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Abstract

This paper presents our submission to the SIG-
MORPHON 2023 task 2 of Cognitively Plau-
sible Morphophonological Generalization in
Korean. We implemented both Linear Discrim-
inative Learning and Transformer models and
found that the Linear Discriminative Learning
model trained on a combination of corpus and
experimental data showed the best performance
with the overall accuracy of around 83%. We
found that the best model must be trained on
both corpus data and the experimental data of
one particular participant. Our examination of
speaker-variability and speaker-specific infor-
mation did not explain why a particular par-
ticipant combined well with the corpus data.
We recommend Linear Discriminative Learn-
ing models as a future non-neural baseline sys-
tem, owning to its training speed, accuracy,
model interpretability and cognitive plausibil-
ity. In order to improve the model performance,
we suggest using bigger data and/or performing
data augmentation and incorporating speaker-
and item-specifics considerably.

1 Introduction

There has been a heated debate on whether human
language users generate language in a generative
manner (e.g., Chomsky and Halle (1968)) or an
output-oriented manner (e.g., Prince and Smolen-
sky (2004)). In accordance with the theoretical
stance, computational models have been proposed.
The generative approach is essentially rule-based
at an abstract level. The Minimal Generalisation
Learner (MGL) by Albright and Hayes (2003) is
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a traditional, symbolic rule learner. More recent
rule-based computational approaches include Allen
and Becker (2015) and Belth et al. (2021).

With the availability of large corpus data, output-
oriented models have become widely popular.
Output-oriented models can be rule-based or end-
to-end. The former includes Prince and Smolensky
(2004) and Lignos et al. (2009); in the former, a
search procedure is implemented on a set of candi-
dates, or outputs, in order to find the surface form
that is most compatible with the underlying repre-
sentation. On the other hand, output-oriented mod-
els can be rule-free. For instance, Malouf (2017)
showcased a recurrent deep learning model to pre-
dict paradigm forms. Similarly, Kirov and Cotterell
(2018) proposed a encoder-decoder network archi-
tecture to model linguistic phenomena.

Both approaches have their own advantages and
disadvantages. However, in terms of model perfor-
mance, output-oriented models surpass generative
ones presumably due to difficulty of incorporat-
ing many other variations in conversation. Nev-
ertheless, output-oriented models are not panacea.
They are not as cognitively motivated, thus making
them less appealing for cognitive research. Deep
learning-based models, in particular, show great
performance, but they lack interpretability. These
shortcomings necessitate a hybrid model, which
is i) cognitively motivated, ii) more agnostic than
generative models, and iii) more transparent than
deep learning-based models.

Recently, Baayen et al. (2019) proposed Linear
Discriminative Learning (LDL), part of the dis-
criminative lexicon (Chuang and Baayen, 2021).
As the model follows the Rescorla-Wagner Rule
and Widrow-Hoff Rules, some insight into human
cognition can be obtained through model imple-
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mentation. Moreover, as it implements a linear
mapping between form and meaning in simple
two layers without any hidden layer, LDL fea-
tures higher interpretability and embraces linguis-
tic engineering. Considering these advantages, an
LDL model was chosen as the main model for
the SIGMORPHON 2023 shared task 2, which
aims to generalize morphological inflections in
Korean. A transformer model, which has been
state-of-the-art models for various NLP tasks, was
also implemented for comparison. The code and
data are available here: https://github.com/
hhuslamlab/sigmorphon2023

2 Related Work

While neural-based systems typically dominate
SIGMORPHON challenges, perhaps because they
generally perform well in morphological inflec-
tion tasks, their limitations can be better examined
using wug testing. For instance, McCurdy et al.
(2020) examined the ability of modern Encoder-
Decoder (ED) architectures to inflect German plu-
rals and concluded that ED does not show human-
like variability as shown in wug data. In fact, recent
SIGMORPHON challenges involve learning from
corpora that better represent the actual linguistic
input of children (such as child-directed speech)
and evaluating on phonetically-transcribed spoken
production by children or adults in corpora or in ex-
periments. For instance, the SIGMORPHON 2021
shared Task 0 Part 2 was to predict the judgement
ratings of wug words (Calderone et al., 2021) as
opposed to using real words held-out from the train-
ing data as test data. Similarly, the SIGMORPHON
2022 challenge involved computational modeling
of the data drawn from corpora of child-directed
speech and evaluation on children’s learning tra-
jectories and erroneous productions (Kodner and
Khalifa, 2022; Kakolu Ramarao et al., 2022).

Turning to studies from the field of laboratory
phonology, there is a long history of training mod-
els on corpora to learn specific aspects of morpho-
phonological grammar and evaluating their produc-
tivity with experimental data (wug-test and accept-
ability judgement). For instance, Jun (2010)’s study
on stem-final obstruent variation in Korean trained
a model with multiple stocastic rules (Albright
and Hayes (2002)’s Paradigm Learning Model) in
which the acquisition of morphology is based on
the distributional pattern of the learning data, using
the Sejong corpus, and evaluated on acceptabil-

ity judgement data. Related to the linguistic phe-
nomenon in this study, Albright and Kang (2009)
conducted a computational modeling of inflected
forms of Korean verbs using the Minimal Gener-
alization Learner algorithm (Albright and Hayes,
2002) and evaluated the model’s performance with
attested child errors and historical changes.

Finally, there is a growing number of morpho-
logical inflection studies that use the Linear Dis-
criminative Learning model (which will be intro-
duced later) to train on corpus data and evaluate on
experimental data (Nieder et al., 2021; Heitmeier
et al., 2021; Chuang et al., 2020; Heitmeier and
Baayen, 2020; Baayen et al., 2018) and they typi-
cal yielded relatively high performance (compared
to traditional, symbolic rule learner) while being
easy to interpret and cognitively motivated.

3 Task and Evaluation Details

We challenge the shared task 2 Cognitively Plausi-
ble Morphophonological Generalization in Korean.
The aim of this task is to predict human responses
to a generalization task (wug-test), considering
high-frequency, low-frequency, and pseudoword
items. This implies that human responses may vary
depending on the word frequency and familiarity.

The phonological phenomenon to be tested
through this task is Korean Post-Obstruent Ten-
sification (henceforth, POT). In Korean, when a
lenis consonant in the coda is followed by another
obstruent, it can be tensified. However, when a
consonant cluster occurs in the coda position, it
undergoes Consonant Simplification (henceforth,
CS) before POT if the following segment is either
an obstruent or a sonorant. On the other hand, nei-
ther CS nor POT does occur when the following
segment is a vowel.

Depending on the type of the deleted consonant,
variation can occur, which can be affected by such
speaker- and item-specific features as language fa-
miliarity and frequency. In this regard, the main
task can be rephrased as predicting features as com-
pletely as possible in accordance with those in the
answers. For this task, both corpus and experimen-
tal data are provided, which include variation pat-
terns. Models are to be evaluated on the accuracy
of the prediction of the feature vectors given the
corresponding features in the answers from unseen
participants.
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4 Data

Both corpus and experimental data are provided
for this task. The National institute of Korean
Language (NIKL) Korean Dialogue corpus (NIKL,
2021) is provided as the main corpus data. All
the word tokens affixed with -lC verbs, except
for -lh final stems, are provided after manual
annotation by the organizers. They further are
categorized as lC+Obstruent, lC+Sonorant, and
lC+Vowel, depending on the type of the conse-
quent segment. lC+Obstruent and lC+Sonorant
data each include target words with morphologi-
cal boundaries and produced words with syllable
breaks both in a Romanized form and Korean or-
thography. Whether target words undergo POT is
also provided, as well as such features as obstruent
deletion and lateral deletion pertinent to CS and
POT.

On the other hand, lC+Vowel data only provide
target words with morphological boundaries both in
a Romanized form and Korean orthography. They
do not include produced word information as this
condition is not subject to POT and CS; thus, all
the feature values of obstruent deletion and lateral
deletion are labeled as 0 with the POT value being
labeled as 0. Whether the target is lateralizated or
nasalized is marked only in the lC+Sonorant data
while labeled as NA in the others. The number of
tokens in lC+Obstruent data is 876, that of tokens
in lC+Sonorant data is 95, and that of tokens in
lC+Vowel data is 2,525 with 514 types–1,485 if
frequency information in lC+Vowel data is ignored.
Thus, the total number of tokens in the NIKL data
is 3,496.

In addition to the adult corpus, some part of a
child spontaneous speech corpus, the Ko corpus
(Ko et al., 2020), is provided. As with the NIKL
data, the Ko corpus provides target words and their
production but solely in a Romanized form. The
POT value with the lateralization and nasalization
feature values are labeled. As it does not include
any lC verbs followed by a sonorant, both nasaliza-
tion and lateralization are not applicable. A total of
336 tokens are provided.

In the case of experimental data, the experimen-
tal responses of 12 participants, in addition to 4
participants for the development data, are provided.
They include what are included in the corpus data
with the experimental specifics: the trial number,
the trial ID, the subject ID, option, language famil-
iarity, and word frequency. A total of 2,843 tokens

are provided.

5 System Description

The main task is to accommodate as many varia-
tion patterns as possible. We navigated through all
the corpus and experimental data, in which process
we found inconsistencies in transcription in the
data. In particular, the Ko corpus includes items
transcribed in a very detailed manner, including
phonological processes, such as deletion and inser-
tion, other than those pertinent to the task. We also
found that the target item does not always feature
one-to-one mapping, but more-than-one mapping.

Based on the observations above, data prepro-
cessing was of primary importance and was the
most time-consuming component. We manually
corrected the Ko corpus and automatically unified
the transcription style. We then selected models
adequate to this task. Considering the nature of the
shared task that investigates morphological varia-
tions with both corpus and experimental data and
the time constraint, LDL was chosen as the main
model, along with a Transformer model that has
demonstrated great performance in NLP. For each
of the two modelling approaches we conducted two
studies: Study 1 experimented with systems that
train only on the corpus data and/or only on the
experimental data; Study 2 used the insights from
Study 1, and experimented with systems that train
on both the corpus and the experimental data.

5.1 Linear Discriminative Model

LDL generates a system of form-meaning rela-
tions by discriminating between different forms
and meanings, with forms and meanings being
represented by numerical vectors. Form vectors
are based either on segmental representations of
various lengths, or on representations of acoustic
transitions gleaned directly from the speech sig-
nal (Arnold et al., 2017; Shafaei-Bajestan et al.,
2021). Meaning itself is taken to be a dynamic
concept, being emergent from the context in which
words are being used, and is represented by seman-
tic vectors, similar to approaches in distributional
semantics (Boleda, 2020). The idea is that if both
forms and meanings can be expressed numerically,
we can mathematically connect form and meaning,
i.e. map meaning onto form and vice versa. In this
system of mappings, the two sets of vectors are
combined into matrices – a form matrix and a se-
mantic matrix. The form vectors are mapped onto
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semantic vectors to model comprehension, and se-
mantic vectors are mapped onto form vectors to
model production. The mapping between them at
the theoretical end-state of learning is predicted us-
ing multivariate multiple linear regression (hence
the term ‘Linear Discriminative Learning’). The
network is simple and interpretable, because, in
contrast to deep learning networks, it features just
two layers (i.e. the form and meaning matrices),
both of which are linguistically transparent.

5.1.1 Data Preprocessing
Due to the time limitation, we decided to winnow
out the data that are only pertinent to POT and CS
from the Ko corpus. To be specific, the Ko corpus
includes tokens involving other phonological pro-
cesses, like insertion, as well. For instance, there
are 6 instances of ipko and the produced forms
are ikgo, lipgo, tipgo, ikgu, linkgo, and nipgo.
Considering POS and CS rules, the ideal outputs
are ipgo and ikgo. Moreover, based on the ten-
dency of negative vowelization of the mid rounded
vowel in conversation, ikgu is another candidate.
The others are also producible, especially consider-
ing that the Ko corpus consists of children speech,
but they are definitely not canonical outputs from
the pertinent rules. Thus, if the input and the out-
put are hugely different from each other because
of other phonological processes, the tokens were
discarded. All the duplicated tokens were also re-
moved. Thus, 286 tokens were left from 336 tokens.
Lastly, morphological boundary and feature repre-
sentation were manually incorporated following
the style of the other data.

We also observed that there are inconsistencies
in transcription style between the two corpus data
and the experimental data. The following data
transformations were performed on the corpus data.
In the Production_R, the tense forms of the plo-
sives p*,t*,k* are replaced with b,d,g, and those
of the alveolar fricative and the alveolo-palatal af-
fricate S,c* are replaced with s*, J, respectively.
Moreover, there are several inconsistencies in tran-
scription style between the input (Morphology_R)
and the output (Production_R). First, the middle
yin diphthong yv or jv in Morphology_R is re-
placed with jv or yv in Production_R. Second, the
alveolar fricative S in Morphology_R is replaced
with s*, but the reverse transformation is conducted
in Production_R. Lastly, the tense stops in Korean
orthography P, T, K in Morphology_R are re-
placed with p, t, k, except when they occur in

the word-initial position.
As a result, the pre-processed data contained s*

as phone representation. That is, a single phone
is represented by two symbols. For triphones, this
would lead to unwanted consequences: Triphones
which contain information only on two phones,
i.e. s* and any other phone, and triphones which
contain only one of the two parts of s*. Therefore,
s* was replaced with S for the implementations of
LDL presented in the subsequent sections.

5.1.2 General Model Architecture
The form matrices C used for the present imple-
mentations of LDL consisted of triphones, i.e. se-
quences of three phones within a word form. Tri-
phones overlap and can be understood as proxies
for phonological transitions. In each word’s indi-
vidual form vector c, the presence of a triphone is
marked with 1, while the absence is marked with 0.
The form vectors of all words of a set of words con-
stitute its C matrix and each row in such a C matrix
represents a word form, while the columns of the
C matrix represent all triphones of its underlying
word set. Triphones were used as previous studies
found overall good performance for triphones (e.g.
Chuang et al. 2021; Schmitz et al. 2021).

The semantic matrices S used for the present im-
plementations of LDL deviate from those usually
found in studies using LDL. Commonly, seman-
tics are introduced via semantic vectors obtained
by methods of distributional semantics, e.g. via
fastText (Bojanowski et al., 2016) or naive discrim-
inative learning (Baayen et al., 2011). However,
with the small amount of language data provided,
the computation of such semantic vectors is barely
feasible. While creating semantic vectors based
on a larger corpus of Korean may be one option to
solve this issue, we decided against this solution
as it would mean using data that is not part of the
current challenge. Instead, semantic vectors were
created based on morphemes and in a binary fash-
ion. That is, similar to the form vectors, in each
word’s individual semantic vector s, the presence
of a morpheme is marked with 1, while the absence
is marked with 0. The semantic vectors of all words
of a set of words constitute its S matrix.

With C and S, one can straightforwardly map
forms onto meanings and meanings onto forms:

CF = S

SG = C
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If one wants to predict the forms or semantics for
words that are not yet part of the implementation,
additional steps are required. Predicting semantics
for newly introduced forms, one computes
with C ′ denoting the Moore-Penrose generalised
inverse. Using the transformation matrix F and a
combined form matrix for previously and newly
introduced forms Ccombined, then

S = CcombinedF

Using this method, previous studies have anal-
ysed the semantics of pseudowords (Cassani et al.,
2020; Chuang et al., 2021; Schmitz et al., 2021).
Adapting this method for the prediction of forms,
as for the present study, one computes

G = S′C

Then, using the transformation matrix G and
a combined semantic matrix for previously and
newly introduced words, the following is solved:

C = ScombinedG

Note that this method comes with an important
caveat: Newly introduced words must not contain
any triphones that are not part of the original C
matrix when predicting their meaning, and, in the
present case, they must not contain any morphemes
that are not part of the original S matrix.

5.1.3 Study 1
For a first implementation of LDL, the follow-
ing rationale was adopted. First, the combined
data of the NIKL and Ko corpora were taken to
represent the mental lexicon of a speaker of Ko-
rean. That is, we assumed that this knowledge is
shared by all participants. Second, based on this
shared prior knowledge, participants individually
produced word forms during the experiment. Pre-
dicting these forms, and in turn the phonological
processes underlying them, via prior knowledge
was the aim of this implementation.

The combined NIKL and Ko corpus data were
used as initial word set (n = 632 after duplicate
removal). Based on the corpus data, C and S ma-
trices were created following the specifications in
Section 5.1.2. After obtaining the required transfor-
mation matrix G via G = S′C, G was based on the
triphone to morpheme relations found in the corpus
data it was trained on. In a next step, one would
then use G to compute C = ScombinedG. However,

the experimental data contained 111 triphones (out
of 247) that were not part of the corpus data. As
G was not trained to predict these triphones, any
further computations were rendered meaningless.

5.1.4 Study 2
Instead, a second LDL network was implemented.
The rationale of this implementation was to first
create individual networks for all sixteen train and
dev participants. Each participant’s network was
trained on the combined corpus data and on their
experimental data. In a second step, each of the six-
teen participants and their networks were then used
to predict all other participants’ produced word
forms. This provided insight in how far pertinent
participants were able to predict other participant’s
productions, allowing the selection of a ‘best’ par-
ticipant to then predict the test participants’ pro-
duced word forms.

First, for each of the sixteen train and dev par-
ticipants a data set containing the combined NIKL
and Ko corpus data (n = 632 after duplicate re-
moval) as well as their experimental data was cre-
ated (n = 175 to n = 180). Based on this data set,
C and S matrices were created and comprehension
as well as production were modeled following the
specifications outlined in Section 5.1.2.

Second, each of the sixteen participants’ G ma-
trices was used to predict the forms produced by
all other train and dev participants in the experi-
ment. In contrast to Section 5.1.3, this computation
did not pose a problem as experiment items and
their triphones were already introduced during the
first step. As a result, we obtained prediction ac-
curacies for all sixteen participants by all sixteen
participants. Accuracy here refers to whether a
word form was predicted correctly. The overall and
individual accuracies for low-, high-frequency, and
pseudoword items are available on GitHub.

Across all sixteen train and dev participants, it
was found that participant 597515 clearly outper-
formed the other fifteen participants in terms of
prediction accuracy across all experimental items.
Their mean prediction accuracy across all exper-
imental items was 73%, with 76% for low fre-
quency, 71% for high frequency, and 73% for pseu-
doword items. Their overall Precision, Recall, and
F1 scores for the training data are given in Table 1.

In an attempt to understand why this particu-
lar participant showed the best prediction results
for the other fifteen train and dev participants and
to find out whether we could determine differ-
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Precision Recall F1
simplify_delete_obstruent 0.48 0.57 0.43
simplify_delete_lateral 0.60 0.69 0.60
nasalization 0.60 0.69 0.60
lateralization 0.72 0.58 0.46
tensification 0.64 0.77 0.67

Table 1: Precision, Recall, and F1 of participant 597515
for the five phonological processes in the training data

ent ‘best’ participants for different participants to
be predicted, we implemented three multiple re-
gression models for each of the sixteen train and
dev participants, i.e. one for high frequency, one
for low frequency, and one for pseudoword items.
For a given participant’s multiple regression mod-
els, the dependent variable was the set of predic-
tion accuracies reached by the other participants
for that participant. As predictors, the biograph-
ical background information, LANGUAGEPREF-
ERENCE and AGESTARTEDSPEAKING, were in-
troduced. Across the sixteen low frequency item
models, we found that one participant with a LAN-
GUAGEPREFERENCE of 3 showed an effect for
LANGUAGEPREFERENCE (p = 0.02). This pre-
sumably indicated that the other participant with a
LANGUAGEPREFERENCE of 3 was the ‘best’ pre-
diction candidate for this participant. Across the
sixteen high frequency item models, we found that
both participants with a LANGUAGEPREFERENCE

of 3 showed an effect for LANGUAGEPREFERENCE

(p = 0.02; p = 0.0002), indicating that they were
each other’s best prediction candidates. Another
participant showed a barely significant effect of
LANGUAGEPREFERENCE (p = 0.046), and yet
another participant showed a significant effect of
AGESTARTEDSPEAKING (p = 0.03) . Across the
pseudoword item models, no effects were found.
As these results were inconclusive, we decided to
drop this attempt and to use participant 597515’s
G matrix to predict the forms, and hence the un-
derlying phonological processes, for the seven test
participants.

The predicted forms and their underlying rep-
resentations were used to derive information on
which of the five phonological processes of interest
were predicted for a pertinent word form.

5.2 Neural Network

5.2.1 Data Preprocessing

See the data preprocessing steps in Section 5.1.1.

5.2.2 Model Architecture
Our model closely follows the formulation of
the encoder-decoder Transformer for character-
level transduction model proposed by Wu et al.
(2021). We use multi-headed Transformers with
self-attention and implement them with Fairseq
(Ott et al., 2019) tool, a PyTorch-based sequence
modeling toolkit. Both Encoder and Decoder have
four layers with four attention heads, an embedding
size of 256 and hidden layer size of 1,024. We use
Adam Optimizer (Kingma and Ba, 2015), with an
initial learning rate of 0.001, a batch size of 400,
0.1 label smoothing and 1.0 gradient clip thresh-
old. Models are trained for a maximum of 3,000
optimizer updates. Checkpoints are saved every 10
epochs. Beam search is used at the decoding time
with a beam width of 5.

The checkpoint with the smallest loss on the
development data is chosen as the best model.

For the evaluation, we consider the models’ se-
quence accuracy (henceforth, accuracy), where
only instances for which the entire output sequence
equals the target are considered correct.

5.2.3 Study 1
The inputs to each model are the individual charac-
ters of the romanized. For example, for the model
trained against the raw NIKL dataset, the input is J
a l p - k o and the output is J a l . g o

Model Training Three models were trained on i)
the raw NIKL dataset (with a total of 1485 tokens),
ii) the raw Ko corpus (with a total of, and iii) the
combined datasets (NIKL and Ko). The data in
each model were split into train (70%), dev (10%),
test (20%) sets. The sequence accuracies of the
three models are 71.7% (raw NIKL)1, 35.3% (raw
Ko) and 65.5% (the combined dataset). Further-
more, we trained a model on all experimental items
following the same train-test split as stated above
and the accuracy was found to be 69.4%.

While these models were evaluated on a differ-
ent set of test data, their accuracies can nonetheless
suggest how the different datasets should be used
in Study 2 (Section 5.2.4). Training on the Ko cor-
pus alone is unlikely to be sufficient as it yielded
the lowest accuracy. While combining NIKL with
Ko yielded a poorer model compared to just using

1We experimented with a model using the NIKL dataset
but without syllable boundaries, and it yielded an accuracy of
71.6% – a negligible difference compared to the model with
syllable boundaries 71.7%
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NIKL alone, the Ko corpus should not be excluded
given that it is arguably more ecologically valid
than NIKL and the amount of training data is al-
ready small in this challenge. Finally, training only
on experimental items resulted in a comparable
performance as the combined dataset. This model
was not used as it was explicitly discouraged by the
challenge.

To determine how well a model trained only on
corpus data would perform on the experimental
data, we evaluated the best model (trained on raw
NIKL) against the experimental data (and removed
the syllable boundaries in the predictions to match
the transcription style of the experimental data) and
it yielded a much lower accuracy of 29.9%, sug-
gesting that we should incorporate the experimental
data as part of training.

5.2.4 Study 2

In this study, we primarily used the pre-processed
dataset (using methods described in section 5.2.1)
that consists of both NIKL and child spontaneous
speech dataset. We then incorporate parts of ex-
perimental data along with the combined dataset
during both training and development phase. The
test data provided by the organizers is used during
the testing phase.

Model Training We first incorporated models
with training the combined dataset using i) pro-
ductions from best participant and ii) productions
from worst participant, as development data , that
yielded accuracy scores of 43.8% and 39.4%.

Next, we trained a model on the combined
dataset (NIKL, and the Ko corpus) with the produc-
tions from 4 best participants and using responses
from a random participant as development data
which produced an accuracy score of 68.1%.

Finally, a model was trained on all participants’
except the best participant’s responses with the
combined dataset (NIKL, and the Ko corpus) and
using the productions from best participant as de-
velopment data that yielded an accuracy of 69.2%.
The accuracies of this model for: i) low-frequency
ii) high-frequency and iii) pseudoword items are
64.4%, 77.7% and 65.38% respectively. The over-
all Precision, Recall and F1 scores for the five
phonological processes in the test data are given in
Appendix A.

Precision Recall F1
simplify_delete_obstruent 0.69 0.70 0.67
simplify_delete_lateral 0.79 0.75 0.75
nasalization 0.79 0.75 0.75
lateralization 0.44 0.53 0.41
tensification 0.98 0.98 0.98

Table 2: Precision, Recall, and F1 of participant 597515
for the five phonological processes in the test data

5.3 Results

Predicting the seven test participants’ productions
using the ‘best’ participant’s LDL network as de-
tailed in Section 5.1.4, an overall accuracy of
83.32% was reached. The accuracies of this
model for: i) low-frequency ii) high-frequency and
iii) pseudoword items are 83.56%, 83.58% and
82.84%. The overall Precision, Recall, and F1
scores for the test data are given in Table 2. The
model performed best on tensification (F1: 0.98),
and worst on lateralisation (F1: 0.41). The mean
perplexity scores for the train and dev as well as
for the test data are 2.11 and 1.97 respectively. The
performance of the model on the test data is sim-
ilar to that on the training data (Table 1) with the
exception of simplify delete obstruent being better
predicted than lateralization in the test data. Com-
paring to the best Transformer model, LDL per-
formed better in terms of the overall accuracies of
the model; however, the relative performances of
the five phonological processes (Precision, Recall
and F1 scores) are largely the same (Appendix A).

6 Variability: Items and Participants

To examine the variability of the phenomenon,
Shannon entropy (base 2) (Shannon, 1948) was
used to quantify how variable are the items in the
experimental data and how variable are the partici-
pants. In this study, we considered sixteen possible
combinations of the five phonological processes
(therefore sixteen events in entropy’s term) (See
Appendix C). With sixteen combinations, the high-
est possible entropy value is 4 which means each
combination has a probability of 1/16 indicating
a high level of variability, and the lowest possible
entropy is 0 which means there is only one attested
combination indicating no variability. For detailed
analyses, see Appendix B.

First, we computed the by-item entropy val-
ues by computing the proportion of the sixteen
response combinations using the sixteen partici-
pants (training and development). The 180 ex-
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perimental items have a mean entropy of 0.584.
Pseudoword items have the highest mean entropy
(0.612), followed by high-frequency items (0.596)
and low-frequency items (0.544). These entropy
values suggest that the experimental items in gen-
eral have low variability and unsurprisingly the
pseudoword items were particularly variable com-
pared to the real words. However, these differences
in entropy values were not statistically significant
(ps > 0.3842).

Second, we computed by-participant entropy val-
ues by computing the proportion of the sixteen re-
sponse combinations. Across all the experimental
items, the sixteen participants have a mean entropy
of 2.143. Participants show the lowest mean en-
tropy with the high-frequency items (2.049) , fol-
lowed by low-frequency items (2.111) and pseu-
doword items (2.112). However, these differences
in entropy values were not statistically significant
(ps > 0.2542). Our ‘best’ participant 597515 has
an entropy of 2.192 across all items, 2.176 for high-
frequency, 2.154 for low-frequency and 2.140 for
pseudoword items, with all values similar to their
means. Therefore, the participant’s superiority is
not purely due to their responses being more vari-
able.

7 Discussion and Conclusion

We demonstrated that LDL is capable of modelling
morphological inflection trained on limited corpus
and experimental data. Its performance is competi-
tive to that of the Transformer model that we exper-
imented with. Past SIGMORPHON shared tasks
(2017–2022) with a focus on morphological in-
flection have generally received more neural-based
systems than non-neural ones and found that neural-
based ones tend to be superior (Kodner and Khalifa,
2022; Kodner et al., 2022; Pimentel et al., 2021;
Vylomova et al., 2020; McCarthy et al., 2019; Cot-
terell et al., 2018, 2017, 2016). Amongst the sub-
mitted non-neural systems, LDL has never been
utilized. Our study cannot conclude that LDL is
superior to the transformer architecture as the latter
was not fully optimized. However, it has great po-
tential to serve as a non-neural baseline system for
future shared tasks as well as allowing researchers
to conduct rapid experiments, because of its archi-
tecture simplicity, performance (with accuracies
from 59% to 99% in a range of languages, e.g.
Heitmeier et al. 2021; Schmitz et al. 2021; Stein
and Plag 2021; Chuang et al. 2020; Baayen et al.

2019) and speed (in our study one model required
on average 35 seconds of CPU processing on an
i7-9750H 2.60 GHz system with 32 GB memory).

Our study found that training on the corpus data
alone was insufficient and that our models require
at least one participant’s experimental data in order
to inflect the experimental items well. However,
from an ecological perspective, a model should
only be trained on the corpus data (NIKL and Ko),
excluding the experimental data, as the corpus data
serve to represent the participants’ actual linguistic
input. The corpus data we have are likely unrepre-
sentative of the actual linguistic input of our par-
ticipants. Firstly, the verbs were not embedded in
an utterance, and even if the full utterances were
used the overall amount of data would still be small
with only 53,000 words from the Ko corpus, and
900,000 phrases from the NIKL corpus. Based on
spoken speech input alone, Brysbaert et al. (2016)
estimated that for American English, the total input
from social interactions (in a dialogue) would be
equal to 11.688 million word tokens per year and a
20-year-old would have been exposed to about 234
million word tokens. Using a much larger speech-
like or transcribed corpus such as SUBTLEX-KR
(Tang and de Chene, 2014) (90 million eojeols) is
a promising approach for examining morpholog-
ical inflection patterns (see de Chene (2014) on
regularisation in Korean noun inflection).

Our item variability analyses suggest that the
three item types (high-, low-frequency and pseu-
dowords) are not particularly different in their vari-
ability. This might be reflecting how the LDL
model reported in Section 5.3 performed similarly
with them (high: 83.58%, low: 83.56%, and pseu-
dowords: 82.84%). However, the best Transfomer
model was sensitive to item types yielding a higher
accuracy for the high-frequency items (77.7%),
than the low-frequency (64.4%) and pseudoword
(65.38%) items.

Our attempts in understanding why the ‘best’
participant was the best in predicting individual
participants’ productions were not successful. Re-
sponse variability was unable to explain why our
‘best’ participant was the best, as it has neither high
nor low in variability compared to the other 15 par-
ticipants. Our regression analyses predicting indi-
vidual participant accuracies using the participants’
demographics was inconclusive. While one may
assume that the LDL prediction results should im-
prove when one predicts speakers of similar back-
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grounds, the nonetheless satisfying LDL prediction
results suggest that demographics-matching was
not needed. Overall, our results suggest that LDL
is suitable for tasks such as the one at hand.

Limitations

The small amount of training data provided in this
shared task poses a challenge for models that need
large amounts of data to reliably learn linguistic
patterns. While we did not employ any data aug-
mentation techniques, we suggest future work to
train the models on all the possible feature com-
binations (weighted with the probabilities as the
experimental data) for the stems in the two corpora.

Owning to the lack of time and computing re-
sources, we did not fully optimize our transformer
models and we did not fully utilize and explore
i) speaker-specific information, especially for the
transformer models, ii) token frequency informa-
tion in the corpora, as we assumed extension of
morphological patterns is based on type, not token,
frequency (Bybee, 2001; Pierrehumbert, 2001).
Furthermore, we did not experiment with training
models with either high-frequency, low-frequency
and pseudoword items. It is possible that some
speakers’ high/low/pseudoword items would be bet-
ter served as part of the training set.

The LDL model in Section 5.1.3 was not able
to evaluate the experimental items due to the unat-
tested triphones. This shortcoming can be miti-
gated by using phonological features (Tang and
Baer-Henney, 2023).
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A Appendix: Evaluation metrics for the
Neural Network model

Precision Recall F1
simplify_delete_obstruent 0.70 0.71 0.68
simplify_delete_lateral 0.79 0.72 0.72
nasalization 0.79 0.72 0.72
lateralization 0.44 0.53 0.41
tensification 0.98 0.98 0.98

Table 3: Precision, Recall, and F1 for the five phono-
logical processes in the test data for the best performing
neural network model

B Appendix: Variability analyses

mean sd min. max.
All 0.58 0.52 0.00 1.68
High-frequency 0.60 0.54 0.00 1.68
Low-frequency 0.54 0.52 0.00 1.47
Pseudoword 0.61 0.50 0.00 1.65

Table 4: Summary statistics of by-item entropy: Mean,
standard deviation (sd), minimum (min.) and maximum
(max.) entropy values of all items computed over all
items, as well as subsets of items (high-frequency, low-
frequency and pseudoword items)

mean sd min. max.
All 2.14 0.14 1.83 2.33
High-frequency 2.05 0.16 1.67 2.25
Low-frequency 2.11 0.10 1.88 2.25
Pseudoword 2.11 0.15 1.85 2.33

Table 5: Summary statistics of by-participant entropy:
Mean, standard deviation (sd), minimum (min.) and
maximum (max.) entropy values of all participants
computed over all items, as well as subsets of items
(high-frequency, low-frequency and pseudoword items)
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participant all pseudoword low high
597515 2.19 2.14 2.15 2.18
592117 2.20 2.11 2.14 2.18
563118 2.19 2.13 2.15 2.10
556014 2.26 2.25 2.19 2.21
578085 2.16 2.04 2.23 2.03
559838 2.14 2.14 2.05 2.00
589028 2.03 2.01 2.04 1.99
594939 2.05 1.97 2.07 2.02
581952 2.22 2.25 2.19 2.02
565631 1.89 1.85 1.95 1.79
578698 2.24 2.25 2.19 2.18
556505 2.23 2.25 2.08 2.13
592166 2.26 2.22 2.25 2.18
556033 2.33 2.33 2.15 2.21
585660 1.84 1.87 1.88 1.67
575760 2.04 2.00 2.07 1.91

Table 6: Breakdown of by-participant entropy values:
Entropy values for all participants in the experimental
dataset (excluding the test set) computed over all items,
as well as subsets of items (pseudoword, low-frequency
(low) and high-frequency (high) items)

C Appendix: Feature combinations

Tens. Nasal. L del. C del. Lateral.
0 N/A 0 0 N/A

N/A 0 0 0 0
1 N/A 0 1 N/A

N/A 1 N/A N/A N/A
1 N/A N/A N/A N/A
0 N/A N/A N/A N/A

N/A 0 1 0 0
1 N/A 0 0 N/A

N/A 1 1 0 0
N/A 0 0 1 0
N/A 0 N/A N/A N/A

1 N/A 1 0 N/A
N/A 1 0 0 0

0 N/A 1 0 N/A
1 N/A 1 1 N/A
0 N/A 0 1 N/A

N/A 0 0 1 1

Table 7: Feature combinations used in the entropy cal-
culation. The features are tensification (Tens.), nasaliza-
tion (Nasal.), laterial deletion (L del.), obstruent deletion
(C del.) and lateralization (Lateral.). The combination
‘1, N/A, 1, 1, N/A’ was excluded as it had only one
attestation across the dev and train set.
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