiktionary Ekaterina Vylomova

Germanic dan Danish Wiktionary Mans Hulden
Khuyagbaatar Batsuren

eng English Wiktionary Mans Hulden
Khuyagbaatar Batsuren

deu German Wiktionary Ryan Cotterell
Helenic grc Ancient Greek Wiktionary Kirov et al. (2016)
Indo-Aryan san Sanskrit Huet’s inflector Aryaman Arora
Romance fra French Wiktionary Géraldine Walther

ita Italian Wiktionary Géraldine Walther
fra Spanish Wiktionary Géraldine Walther

Japonic jap Japanese Wiktionary Khuyagbaatar Batsuren
Omer Goldman

Kartvelian kat Georgian Guriel et al. (2022) David Guriel
Simon Guriel
Silvia Guriel-Agiashvili
Nona Atanelov

Na-Dené Southern nav Navajo Wiktionary Mans Hulden
Athabascan Rob Malouf

Niger–Congo Bantu swa Swahili Goldman et al. (2022b) Lydia Nishimwe
Shadrak Kirimi
Omer Goldman

Sino-
Tibetan

Kiranti klr Khaling Walther et al. (2013) Géraldine Walther

Turkic Oghuz tur Turkish Wiktionary Omer Goldman
Duygu Ataman

Uralic Finnic fin Finnish Wiktionary Mans Hulden
sme Sámi Wiktionary Mans Hulden

Ugric hun Hungarian Wiktionary Judit Ács
Khuyagbaatar Batsuren
Gábor Bella, Ryan Cotterell
Christo Kirov

Table 1: Languages presented in this year’s shared task

2 Task Description

This year’s task was organized in a very similar
fashion to previous iterations. Participants were
asked to design supervised learning systems which
could predict an inflected form given a lemma and
a morphological feature set corresponding to an
inflectional category, or a cell in a morphological
paradigm. They were provided with a training set
of several thousands of examples, as well as a de-
velopment set and test set for each language. The
training data consisted of (lemma, feature set,
inflected form) triples, while the inflected forms
were held out from the test set. The development
set was provided in both train- and test-like for-
mats.

Data was made available to participants in two
phases. In the first phase, the training and develop-
ment sets were provided for most languages. In the

second phase, training and development sets were
released for some extra (“surprise”) languages and
the test sets were provided for all languages.2

Schema Differences The data this year followed
the hierarchical annotation schema that was sug-
gested by Guriel et al. (2022) and adopted in Uni-
Morph 4.0 (Batsuren et al., 2022). The difference
that was most pronounced in the data was the re-
placement of opaque tags that grouped several fea-
tures such as AC3SM(a 3rd person singular mascu-
line accusative argument) with the hierarchically
combined features ACC(3,SG,MASC), i.e. without
introducing a new tag for each feature combination
in the cases of polypersonal agreement.

2The surprise languages were: Albanian, Belarusian, Ger-
man, Gulf Arabic, Khaling, Navajo, Sámi and Sanskrit.
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3 The Languages

The selection of languages used in this year’s task
is varied at almost any dimension. In terms of lan-
guage genealogy we have representatives of 9 lan-
guage families, some are widely used, like English
and Spanish, and others are endangered or extinct,
like Khaling and Sanskrit. The languages employ a
wide variety of orthographic systems with varying
degrees of transparency (Sproat and Gutkin, 2021):
alphabets (e.g., German), abugidas (e.g., Sanskrit),
abjads (e.g., Hebrew), and even one logographs
using language (Japanese).

In light of the new annotation schema, many lan-
guages in this year’s selection employ forms that
refer to multiple arguments. Possessors are marked
on nouns in 6 of the languages: Hebrew, Hungar-
ian, Amharic, Turkish, Armenian and Finnish. In
addition, polypersonal agreement appears in verbs
of 5 of the languages: Georgian, Spanish, Hun-
garian, Khaling and Swahili.3 Other notable mor-
phological characteristics include, among others,
the ablaut-extensive Semitic languages and prefix-
inclined Navajo.

All in all, Table 1 enumerates the languages in-
cluded in the shared task.

Languages new to UniMorph A couple of lan-
guages, namely Swahili and Sanskrit, have seen
their respective UniMorph data increased substan-
tially in size for this task. The Swahili data, that pre-
viously had partial inflection tables, was expanded
using the clause morphology data of Goldman et al.
(2022b), so a Swahili verbal inflection table in-
cludes more that 14,000 forms rather than mere 180.
The Sanskrit data was massively expanded, mostly
in terms of the number of lemmas, by incorporating
data from Gérard Huet’s Sanskrit inflector.4

In addition, one previously unrepresented lan-
guage was introduced to UniMorph — Japanese.
The data was crawled from Wiktionary and canon-
icalized to match the UniMorph 4.0 format. The
usage of Kanji characters, logograms of Chinese
origin that are completely unrepresentative of the
pronunciation and almost uniquely used per lemma,
can pose an interesting challenge to inflection sys-
tems that will have to deal with many unseen char-
acters.

3Nouns in Arabic also mark their possessor and Verbs in
Navajo also agree with multiple arguments, but the UniMorph
data includes partial inflection tables for these languages.

4https://sanskrit.inria.fr/index.fr.html

# Inflection LanguagesTables

500
fin, fra, grc, heb, hun, hye, ita
kat, klr, nav, san, sme, spa, sqi
swa, tur

1000 amh, bel, deu, jap, mkd, rus
2000 dan
3000 afb, arz, eng

Table 2: Results of all the systems, submitted and base-
lines over the test sets in all languages. the best sys-
tem(s) per language in marked in bold. The systems are
ordered by the averaged success.

4 Data Preparation

All data for this task is provided in standard
UniMorph format, with training items consist-
ing of (lemma, morphosyntactic features,
inflected form) triples. Since the goal of the
task is to predict inflected forms, the test set was
presented as (lemma, features) pairs. The data
for all languages was lemma-split (Goldman et al.,
2022a).

For each language, a number of inflection tables
(i.e., lemmas) were sampled from the entire Uni-
Morph dataset. 80% of the tables were used for
the train set, and the rest were split between the
validation and the test sets, then 10,000 forms were
sampled from the inflection tables of the train set,
and 1,000 forms were sampled for the validation
and test sets from the respective tables. The num-
ber of inflection tables used was capped at 500, in
cases where the tables were too small to generate
enough data more tables were added until it was
sufficient. Table 2 details the amount of tables used
for each language.

5 The systems

5.1 Baseline Systems
The baseline systems provided this year are a recur-
rent appearance of the baselines of yesteryears: a
neural character-level transformer (Wu et al., 2021,
details in Appendix A), and a non-neural statis-
tical application of affixing rules firstly used by
Cotterell et al. (2017).

5.2 Submitted Systems
University of Arizona Kwak et al. (2023) sub-
mitted several non-neural models. Their first sys-
tem (AZ1) is a re-implementation of the non-neural
baseline, while another system of theirs (AZ2) uses
the same framework but improves the rules used
for both processing of the training data and making
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the predictions over the test set. In addition, they
experimented with a weighted finite-state transduc-
ers (WFST; AZ3), and they provided an ensemble
of the WFST with AZ2 (AZ4).

University of Tübingen Girrbach (2023) fo-
cused on explainability of the predictions of a neu-
ral inflection model. They did not get into de-
bate on whether soft attention between model’s
hidden states is a good explanation (Jain and Wal-
lace, 2019; Wiegreffe and Pinter, 2019), but rather
applied a hard attention mechanism directly over
static character representations. The models com-
plexity comes solely from the attention module
itself, that includes a LSTMs that run over the ex-
ample’s source and target.

University of Illinois Canby and Hockenmaier
(2023) provided the most extensive set of experi-
ments with transformer-based neural models. The
ultimate focus of their work was the directionality
of the decoder. Rather than decoding left-to-right,
their first system (IL1) used two unidirectional
models and chose a prediction that got the higher
probability assessed by its respective model. In
addition, they experimented with a model capable
of deciding whether to decode from left or right
at each step separately and used it either to select
between unidirectional predictions (IL2) or as a
standalone model (IL3). Lastly, they equipped IL3
with a beam re-ranker (IL4).

Common system characteristics The Japanese
data, with its high abundance of unseen characters,
posed a major problem to the neural submitted sys-
tems. Thus, they all gave the Japanese data special
treatment and replaced the unseen characters with
special place holders that were filled in with the
lemma characters as a post-processing step.5

None of the systems submitted made explicit
use of the hierarchy of the features. The teams
opted for flattening the structure and letting the
models understand the relations between the fea-
tures from the order. Thus, for example, the feature
bundle V;PRS;NOM(1,SG);ACC(2,PL) was treated
as V;PRS;NOM;1;SG;ACC;2;PL, with multiple per-
son and number features on the same level.

6 Results and analysis

Table 3 summarizes the accuracy results of all sys-
tems over all languages based on the exact match
between the prediction and gold outputs. In addi-
tion, we also provide macro-averaged score over
languages.

System performance In terms of averaged per-
formance, all neural systems outperformed the
non-neural systems, with IL4 having the best per-
formance. When examining the results per lan-
guage, the neural baseline and three of the Illinois-
submitted systems take the lead in about 6 lan-
guages each. The exceptions to this are English,
Danish and French, in which the non-neural base-
line is the best performing system. Partial explana-
tion may be the small size of the inflection tables in
Danish and English that necessitated inclusion of
many lemmas in the training set and may facilitated
better generalization ability of the non-neural base-
line. Admittedly, this explanation is not valid for
French, but this language was proven difficult in
previous shared tasks (Cotterell et al., 2017, 2018)
and in other works (Silfverberg and Hulden, 2018;
Goldman and Tsarfaty, 2021).

The neural baseline system was significantly
hampered by the lack of a special mechanism for
the unseen characters in Japanese. When discard-
ing the Japanese performance for all systems, the
neural baseline is second in averaged performance.
That is to say that devising a strategy to deal with
unseen characters is highly necessary when inflect-
ing lemma-split data in general, and logographic
languages in particular.

Being the neural system with the lowest aver-
aged accuracy, TÜB seem to trade some predictive
power in favor of having more explainable outputs,
as exemplified in Figure 1.

Although the WFST system that is AZ3 is the
system with the lowest scores, including it as part
of an ensemble resulted in some advantages and
helped producing the best non-neural system —
AZ4.

Language performance The performance of the
per-language best system over most languages is
quite impressive, and in some cases like Swahili
and Khaling even exceptionally impressive. How-

5Another possible solution to this bind could have been
to introduce a copy mechanism in the model itself, such as
the one used by Makarov and Clematide (2018). However, no
team chose this path.
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Language AZ3 AZ1
Baseline

Non-neural AZ2 AZ4 TÜB
Baseline
Neural IL1 IL2 IL3 IL4

macro 56.1 67.2 69.6 71.7 72.4 76.9 81.6 82.6 84.0 84.1 84.3average
afb 34.5 30.8 30.8 52.7 52.7 75.8 80.1 80.7 82.2 84.1 84.6
amh 59.9 65.4 65.4 74.0 74.0 83.8 82.2 88.9 90.6 88.9 88.6
arz 75.7 77.2 77.9 80.8 80.8 87.6 89.6 89.2 88.7 89.1 88.7
bel 46.2 68.1 68.1 64.5 64.5 56.3 74.5 73.5 74.7 72.9 72.9
dan 64.8 89.5 89.5 87.4 87.4 85.7 88.8 88.8 89.5 86.5 87.5
deu 59.9 79.8 79.8 77.9 77.9 74.5 83.7 79.7 79.7 80.2 79.7
eng 67.0 96.6 96.6 96.2 96.2 96.0 95.1 95.6 95.9 94.6 95.0
fin 48.2 80.8 80.8 80.6 80.6 67.6 85.4 79.2 80.6 85.7 86.1
fra 76.7 77.7 77.7 76.3 76.3 67.9 73.3 69.3 74.7 71.7 72.9
grc 40.4 52.6 52.6 54.8 54.8 36.7 54.0 48.9 53.7 56.0 56.0
heb 51.6 64.5 64.5 76.7 76.7 81.3 83.2 77.3 79.3 83.7 83.6
hebvoc 34.7 30.9 30.9 65.3 65.3 82.7 92.0 92.9 92.6 90.9 91.0
hun 45.9 74.7 74.7 74.7 74.7 75.9 80.5 76.3 79.8 84.3 85.0
hye 88.9 86.3 86.3 86.2 88.9 85.9 91.0 88.4 91.5 94.4 94.3
ita 78.0 75.0 75.0 63.6 78.0 84.7 94.1 95.8 97.2 92.1 92.2
jap 67.0 64.1 64.1 64.1 67.0 95.3 26.3 92.8 94.2 94.9 94.9
kat 71.7 82.0 82.0 82.1 82.1 70.5 84.5 84.1 84.7 81.3 82.9
klr 27.8 54.5 54.5 53.1 53.1 96.4 99.5 99.4 99.4 99.4 99.4
mkd 64.9 91.6 91.6 90.8 90.8 86.7 93.8 91.9 92.4 92.1 92.4
nav 23.7 35.8 35.8 41.8 41.8 53.6 52.1 54.0 55.1 55.1 55.6
rus 66.8 86.0 86.0 85.6 85.6 82.1 90.5 87.4 87.3 84.2 85.5
san 47.0 62.2 62.2 62.1 62.1 54.5 66.3 63.3 69.1 67.7 65.9
sme 30.1 56.0 56.0 49.7 49.7 58.5 74.8 69.9 71.8 67.4 67.3
spa 86.3 87.8 87.8 87.4 87.4 88.7 93.6 90.9 91.4 93.8 93.1
sqi 73.8 19.3 83.4 78.1 78.1 71.5 85.9 87.6 88.9 92.0 91.6
swa 56.2 60.5 60.5 65.0 65.0 94.7 93.7 93.1 93.1 96.6 96.6
tur 28.1 64.6 64.6 64.6 64.6 81.8 95.0 90.9 90.8 90.3 92.0

Table 3: Results of all the systems, submitted and baselines over the test sets in all languages. the best system(s) per
language in marked in bold. The systems are ordered by the averaged success.

ever, there are still some languages over which no
system achieves over 80% accuracy. These are:
Navajo, Ancient Greek, Sanskrit, Belarusian, Sami
and French. While there is no one characteristic
shared between all of these languages, it is worth
noting that this list includes the only two extinct
languages tested in this task, and the only mostly
prefixing language. Perhaps further development
of tailored models could close this gap.

The orthography’s influence As in previous
years, the Hebrew data was provided in two for-
mats: the standard unvocalized abjad where vowels
are largely omitted from the text, and the rarely
used fully vocalized form that is computationally
equivalent to an alphabet.

For most systems, the difference in performance
between the two variants is stark. In general, the
non-neural systems succeeded better over the un-
vocalized variant, presumably because omitting
the vowels masks the non-concatenative ablauts.
However, the neural systems fared better over the
vocalized data, potentially due to the far lower level
of ambiguity it exhibits.

However, the Arabic data complicates this pic-

Language AZ4 IL4
afb 52.7 84.6
afb no diacr. 80.8 89.2
arz 80.8 88.7

Table 4: Results of all the best neural and non-neural
systems over Gulf Arabic, with and without omission
of diacritics. Results over Egyptian Arabic are provided
for reference. Further evaluations and results for all
systems appear in Appendix B.

ture. Although Egyptian and Gulf Arabic are
closely related dialects with marginal differences
in the inflectional system, most systems’ success
rates differ significantly between these two Ara-
bic varieties. Error analysis revealed that incon-
sistent diacritization in the Gulf data is the main
driving factor in this discrepancy in performance.
Unlike the Egyptian Arabic data, not all forms in
the Gulf data are diacritized. While all lemmas are
diacritized in Gulf, only a subset of the verbal in-
flected forms are diacritized and the rest are not. In
total, around 46% of the training data is diacritized.

The result is that the non-neural systems failed
to generate vowel diacritics in the same somewhat
arbitrary pattern unlike the neural systems, which
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Figure 1: An example of explained inflection by TÜB.
Each predicted character is anchored in one input sym-
bol, other conditioning symbols omitted and can be
found in Girrbach (2023).

managed to deal well with the inconsistency in the
data. The exact match accuracy for Gulf Arabic
for the best neural and non-neural systems, which
was calculated after omission of all diacritics, is
presented in Table 4 and detailed for all systems in
Appendix B. It shows that without this source of
inconsistency, the performance of Gulf Arabic is in
line with the performance of Egyptian.

All in all, it seems like a consistent indication of
vowels does not have the same effects in Hebrew
and Arabic, despite their typological and ortho-
graphic similarity. The results over Arabic dialects
are similar regardless of whether diacritics were
omitted, while in Hebrew the vocalization played a
greater role. This conundrum may point to a need
to investigate further the role of the orthographic
system in the success rate of inflection models, both
neural and non-neural.

7 Conclusions

This year’s shared task further promoted the goals
of the recurring UniMorph inflection task: we
tested innovative inflection systems on a challeng-
ing lemma-split data, and did so in an inclusive
fashion both in terms of typological diversity of the
languages included and the annotation schema that
allows treatment of more complex morphological
phenomena.

We received 9 submitted systems and tested
them on 16 typologically diverse languages. The

most interesting pattern arising from our results is
the greatly varied performance between languages,
with the best performing system ranging from 55.6
to 99.4 accuracy percentage. We thus conclude that
further research is needed to close this gap.

Moreover, this year’s task gave a prominent role
to the orthographic systems of the languages se-
lected, both by including for the first time a lo-
gographically written language and by analysing
the role of abjad-vocalization in Semitic languages.
We believe that this direction is a promising lead
for promoting the understanding of the factors in-
fluencing the performance of inflection models.
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A Hyper Parameters of the Neural
Baseline

For the neural baseline models we used the stan-
dard hyper parameters of Wu et al. (2021). These
are:

• 4 transformer layers
• 4 attention heads
• 256 dimensions in the embeddings
• 1024 dimensions in the hidden feed forward

layers
• 0.3 dropout chance
• 400 examples per batch
• 20,000 training steps at max
• Inverse square root scheduler with 4,000

worm up steps
• Adam optimizer with β of 0.98
• learning rate of 0.001
• label smoothing with α of 0.1
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Language AZ3 AZ1
Baseline

Non-neural AZ2 AZ4 TÜB
Baseline
Neural IL1 IL2 IL3 IL4

afb original 34.5 30.8 30.8 52.7 52.7 75.8 80.1 80.7 82.2 84.1 84.6
afb mixed 66.9 70.7 70.7 70.3 70.3 77.4 82.2 83.1 84.5 86.0 86.5
afb no diacr. 74.4 77.4 77.4 80.8 80.8 81.9 87.9 87.8 89.2 89.0 89.2
arz 75.7 77.2 77.9 80.8 80.8 87.6 89.6 89.2 88.7 89.1 88.7

Table 5: Results of all the systems over Gulf Arabic with different considerations for inconsistent diacritization of
the original data. Results over Egyptian Arabic are provided for reference.

B Detailed evaluations for Gulf Arabic

Table 5 details several evaluations done over Gulf
Arabic, with the results of Egyptian Arabic pro-
vided for reference. Specifically:

• original is the evaluation done over the in-
consistently diacritized data, as it appears in
Table 3.

• mixed is the evaluation done after removing
diacritics only the predictions whose respec-
tive gold contains no diacritics

• no diacr. is the evaluation done after removing
all diacritics from both predictions and gold
outputs.
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