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Abstract

This paper describes the submission by the
University of Arizona to the SIGMORPHON
2023 Shared Task on typologically diverse
morphological (re-)infection. In our submis-
sion, we investigate the role of frequency,
length, and weighted transducers in address-
ing the challenge of morphological reinflec-
tion. We start with the non-neural baseline
provided for the task and show how some im-
provement can be gained by integrating length
and frequency in prefix selection. We also in-
vestigate using weighted finite-state transduc-
ers, jump-started from edit distance and di-
rectly augmented with frequency. Our specific
technique is promising and quite simple, but
we see only modest improvements for some
languages here.

1 Introduction

This paper describes the submission by the Univer-
sity of Arizona to the SIGMORPHON 2023 Shared
Task on typologically diverse morphological (re-
)infection. The goal of the Shared Task is to model
inflectional morphology. The specific task is to
learn how to inflect for a language generally from
a limited number of examples.

In this task, we are given 10, 000 examples of
inflected forms in 27 languages along with the mor-
phological category and the generally accepted
lemma form. For example, in English, we have
data as in Table 1.

Morphosyntactic information is in Unimorph for-
mat (Guriel et al., 2022). The logic is that we are
given complete paradigms for n lemmas for each
language where the number of lemmas we see in
the training data is a function of the size of the
paradigms. Specifically, if paradigms are small, we
see more lemmas than if paradigms are big.

The goal is to build a system that learns the rela-
tionship between lemmas L, morphosyntactic de-
scriptions M , and inflected words W . The system

. . .
argue V;NFIN argue
argue V;PRS;NOM(3,SG) argues
argue V;PST argued
argue V;V.PTCP;PRS arguing
argue V;V.PTCP;PST argued
ascertain V;NFIN ascertain
ascertain V;PRS;NOM(3,SG) ascertains
ascertain V;PST ascertained
ascertain V;V.PTCP;PRS ascertaining
. . .

Table 1: Some English training data

effectively computes a function from L×M to W .
More details on the task are given in Goldman et al.
(2023).

The organizers provided two baseline systems,
a neural and a non-neural one. We decided to fo-
cus our efforts on a non-neural solution and so we
began our work by attempting to understand the
non-neural baseline more clearly.

For comparison purposes, we ultimately submit-
ted four sets of results: i) our implementation of the
non-neural baseline; ii) a version of the non-neural
baseline with adjustments for prefix frequency and
length; iii) an approach using weighted finite-state
transducers; and iv) an ensemble approach using
both prefix frequency/length and weighted trans-
ducers.

In the following sections, we first review the
structure of the baseline non-neural system. We
then outline our approaches and present our results.
We conclude with a discussion of shortcomings and
next steps.1

2 Non-neural baseline

The non-neural baseline system (Cotterell et al.,
2017) was inspired by (Liu and Mao, 2016). It

1All of our code is available at https://github.
com/hammondm/sigmorphon23/.
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Prefix Stem Suffix
∅ happ y

un happ iness

Table 2: Alignment of happy and unhappiness

Prefixes Suffixes
(<ha, <unha) (py>, piness>)
(<, <un) (>, ess>)
(<hap, <unhap) (happy>, happiness>)
(<happ, <unhapp) (>, s>)
(<h, <unh) (>, ness>)

(appy>, appiness>)
(y>, iness>)
(ppy>, ppiness>)
(>, ss>)
(>, >)

Table 3: Hypothesized rules for happy and unhappiness
(angled brackets are word boundaries)

aligns lemmas and surface forms utilizing Ham-
ming distance and Levenshtein distance and uses
this alignment to hypothesize potential prefixes and
suffixes.

For example, if the system were presented happy
and unhappiness, it would hypothesize the morpho-
logical analysis in Table 2.2

This alignment would be used to extract potential
prefix rules and suffix rules as in Table 3. During
inference, the best prefix rule and suffix rule are
chosen based on length and frequency. Specifically,
the longest rule that produces the most identical
forms is chosen.

Our first submission is essentially as described
above.

3 Non-neural Baseline improvements

For our second submission, we made two revisions
to the non-neural baseline system.

First, we replaced the input for extracting prefix
rules, which was originally specified as the con-
catenation of lemma’s prefix and surface form’s
root, with the concatenation of lemma’s prefix and
lemma’s root. Given the alignment algorithm de-
scribed above, this shouldn’t have an effect in most
cases, but it actually produced a small improve-
ment. Presumably, this is because of cases where

2The example in the text is an instance of derivational
morphology. Unfortunately, English does not have inflectional
prefixes, so we use this.

the lemma and word form do not share an obvious
root.

Second, we changed the criteria for choosing
the best prefix rule. The criteria for choosing the
best rule had been set up asymmetrically for prefix
rules and suffix rules. For suffix rules, the longest-
matching rule(s) given an input and the morphosyn-
tactic description was chosen as the best rule. If
there are ties, the most frequent rule was chosen.
For prefix rules, frequency had been the only cri-
terion and the length of the match had not been
considered. We revised the system so that the same
criteria apply to both prefix rules and the suffix
rules.

We were able to get a modest improvement
in performance as a result of these revisions
(non-neural baseline: 69.60%, revised system:
71.71%).3

4 Weighted finite-state transducers

We also built a system, inspired by the non-neural
baseline described above, but which uses weighted
finite-state transducers instead. Similar techniques
have been tried before, for example, Durrett and
DeNero (2013) and Forsberg and Hulden (2016).
In fact, a number of them showed up in the 2016
version of this task, e.g. Alegria and Etxeberria
(2016), Nicolai et al. (2016), Liu and Mao (2016),
and King (2016).4

Durrett and DeNero (2013) learns a set of trans-
formations: separate ones for prefixes, stems, and
suffixes. They use a conditional random field
(CRF) to combine and apply them.

Forsberg and Hulden (2016) generate probabilis-
tic and non-probabilistic morphological analyzers
in an automatic way by converting morphologi-
cal inflection tables into unweighted and weighted
FSTs.

Alegria and Etxeberria (2016) uses Phoneti-
saurus, a WFST-based system (Novak et al., 2012).
This system directly learns a single WFST to model
the lemma-to-word relation. The model thus in-
cludes a role for frequency, but not length. Mor-
phosyntactic information is directly encoded in the
WFST.

Nicolai et al. (2016) uses DirecTL+ (Jiampoja-
marn et al., 2008), a discriminative transducer that

3Our implementation of the non-neural baseline gets a
slightly different macro average, so we cite the organizers’
macro average here.

4Merzhevich et al. (2022) use transducers as well, but they
are constructed by hand, not learned from data.
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searches for a sequence of character transforma-
tion rules. It uses a version of the MIRA algorithm
(McDonald et al., 2005) to assign weights to each
feature. Transformations are N -gram-based and
combined to produce surface forms.

Liu and Mao (2016) use a linear-chain condi-
tional random field model with contextual features,
e.g. what is a consonant or vowel.

King (2016) uses conditional random fields as
well. Separate edit rules are induced from edit
distance comparisons and combined at inference.
Other features like position in the string were also
incorporated.

In our model, we use edit distance to calculate
the precise overlap between a lemma and a sur-
face form and then build a weighted finite-state
transducer (WFST) from that that specifies changes
with interleaving variables. The weights penalize
degrees of mismatch with the variables.

For example, take a lemma-word pair like break
and broken. First, we use edit distance to calculate
an optimal alignment. We then replace all identical
spans with variables that penalize mismatches. In
this example, br would be a variable and k would
be a variable. Our transducers are implemented in
pyfoma5. Using the formalism of that system, the
resulting transducer would be specified as below:

(. ∗<n>|br)(ea : o)(. ∗<n>|k)(′′: en)<m>

Here there is a penalty associated with not match-
ing the spans where the two forms align. In the
formalism above, we’ve specified these as n to indi-
cate that we experimented with different weighting
options. There is a penalty associated with the rule
as a whole, indicated above as m. This was used to
incorporate different possible costs for the length
of the rule. Again, we tried different options here,
but the general strategy was to penalize shorter less
frequent rules.

In training, we built transducers in this way for
all training items, separated by morphosyntactic
descriptions. For inference, we generated all possi-
ble outputs for a lemma with the WFSTs for that
morphosyntactic description and chose the one that
had the lowest cost.

We expected such a system would be better
able to capture nonconcatenative morphological
systems, systems where morphological categories

5https://github.com/mhulden/pyfoma

might be marked by stem-internal changes as op-
posed to prefixes or suffixes. In fact, as we discuss
below, this was not the case.

Based on development split performance, we
saw that the frequency of forms played a role:
as with the baseline system, more frequent out-
put forms were preferred. To handle this, we ad-
justed our weighting scheme so that if multiple
WFSTs produced the same output, those got low-
ered scores.

Our approach differs from previous WFST-based
approaches in three main respects. First, our align-
ment and overall system is extremely simple, as
described above. Second, our weights are naive,
not trained, and assigned on the basis of a general
theory of what should matter, as described above.
Finally, our system employs only transducers.

One strength of our system is that it’s very
straightforward and easy to manipulate the weights.
It can be used to test the effect each factor (e.g.,
form frequency, length of rules, etc.) has over the
system’s performance.

5 Ensemble system

We found that our system generally did not per-
form as well as the non-neural baseline or our re-
vision of it, but we saw improved performance for
some languages with development data, specifi-
cally Japanese, Armenian, and Italian. Therefore
we also submitted a ensemble system. where we
generated test outputs using our improved baseline
and our WFST system and selected the test results
based on development data performance.

6 Results

Results for our four submissions are given in Ta-
ble 4.

Submission 1 is our execution of the non-neural
baseline. It is here simply for comparison pur-
poses.6

Submission 2 is our simple adaptation of the
non-neural baseline to make prefixation and suf-
fixation sensitive to the same variables of length
and frequency of surface forms. The adapted sys-
tem performed better than the non-neural baseline
(67.1% vs. 71.7%).

6Just for completeness, our version of the non-neural base-
line differs from the organizer’s in one key line where lists
of strings are zipped together. In the organizer’s version that
object is then converted directly to a list; in our version, it is
not.
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Submission 3 is the WFST-based system. It
does not perform very well in general (56.1%), but,
as noted above, it does better than the systems 1
and 2 in a couple of cases: Armenian, Italian, and
Japanese.

Finally, submission 4 is the ensemble system,
where we draw on systems 2 and 3 depending on
which performed better with development data.

7 Discussion

We focused our efforts on a non-neural approach
and thus did not expect competitive results. That
said, we did manage to improve over the non-neural
baseline. Our intention was to understand more
deeply how morphological systems could be mod-
eled in the simplest finite-state terms. To this end,
we conducted several experiments with our WFST
system.

One of the experiments we did is to create the
WFST with individual characters, instead of spans,
as variables. In our submitted system, spans that
are identical in a lemma-word pair are replaced
with variables. We revised the system to replace
individual matching characters with variables. For
example, take the lemma-word pair break and bro-
ken once again. In our submitted system, identical
spans br and k are replaced with variables that
penalize mismatches. In the revised system, in-
dividual characters b, r, and k are replaced with
variables. Thus the first variable in the formula
below is replaced as shown.

(. ∗<n>|br)(ea : o)(. ∗<n>|k)(′′: en)<m>

not split: (. ∗<n>|br)
split: (. ∗<n>|b)(. ∗<n>|r)

The motivation for this experiment was to see if
penalizing each unmatched character, rather than
the whole span, would enhance the system’s per-
formance. Our hypothesis was that penalizing indi-
vidual characters would improve the system, as it
would give a more specific penalty to an unmatched
span.

This was not the case. At least for the various
weightings we tried, the individual character vari-
able versions did not perform as well as system 3
above.

In addition, the individual variable versions en-
tailed much larger transducers and much longer run
times. For the systems we submitted, running the

languages in parallel meant a complete run always
took less than an hour. For the individual variable
versions, running the languages in parallel took
over 15 hours on our campus supercomputer.

Our expectation is that with a compiled trans-
ducer system like Foma or OpenFST and with more
aggressive parallelization, we could reduce this run-
time significantly.

Another experiment we did is to adjust weights
based on the frequency of the form produced by the
candidate WFSTs. During error analysis, we found
out that there are many WFST candidates produc-
ing the same form. In many cases these frequent
forms were the correct ones, but they were not se-
lected as the optimal forms due to high weights.
In order to mitigate this issue, we tried adjusting
the weights of the WFSTs based on the frequency
of the form the transducer produced. As a result
of this adjustment, we were able to obtain a boost
of approximately 5% in system performance on
development data (from 51% to 56%).

8 Conclusion

In conclusion, we developed three non-neural mod-
els. The first combined frequency and length in
the selection of prefixes. The second used WF-
STs built from edit distance alignments. The third
model combined the results of the first two models.

The direct baseline changes resulted in overall
improvements, but the WFST system did not. How-
ever, there were specific language improvements
from the WFST solution and we were able to incor-
porate these in our ensemble system.

9 Limitations

While the WFST model didn’t perform very well
overall, our sense is that it is worth pursuing fur-
ther. Specifically, there are several moves worth
exploring.

First, we should move to a compiled system so
that we can test the "individual variable" models
more thoroughly.

Second, we should try models where we set the
variable weights by training, rather than naively in
advance.

Third, in an individual variable setting, it would
be promising to weight the variables by locality.
Specifically, do mismatched variables have more
effect when they are closer to where the changes
happen? Similarly, we might adjust the granular-
ity of the variables as a function of position, with
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Language 1 2 3 4
Arabic, Gulf 0.308 0.527 0.345 0.527
Amharic 0.654 0.74 0.599 0.74
Arabic, Egyptian 0.772 0.808 0.757 0.808
Belarusian 0.681 0.645 0.462 0.645
Danish 0.895 0.874 0.648 0.874
German 0.798 0.779 0.599 0.779
English 0.966 0.962 0.67 0.962
Finnish 0.808 0.806 0.482 0.806
French 0.777 0.763 0.767 0.763
Ancient Greek 0.526 0.548 0.404 0.548
Hebrew 0.309 0.653 0.347 0.653
Hebrew (Unvoc) 0.645 0.767 0.516 0.767
Hungarian 0.747 0.747 0.459 0.747
Armenian 0.863 0.862 0.889 0.889
Italian 0.75 0.636 0.78 0.78
Japanese 0.641 0.641 0.67 0.67
Georgian 0.82 0.821 0.717 0.821
Khaling 0.545 0.531 0.278 0.531
Macedonian 0.916 0.908 0.649 0.908
Navajo 0.358 0.418 0.237 0.418
Russian 0.86 0.856 0.668 0.856
Sanskrit 0.622 0.621 0.47 0.621
Sami 0.56 0.497 0.301 0.497
Spanish 0.878 0.874 0.863 0.874
Albanian 0.193 0.781 0.738 0.781
Swahili 0.605 0.65 0.562 0.65
Turkish 0.646 0.646 0.281 0.646
macro 0.671 0.717 0.561 0.724

Table 4: Language-by-language results for our four submissions

single-character variables sometimes and variable
spans in other cases.

Fourth, We had individual WFSTs for each
lemma, but with a compiled system it makes sense
to put them all together into a single WFST.
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