@inproceedings{kwak-etal-2023-morphological,
title = "Morphological reinflection with weighted finite-state transducers",
author = "Kwak, Alice and
Hammond, Michael and
Wing, Cheyenne",
editor = {Nicolai, Garrett and
Chodroff, Eleanor and
Mailhot, Frederic and
{\c{C}}{\"o}ltekin, {\c{C}}a{\u{g}}r{\i}},
booktitle = "Proceedings of the 20th SIGMORPHON workshop on Computational Research in Phonetics, Phonology, and Morphology",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.sigmorphon-1.15",
doi = "10.18653/v1/2023.sigmorphon-1.15",
pages = "132--137",
abstract = "This paper describes the submission by the University of Arizona to the SIGMORPHON 2023 Shared Task on typologically diverse morphological (re-)infection. In our submission, we investigate the role of frequency, length, and weighted transducers in addressing the challenge of morphological reinflection. We start with the non-neural baseline provided for the task and show how some improvement can be gained by integrating length and frequency in prefix selection. We also investigate using weighted finite-state transducers, jump-started from edit distance and directly augmented with frequency. Our specific technique is promising and quite simple, but we see only modest improvements for some languages here.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kwak-etal-2023-morphological">
<titleInfo>
<title>Morphological reinflection with weighted finite-state transducers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alice</namePart>
<namePart type="family">Kwak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Hammond</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cheyenne</namePart>
<namePart type="family">Wing</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 20th SIGMORPHON workshop on Computational Research in Phonetics, Phonology, and Morphology</title>
</titleInfo>
<name type="personal">
<namePart type="given">Garrett</namePart>
<namePart type="family">Nicolai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eleanor</namePart>
<namePart type="family">Chodroff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frederic</namePart>
<namePart type="family">Mailhot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Çağrı</namePart>
<namePart type="family">Çöltekin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes the submission by the University of Arizona to the SIGMORPHON 2023 Shared Task on typologically diverse morphological (re-)infection. In our submission, we investigate the role of frequency, length, and weighted transducers in addressing the challenge of morphological reinflection. We start with the non-neural baseline provided for the task and show how some improvement can be gained by integrating length and frequency in prefix selection. We also investigate using weighted finite-state transducers, jump-started from edit distance and directly augmented with frequency. Our specific technique is promising and quite simple, but we see only modest improvements for some languages here.</abstract>
<identifier type="citekey">kwak-etal-2023-morphological</identifier>
<identifier type="doi">10.18653/v1/2023.sigmorphon-1.15</identifier>
<location>
<url>https://aclanthology.org/2023.sigmorphon-1.15</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>132</start>
<end>137</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Morphological reinflection with weighted finite-state transducers
%A Kwak, Alice
%A Hammond, Michael
%A Wing, Cheyenne
%Y Nicolai, Garrett
%Y Chodroff, Eleanor
%Y Mailhot, Frederic
%Y Çöltekin, Çağrı
%S Proceedings of the 20th SIGMORPHON workshop on Computational Research in Phonetics, Phonology, and Morphology
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F kwak-etal-2023-morphological
%X This paper describes the submission by the University of Arizona to the SIGMORPHON 2023 Shared Task on typologically diverse morphological (re-)infection. In our submission, we investigate the role of frequency, length, and weighted transducers in addressing the challenge of morphological reinflection. We start with the non-neural baseline provided for the task and show how some improvement can be gained by integrating length and frequency in prefix selection. We also investigate using weighted finite-state transducers, jump-started from edit distance and directly augmented with frequency. Our specific technique is promising and quite simple, but we see only modest improvements for some languages here.
%R 10.18653/v1/2023.sigmorphon-1.15
%U https://aclanthology.org/2023.sigmorphon-1.15
%U https://doi.org/10.18653/v1/2023.sigmorphon-1.15
%P 132-137
Markdown (Informal)
[Morphological reinflection with weighted finite-state transducers](https://aclanthology.org/2023.sigmorphon-1.15) (Kwak et al., SIGMORPHON 2023)
ACL