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Abstract

This paper describes our systems participat-
ing in the 2023 SIGMORPHON Shared Task
on Morphological Inflection (Goldman et al.,
2023) and in the 2023 SIGMORPHON Shared
Task on Interlinear Glossing. We propose meth-
ods to enrich predictions from neural models
with discrete, i.e. interpretable, information.
For morphological inflection, our models learn
deterministic mappings from subsets of source
lemma characters and morphological tags to
individual target characters, which introduces
interpretability. For interlinear glossing, our
models learn a shallow morpheme segmenta-
tion in an unsupervised way jointly with pre-
dicting glossing lines. Estimated segmentation
may be useful when no ground-truth segmen-
tation is available. As both methods introduce
discreteness into neural models, our technical
contribution is to show that straight-through
gradient estimators are effective to train hard
attention models.

1 Introduction

This paper describes our systems participating in
the SIGMORPHON–UniMorph Shared Task on Ty-
pologically Diverse and Acquisition-Inspired Mor-
phological Inflection Generation (Goldman et al.,
2023) and the SIGMORPHON 2023 Shared Task
on Interlinear Glossing. For morphological inflec-
tion, we participate in part 1, and for interlinear
glossing we mainly target the closed track.

Morphological Inflection is the task of predicting
the correct inflected form given a lemma and set of
morphological tags. An example from the Italian
dataset in the shared task is

votare (“to vote”)
V;IND;FUT;NOM(1,PL)−−−−−−−−−−−−−→ voteremo.

The organisers of the shared task provide train, val-
idation and test splits for 26 languages. In the case
of Hebrew, 2 datasets are provided. Train splits
contain 10K (lemma, tags, form) triples, validation
and test splits contain 1K triples.

Interlinear glossing is the task of predicting
glossing lines, which is a sequence of morpholog-
ical tags, including lexical translations for each
token, on the sentence level given the surface text
and optionally a translation. An example of inter-
linear glossing taken from the train portion of the
Gitksan dataset in the shared task is:

(1) Iin
CCNJ-1.I

dip
1PL.I

gidax
ask

guhl
what-CN

wilt.
LVB-3.II

“And we asked what he did.”

The organisers of the shared task provide train, val-
idation and test splits for 7 typologically diverse
languages. Dataset sizes differ for each language.
Furthermore, the shared task features a closed track,
where only surface text and a translation is avail-
able for each sentence, and an open track, where
canonical morpheme segmentation and POS tags
are provided as additional information.

Especially when the main focus of training ma-
chine learning models is scientific discovery, even
the notoriously good performance of deep neural
models (Jiang et al., 2020) may not be satisfactory.
Instead, models should also yield insights into what
they learn about the data. However, clear and in-
terpretable explanations are often hard to derive
from models by post-hoc analysis, although many
methods exist (Holzinger et al., 2020; Burkart and
Huber, 2021; Rao et al., 2022). On the other hand,
self-interpretable models, i.e. models whose cal-
culations directly reveal discrete information, are
generally hard to train with gradient methods and
do not reach the same effectiveness as fully contin-
uous models (Niepert et al., 2021).

Therefore, in this work we aim at narrowing the
gap between inherently interpretable models and
fully continuous deep sequence-to-sequence mod-
els by demonstrating the effectiveness of straight-
through gradient estimators in optimising discrete
intermediate representations by gradient methods.
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As applications, we construct a model type for mor-
phological inflection that shows, without ambiguity,
which subset of lemma characters and tags causes
the prediction of a form character. Our proposed
model for interlinear glossing enriches the given
surface text with shallow morpheme segmentation.

Our main contributions are: (1) We show the
effectiveness of straight-through gradient estima-
tors for learning hard attention; (2) We present a
model for morphological inflection that unambigu-
ously shows which subset of lemma characters and
tags lead to the prediction of a form character; (3)
We present a model that learns shallow morpheme
segmentation jointly with interlinear glossing in an
unsupervised fashion.

2 ST Optimization of Hard Attention

We discuss hard attention as mappings of the fol-
lowing form: Let k ∈ N be the number of tar-
get positions (e.g. the number of decoder posi-
tions in a encoder-decoder sequence-to-sequence
model), and X ∈ Rn×d the matrix containing
d-dimensional feature vectors of n source ele-
ments (e.g. learned embedding vectors). Each
target element yi, i ∈ {1, . . . ,K} is calculated
as a sum of source element encodings, formally
yi =

∑
j∈→i

xj where xj is the jth row vector
in X and →i⊆ {1, . . . , n} is the set of source el-
ements aligned to target position i. Note that a
source element may be aligned to multiple target
elements, i.e. appear in →i for different i.

This mapping can be calculated by a matrix mul-
tiplication ξ ·X = Y ∈ Rk×d, where columns of
ξ ∈ {0, 1}k×n are the multi-hot encodings of index
sets (→i)i∈{1,...,K}. Formally, this means

ξi,j =

{
1 if j ∈→i

0 if j /∈→i

We assume ξ is a sample from a underlying cat-
egorical distribution where we can compute the
marginals ξ̂i,j that specify the probability

ξ̂i,j = Pr[j ∈→i]

of j being included in →i. For example, in the case
of dot-product attention, we have z ∈ Rk×n the
matrix product of decoder states and encoder states.
Then, we obtain ξ̂ by softmax over rows, and ξ by
sampling from the categorical distributions defined
by rows of ξ̂. At test time, argmax is used instead
of sampling.

The main problem is how to side-step sampling
during gradient-based optimization, because sam-
pling is not differentiable. One solution is the
so-called straight-through estimator (Bengio et al.,
2013; Jang et al., 2017; Cathcart and Wandl, 2020)
which means using ξ for the forward pass, i.e. when
computing model outputs, but using ξ̂ for backprop-
agation, i.e. when computing gradients of model
parameters w.r.t. the loss.

However, gradients of X are affected by the dis-
creteness of ξ as well, because ξi,j = 0 also means
xj does not receive gradients from yi. Therefore,
when using straight-through gradient estimation,
we should use ξ̂ when computing gradients of X.
Formally, for some differentiable function f that is
applied to Y, we set

∂f(ξ ·X)

∂ξ̂
= XT ∂f(Y)

∂Y

∂f(ξ ·X)

∂X
=

(
∂f(Y)

∂Y

)T

· ξ̂,

which can be implemented as

Y = ξ̂ ·X− sg
(
(ξ̂ − ξ) ·X

)
, (1)

where sg is the stop-gradient function (van den
Oord et al., 2017) which behaves like the identity
during forward pass, but has 0 partial derivatives
everywhere.

3 Applications

In this section, we describe how to apply the
method from Section 2 to sequence transduction
(Section 3.1) and sequence segmentation (Sec-
tion 3.2). We keep formulations more general than
necessary for the shared tasks, because we want to
highlight that the methods apply to similar prob-
lems as well.

3.1 Sequence Transduction

Sequence Transduction means transforming an in-
put or source sequence s1:n = s1, . . . , sn into
an output or target sequence t1:m = t1, . . . , tm.
Successful model types for this tasks are neu-
ral encoder-decoder networks with attention (Bah-
danau et al., 2015). These models use an encoder
which computes contextual source symbol repre-
sentations s1, . . . , sn and a decoder which com-
putes autoregressive target symbol representations
t1, . . . , tm. Entries of the attention matrix ξ̂ are
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dot products1 of source representations and target
representations, normalised to a categorical distri-
bution over source symbols for every target symbol.
Output symbols are predicted from the concatena-
tion of the respective previous autoregressive target
representation with the weighted sum of source
symbol representations, where weights correspond
to probabilities of the respective attention distribu-
tion. In terms of interpretability, this type of model
has two problems:

Soft Attention The role of soft attention (i.e. us-
ing ξ̂ directly) with regard to explaining model
predictions is not entirely understood (Jain and
Wallace, 2019; Wiegreffe and Pinter, 2019). There-
fore, we want to replace soft attention with hard
attention, whose interpretability is undisputed. We
replace soft attention with hard attention by sam-
pling source elements from rows of ξ̂ during train-
ing. The sampled index sets are used to discretise
ξ̂ into ξ. We enable end-to-end training through
Equation (1).

Contextual Representations Contextual symbol
encodings represent information about the whole
sequence, not just the encoded symbol. In deep
models, it is therefore not clear what information
actually is encoded (Meister et al., 2021). For this
reason, we want to use non-contextual symbol em-
beddings for prediction and use contextual symbol
encodings only for computing ξ̂.

However, only selecting one single source sym-
bol by hard attention and then not using any con-
textual information is not sufficient for successful
transduction. For example, in the case of mor-
phological inflection discussed here, predictions
have to take morphological tags and surrounding
characters into account when transducing a source
character. Therefore, we use two attention heads
computing different kinds of attention:

1. Softmax-normalised attention ξ̂symbol to select
a single symbol to transduce.

2. Sigmoid-normalised attention ξ̂cond to select
multiple symbols as conditions. In this case,
the sigmoid function σ is applied to every dot-
product of encoder states and decoder states
individually, yielding a Bernoulli distribution
for every combination. ξcond is the result of

1There are different ways to calculate unnormalised at-
tention scores (Luong et al., 2015; Brauwers and Frasincar,
2023), but without loss of generality we restrict the discussion
to dot-product attention.

sampling from each Bernoulli distribution. At
test time, we round to 0 or 1 instead of sam-
pling to ensure deterministic predictions.

Predictions are computed from the combined con-
text vectors, formally

Ysymbol = ξsymbol· Xembed

Ycond = ξcond· Xembed

pj(• | s1:n) = MLP([ Y
symbol
j ,Ycond

j ])

(2)

where • is a placeholder to indicate distributions
over the target alphabet, pj is the distribution for
the jth target symbol, and Xembed is the matrix con-
taining non-contextual source symbol embeddings.

In this formulation, the decoder is still autore-
gressive, but is only involved in computing atten-
tion scores, not predictions any more. Therefore,
it is entirely transparent which source symbols are
responsible for which predictions. Also, the con-
dition vector is a sum of equally weighted non-
contextual symbol embeddings. The only non-
transparent computation are the attention scores.
Formally, the model learns a mapping S×2S×N →
T where S is the source alphabet, N are the natural
numbers (to account for multiplicities of symbols),
and 2S×N indicates the power set. T is the target
alphabet. The attention mechanism selects the con-
textually appropriate arguments for this mapping.
A more detailed description of the concrete model
architecture is in Appendix B.

Of course, the increased transparency limits the
expressivity of the model. One problem is that
gradient signals for encoder and decoder are in-
sufficient, because their only remaining role is to
compute attention matrices. Therefore, we train
sequence transduction models in a multi-task set-
ting, using the interpretable mechanism described
above together with the typical mechanism, i.e. pre-
dicting the next target symbol from decoder state
and combined contextual source symbol encodings.
However, we use the same attention matrices in
both cases. Predictions of type one-to-many (e.g.
converting a single morphological tag to a suffix
consisting of multiple characters) are also prob-
lematic: For each single target symbol, a different
source symbol or condition is required. Possible
solutions are augmenting the target alphabet with
symbol ngrams (Liu et al., 2017) or allowing for lo-
cal non-autoregressive predictions (Libovický and
Helcl, 2018). However, we leave exploration of
such methods to future work. Finally, condition
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vectors Ycond are insensitive to order due to sum-
ming being a commutative operation. This problem
can be mitigated by positional encodings, but we
do not observe improvements in preliminary exper-
iments and do not explore this option here.

3.2 Sequence Segmentation

We combine hard attention with Structured Atten-
tion proposed by Kim et al. (2017). In particular,
we consider the case of sequence segmentation and
propose an end-to-end trainable interlinear glossing
model (for the closed tack, where this information
is not given) that first performs shallow morpholog-
ical segmentation2 on input words and then predicts
the gloss label for each morpheme. Note that the
method is also applicable to other tasks that require
sequence segmentation and further processing of
resulting segments, such as joint Sandhi segmen-
tation and morphological parsing in Sanskrit (Li
and Girrbach, 2022). In contrast to Kim et al., our
segment encodings respect a particular sampled
segmentation due to hard attention, and do not rep-
resent expected feature values.

Encoder Model Given a sentence as input to the
glossing model, we first apply a character level
encoder such as BiLSTM (Hochreiter and Schmid-
huber, 1997; Graves and Schmidhuber, 2005), to
compute contextual character representations on
the sentence level. Then, we continue process-
ing on the word level and denote a word w by its
characters w = s1, . . . , sn. Each word consists
of a sequence of characters that are represented
by contextual features computed in the previous
step. For each character at position i, we predict a
Bernoulli distribution parametrised by probability
p

seg
i ∈ (0; 1) that indicates whether the correspond-

ing character is the last character of a (shallow)
morpheme segment in our case. We also adopt
the method by Raffel et al. (2017) to add Gaussian
noise to unnormalised scores during training to en-
courage discreteness of segmentation probabilities.

Furthermore, each word is paired with the num-
ber of morphemes in the word. According to
Leipzig Glossing Conventions (Comrie et al., 2008,
Rule 2), the number of morphemes in a word is
given by the number of hyphen-separated labels
assigned to a word. During inference, the number

2Shallow morphological segmentation means only seg-
menting the surface string. Contrast this to canonical segmen-
tation, which also restores a latent canonical form of present
morphemes (Kann et al., 2016).

of labels and therefore morphemes is not given. In
this case, a straightforward solution is to start a new
morpheme whenever the segmentation probability
exceeds a certain threshold τ . However, we found
trivial solutions for τ like 1

2 not to work well, while
learning to predict the number of morphemes in
a word from the max-pooled character representa-
tions by a MLP works well in our case. Therefore,
we adopt the latter option and leave exploration of
the former method to future work. In cases where
we have no information about the number of seg-
ments during training, marginalising the number of
segments still remains as option.

Computing Marginals Character-level segmen-
tation scores pseg

i have to be converted to the atten-
tion matrix ξ̂ by marginalising all segmentations.
For each source element si, marginalisation com-
putes the marginal probability of having a mor-
pheme boundary at si. Adopting the terminology
of Section 2, morphemes correspond to target el-
ements and characters to source elements. Each
source element is aligned to exactly one target ele-
ment and the alignment is monotonic. This means
each source element can only be aligned to the
same target element as the immediately preceding
source element or alternatively it can be aligned
to the next target element. Accordingly, we com-
pute marginals, i.e. distributions over targets for
each source element, by the forward-backward al-
gorithm, same as Kim et al. (2017). The forward
recursion is given by α1,1 = 1 and

αi,j = αi−1,j · (1− p
seg
i−1) + αi−1,j−1 · pseg

i−1

for i > 1, j ≥ 1 where p
seg
i ∈ (0; 1) is the pre-

dicted segmentation probability of the ith source
element. Note that the first source element is al-
ways part of the first segment. Backward scores
are computed as βn,k = 1 and

βi,j = βi+1,j · (1− p
seg
i,j ) + βi+1,j+1 · pseg

i,j

for i < n and j ≤ k. Finally, marginals are given
by ξ̂i,j =

αi,j ·βi,j

αn,k
. In practise, computations are

performed in log-space.

Training For discretising segmentations, it is
most convenient to simply choose the maximum
likelihood segmentation, which corresponds to
starting new segments at the k − 1 indices with
maximum segmentation probabilities. The corre-
sponding target segment representations are com-
puted by Y = ξ · X, where X is the matrix of
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source element representations. Note that we use
the discrete assignments ξ for computing segment
representations and Equation (1) for training.

In the case of interlinear glossing, distributions
over labels for each morpheme are computed by a
MLP taking morpheme representations, i.e. rows
in Y, as input. Loss, then, is the cross-entropy
between predicted distributions over labels and
ground-truth labels. Note that in this case, and
in contrast to Section 3.1, we compute morpheme
representations from contextualised character rep-
resentations, and not from non-contextual embed-
dings, because we think that only sets of characters
of shallow morpheme segments are not sufficient
to compute the semantic information necessary for
glossing, especially the correct translations.

This has two consequences, first of all the model
is not transparent (i.e. interpretable), and character
encodings may be “fuzzy” in the sense that infor-
mation is locally spread across multiple characters
which may obscure precise morpheme boundaries.
A similar effect has been shown for sparse attention
by Meister et al. (2021). We leave exploring more
interpretable models similar to the model described
in Section 3.1 and biasing models towards more
precise morpheme segmentation to future work. In
this work, our main focus is to provide shallow mor-
pheme segmentation as additional predictions, not
to build an entirely interpretable glossing model.

4 Evaluation

Here, we evaluate the methods presented in Sec-
tion 3 by participating in the shared task on morpho-
logical inflection and in the shared task on interlin-
ear glossing. Technical details of the experimental
setup and hyperparameters are in Appendix A.

4.1 Baselines

For the morphological inflection shared task, the
organisers provide a neural and a non-neural base-
line. For the interlinear glossing shared task, the
organisers provide a transformer-based neural base-
line. Furthermore, we add a CTC-based sequence
labelling model (Graves et al., 2006) as baseline.
The CTC model encodes the source sentence on
the character level by a BiLSTM encoder and pre-
dicts a label or blank from each character. Here,
we exploit that the number of labels is the same as
the number of morphemes, and each word has at
least as many characters as morphemes.

4.2 Data Representation
For a detailed description of the shared task data,
refer to the respective shared task overview papers.
In the case of morphological inflection, we con-
vert (lemma, tags, form) triples to (source, target)
pairs by removing all punctuation from the tags and
prepending the remaining sequence of tags to the
lemma characters. Special pre- and postprocessing
is applied to Japanese in order to eliminate Kanji,
see Appendix C.

In the case of interlinear glossing, no modifica-
tion is necessary for the closed track. However,
for the open track, we replace the source text by
hyphen-separated morphemes. We assume they
contain more information than the original unseg-
mented text, and the unsegmented text does not add
any information when the segmented morphemes
are available. In this case, we also do not learn shal-
low segmentation, but predict a single label from
each morpheme. The CTC baseline flexibly learns
alignments of labels to characters in both cases. In
both cases, we approach interlinear glossing as a
sequence labelling problem.

4.3 Results
Morphological Inflection In Table 1, we report
macro-averaged test set accuracy and edit distance.
Full results for all languages achieved by our model
and the baselines are in Appendix D. For clarity,
we only report results of the best system for every
participating team. Results show that our inter-
pretable model loses on performance compared to
more flexible neural models, such as the Trans-
former baseline. On 22 of 27 languages, the neural
baseline beats our model. However, results also
show that introducing interpretability does not have
catastrophic consequences regarding performance.
With some advantages in macro-averaged scores,
our model performs roughly on par with the non-
neural baseline, beating it on 14 of 27 languages.
In summary, these results suggest that introduc-
ing interpretability to neural models causes some
decrease in performance, but having neural inter-
pretable models still gives better results than having
interpretable non-neural models.

To illustrate patterns learned by our models, we
show examples of the selected source symbols and
condition symbols. The first example in Figure 1 is
taken from the French (validation) dataset, namely
the target inflection is

juger “to judge”
V;COND;NOM(1,PL)−−−−−−−−−−−−→ “jugerions”.
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Accuracy ↑ ED ↓
Illinois 84.27 0.35
Baseline (Neural) 81.61 0.40
Ours 76.91 0.58
Arizona 72.45 0.75
Baseline (¬ Neural) 69.60 0.81

Table 1: Morphological Inflection: Best macro-averaged
test set results for accuracy and edit distance (ED) of
each team. Results of our model are highlighted in bold.

In this case, the prediction is correct. We can see
how the model first selects characters of the stem
to copy. Here, few if any other source symbols
are selected as conditions. Then, for predicting
the inflection suffix “-ions”, the model selects tag
symbols both to transduce and as conditions.

Next, we consider an example from the Italian
dataset, namely

estraniarsi “to alienate onself”
V;IND;PRS;NOM(1,PL)−−−−−−−−−−−−−→ “ci estranieremmo”.

The corresponding selected symbols and conditions
are shown in Figure 2. This example shows an in-
teresting non-monotonic pattern, namely moving
the reflexive pronoun “si” to the front and changing
it to the correct number and person, in this case
1st plural. The model correctly captures this, as
we can see from the selected transduction symbols
(left side). Also, the model learned which condi-
tions to select for changing the “s” in “si” to “c”.
After this transform, the model copies the stem
by selecting stem characters as transduction sym-
bols and conditions. Finally, the model generates
the inflectional suffix by selecting mainly tags as
transduction characters and conditions.

Interlinear Glossing In Table 2, we report
macro-averaged word level and morpheme level
test set accuracies. Both our additional CTC
baseline and our morpheme-segmentation model,
henceforth referred to as “morph”, compare
favourably to the transformer baseline. Further-
more, our morph model achieves better perfor-
mance than competing models on track 1, where
the unsupervised learning of morpheme segmen-
tation is relevant, which shows that learning addi-
tional linguistically relevant structures can improve
performance by injecting useful inductive biases in
the model. Furthermore, we again conclude that

using discrete structure as intermediate represen-
tations does not necessarily decrease performance
catastrophically. Instead, it seems helpful in this
case. Finally, we note that translations are not nec-
essary for current glossing models to achieve strong
performance, since we do not use them.

We also show examples of shallow segmentation
learned by the morph model. We focus only on the
segmentation, because this is the main contribution
of our model. Note that all segmentations were
learned in an unsupervised way for track 1 along-
side the main objective, i.e. predicting the glossing
line. For track 1, morphological segmentation is
not given, unlike for track 2.

Because our model learns shallow segmenta-
tions, while ground-truth segmentations provided
for track 2 are canonical segmentations, we can not
conduct a quantitative analysis. Therefore, we re-
strict the analysis to anecdotal qualitative analysis
of 2 example segmentions predicted by our models.

First, we consider a prediction for the following
Natugu example:

(2) Nedr
Ne-dr
ne-dr

rlilrdr
r-li-lr-dr
r-li-r-dr

doa
doa
doa

nzpwxng
nz-pwx-ng
nz-pwx-ngq

.

.

.

“The two of them had four children.”

Morphemes are separated by hyphens “-”. The pre-
dicted segmentation is in the second line, and the
ground-truth segmentation is in the third line. The
predicted segmentation differs from the ground-
truth, because it copies characters and therefore
can not change capitalisation, and two morphemes
(“lr” → “r” and “ng” → “ngq”) are normalised in
the ground-truth segmentation, so that they differ
from their surface form.

Next, we consider a Uspanteko example:

(3) i
i
i

tiyuq
t-iyuq
ti-yu’

sol
sol
sol

ji’
ji’
ji’

tren
t-r-en
t-r-en

tib’ek
t-ib’e-k
ti-b’e-k

“Y llega solo asi hace se va.”

Again, the predicted segmentation is in the sec-
ond line. In two cases the vowel “i” is assigned to
the wrong morpheme, but the predicted glossing
line (not shown) is still correct. In this case, in-
correct segmentation is apparently not a problem
for the subsequent classification of morphemes, but
in other cases this may cause problems. Here, we
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Figure 1: Example for French juger “to judge”. The target prediction is “juger”
V;COND;NOM(1,PL)−−−−−−−−−−−→ “jugerions”. The

prediction is correct in this case. On the left side, we show the single selected symbols for transduction, on the right
side we show the additionally selected condition symbols. Because we use hard attention, attention scores can only
be 0 or 1, and we can present them in a black-and-white style.

[SOS] VCONDNOM 1 PL e s t r a n i a r s i [EOS]

Source

[SOS]
c
i
 
e
s
t
r
a
n
i

e
r
e

m
m
o

[EOS]

Pr
ed

ict
io

n

[SOS] VCONDNOM 1 PL e s t r a n i a r s i [EOS]

Source

[SOS]
c
i
 
e
s
t
r
a
n
i

e
r
e

m
m
o

[EOS]

Pr
ed

ict
io

n

Figure 2: Example for Italian estraniarsi “to alienate onself”. The target prediction is “estraniarsi”
V;COND;NOM(1,PL)−−−−−−−−−−−→

“ci estranieremmo”. The prediction is correct in this case. On the left side, we show the single selected symbols for
transduction, on the right side we show the additionally selected condition symbols.
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Track 1 Track 2
Word Level Morph. Level Word Level Morph. Level

Ours (Morph) 71.30 62.55 76.56 84.21
Ours (CTC) 68.01 60.24 74.43 78.03
Baseline 47.31 33.60 59.14 67.69

Table 2: Interlinear Glossing: Macro-averaged test set accuracy for our models and the baseline. Higher is better.

can see that contextualised character encodings can
bypass the discrete morpheme segmentation step.

5 Related Work

Much recent work in character-level transduction
aims at making models both more interpretable and
stronger by using sparse (Peters and Martins, 2019,
2020) or hard attention (Aharoni and Goldberg,
2017; Wu et al., 2018; Wu and Cotterell, 2019;
Makarov and Clematide, 2018b,a). Modifying the
attention mechanism is necessary, because for soft
attention, which does not realise hard alignment de-
cisions, the relation of model outputs and attention
weights is not fully understood (Jain and Wallace,
2019; Wiegreffe and Pinter, 2019). Hard attention
does not suffer from this problem, because it re-
alises hard alignment decisions, so that we exactly
know which information influences the output of
attention. Especially if the main purpose of models
is to gain insights into the data and not mainly to
achieve better performance on modelling it, inter-
pretability of models is crucial.

However, working with hard attention is no-
toriously difficult, because it introduces non-
differentiability into models. This means that the
sophisticated machinery developed for gradient-
based optimisation of deep neural models fails in
this case. The most popular but also most ex-
pensive approach to train hard attention mecha-
nisms is marginalising all alignments (Yu et al.,
2016; Raffel et al., 2017; Wu et al., 2018; Wu and
Cotterell, 2019) or approximating the marginalisa-
tion (Shankar et al., 2018). Different approaches
to approximate gradients instead of having ex-
act gradients by marginalisation are using rein-
forcement learning (Xu et al., 2015; Makarov and
Clematide, 2018a), reparametrising discrete dis-
tributions or working with continuous relaxations
(Jang et al., 2017; Maddison et al., 2017), and per-
turbation based gradient approximators (Niepert
et al., 2021). While all methods to use hard atten-
tion with gradient-based optimisation come with

problems, we find straight-through gradient estima-
tors (Bengio et al., 2013) very effective to compute
informative discrete intermediate representations
even for complicated attention scenarios. Similar
results have been reported for other fields as well,
both practically (Sahoo et al., 2022) and in theo-
retical analysis (Yin et al., 2019). Therefore, we
propose two models, one for interpretable sequence
transduction and one for joint segmentation and
segment classification, based on straight-through
gradient estimators.

6 Conclusion

In this work, we propose to optimise hard attention
as building block in deep neural networks, which in
principle is non-differentiable, by straight-through
gradient estimation. In particular, we describe ap-
plications to interpretable sequence-to-sequence
models and sequence segmentation models. We
evaluate our approaches on two important tasks in
computational morphology, namely morphological
inflection and interlinear glossing which are shared
tasks of the ACL SIGMORPHON 2023 workshop.
Our approaches achieve good results in morpholog-
ical inflection despite of constrained expressivity
compared to fully differentiable models, and strong
results in interlinear glossing. These results provide
encouraging evidence that learning interpretable in-
termediate representations by deep neural network
does not necessarily lead to intolerable sacrifices
in performance. We hope that future work can ben-
efit from these insights by combining interpretable
representations and the generalisation abilities of
neural models for scientific discovery.
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A Experimental Setup

Here, we describe our experimental setup, includ-
ing hyperparameters, in detail. Also note that our
code is available on GitHub. Code for morpho-
logical inflection is here: https://github.com/

LGirrbach/sigmorphon-2023-glossing. Code
for interlinear glossing is here: https://github.
com/LGirrbach/sigmorphon-2023-inflection.
All models are implemented in PyTorch (Paszke
et al., 2019) and pytorch_lightning.3

In all cases, models are optimised using the
AdamW optimizer (Loshchilov and Hutter, 2019)
without weight decay, learning rate is 0.001, and all
other parameters are the PyTorch defaults. We use

3https://github.com/Lightning-AI/
lightning/

an exponential decay learning rate scheduler which
multiplies the learning rate by factor γ after each
epoch. We tune γ for each combination of model
and language. Furthermore, we clip gradients with
absolute value greater than 1.

Models are trained exclusively on the training
splits provided by the shared task organisers. After
each training epoch, generalisation performance is
estimated by performance on the validation split.
In the case of Morphological Inflection, our main
metric is normalised edit distance (lower is better).
In the case of Interlinear Glossing, our main metric
is accuracy of correctly predicted glossing lines
(higher is better). If performance does not improve
for 3 epochs, training is stopped. Only the best
model checkpoint, i.e. the checkpoint 3 epochs
before ending training, is retained.

A.1 Hyperparameter Tuning
For each combination of language and model,
we optimise hyperparameters independently. The
tuned hyperparameters and their corresponding
value ranges are in Table 3. Note that other than
stated there, the minimum batch size for Morpho-
logical Inflection models is always 4. Also, min-
imum batch size for Arapaho and Uspanteko lan-
guages (Interlinear Glossing) is 16. The maximum
batch size for Arapaho and Uspanteko is 128. The
maximum batch size for Gitksan (Interlinear Gloss-
ing) is 16.

In each case, we sample 50 sets of hyperparame-
ters using the optuna library (Akiba et al., 2019).
For each sampled set, a model is trained and the
performance on the validation set is recorded. Af-
ter sampling 50 sets, the set that resulted in the
best performance on the validation set is saved. For
training models for submission of results to the
shared tasks and all other analyses, we exclusively
use hyperparameter that were found best in this
hyperparameter study. Since we tune parameters
for many models, we do not report the results here.
However, they are available in our GitHub reposi-
tories.

A.2 Main Evaluation
For submitting results to the shared tasks and fur-
ther analyses, we retrain 5 models for each com-
bination of model type and language. The mod-
els use the hyperparameters from the tuning study
described in Appendix A.1. However, they have
different initialisations and may therefore perform
differently. For submitting results, we select the
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Parameter Name Range

# LSTM Layers {1, 2}
Hidden Size [64; 512]
Dropout [0.0; 0.5]
Scheduler γ [0.9; 1.0]
Batch Size [2; 64]

Table 3: Ranges for values of tuned hyperparameters.
Note that batch size ranges differ in some cases.

model the model with best performance on the val-
idation set. Having multiple copies of the same
model type trained with the same hyperparameters
is useful, because especially in low-resource sce-
narios different initialisations can have a relevant
impact on the generalisation performance. On the
one hand, it is necessary to estimate this variance to
see how robust models are, on the other hand this
helps mitigating spurious effects in the analyses.

B Sequence Transduction Model:
Detailed Description

Here, we provide a more detailed description of the
sequence transduction model (see Section 3.1).

For training, we have two paired sequences s =
s1, . . . , sn and t = t1, . . . , tm, representing the
source and target sequence, respectively. The goal
is to maximise the likelihood of transducing the
source sequence s to the target sequence t.

The first step is to represent all symbols in both
sequences by high-dimensional non-contextual vec-
tors, i.e. embeddings. Thus, we arrive at embed-
ded sequences s = s1, . . . , sn and t = t1, . . . , tm,
with si, t ∈ Rd. Here, boldfaced lowercase vari-
ables represent vectors. Furthermore, we denote
the n×d matrix with source symbol embeddings as
rows as S ∈ Rn×d and we denote the m×d matrix
with all target symbol embeddings as T ∈ Rm×d.
Note, that embeddings of source symbols and tar-
get symbols are optimised independently of each
other, i.e. they are not paired.

In the next step, we encode the source sequence
by a bidirectional LSTM and arrive at a contex-
tual representation hs

i for each source symbol with
index i, 1 ≤ i ≤ n. Likewise, we encode the
target sequence using a unidirectional LSTM and
denote the autoregressive encoding of the symbol
with index j, 1 ≤ j,≤ m as ht

j . Formally, we can

write

hs
i = BiLSTM(si | s1, . . . , sn) (3)

ht
j = LSTM(tj | t1, . . . , tj−1) (4)

and representing all contextualised representations
as matrices:

Hs = BiLSTM(S) (5)

Ht = LSTM(T) (6)

So far, this formulation is the same as conventional
LSTM-based encoder-decoder models. However,
the attention mechanism is different. According to
the descriptions in Section 2 and Section 3.1, we
define attention matrices as follows:

Z = Hs · (Ht)T (7)

ξ̂symbol = softmax(Z) (8)

ξ̂cond = σ(Z) (9)

where Z ∈ Rn×m represents the unnormalised
dot-product attention scores, softmax is applied
to columns of Z and the sigmoid function σ is ap-
plied elementwise. In fact, it seems counterintuitive
to use the same unnormalised scores in both atten-
tion heads, but this works well in practise. From
these attention matrices, we obtain the discretised
alignment matrices ξsymbol and ξcond by sampling
columnwise one-hot vectors in the case of ξsymbol
and elementwise values ∈ {0, 1} for ξcond. Then,
we calculate context vectors as

Ysymbol = ξTsymbol · S (10)

Ycond = ξTcond · S (11)

Note, that here we use the discretised alignment ma-
trices ξsymbol and ξcond in place of the real-valued
matrices ξ̂symbol and ξ̂symbol. Because discretisa-
tion is non-differentiable, we instead use a way of
calculation that enables straight-through gradient
estimation, namely Equation (1):

Ysymbol = ξ̂Tsymbol · S
− sg

(
(ξ̂symbol − ξsymbol)

T · S
)

(12)

Ycond = ξ̂Tcond · S
− sg

(
(ξ̂cond − ξcond)

T · S
)

(13)
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Finally, we predict a distribution over target sym-
bols by a MLP from the concatenation of Ysymbol
and Ycond according to Equation (2):

pj(• | s1, . . . , sn) = MLP([Y
symbol
j ,Ycond

j ])
(14)

where pj(• | s1, . . . , sn) indicates the distribution
over target symbols at prediction position with in-
dex j. Here, the concrete ground truth target sym-
bol is tj .

To train the model, we use the typical supervised
objective, namely minimising the cross-entropy be-
tween predicted categorical distributions over tar-
get symbols and the one-hot encoded ground truth
target symbol at each prediction position. This
also means we use teacher forcing for sequential
predictions. During inference, t is predicted in a
step-wise fashion by greedy decoding.

However, note that in addition to the setup de-
scribed above, we also use the typical attention
mechanism in a multi-tasking fashion, but only dur-
ing training. We do not use contextualised source
symbol representations for inference. The reason
why we still use the typical loss as auxiliary loss
is that the gradient signal on Hs and Ht is weak
when their only role is to calculate Z. In this case,
we calculate

C =
(
softmax

(
Hs · (Ht)T

))T ·Hs (15)

where softmax is applied to columns, and then
predict distributions over target symbols as

paux
j (• | s1, . . . , sn) = MLP(C) (16)

so that we can also calculate the cross-entropy loss
on paux

j (• | s1, . . . , sn) and differentiate model pa-
rameter w.r.t. the sum of both losses during training.
Note, again, that this is only to stabilise training by
optimising the contextual representations, and does
not affect the model architecture for inference.

C Preprocessing of Japanese

The Japanese writing system includes 4 alphabets,
namely Latin characters (Romaji), Chinese char-
acters (Kanji), and two syllabic scripts (Katakana
and Hiragana) that were derived from Chinese char-
acters by simplification and standardisation. The
Japanese dataset provided with the shared task con-
tains Kanji, Hiragana, and Katakana. Kanji consti-
tute a problem for character-level models, because
they are effectively an open set. The number of
Kanji taught in Japanese schools is already ≈ 2000,

to which variants, obsolete Kanji, and special Kanji
only used in names may be added. Therefore, a
model for Japanese language data should have the
possibility to process previously unseen Kanji.

In the case of morphological inflection, however,
this problem may be ignored, because Kanji are
never altered in inflection. Instead, inflectional
suffixes are expressed in Hiragana. Kanji may still
appear in stems, and have therefore be dealt with.

We apply the following preprocessing: We re-
place all Kanji by a special placeholder symbol K
that is the same for every Kanji. This applies to
both source lemmas and target forms. In the case
of successful prediction of target lemmas, the num-
ber of Kanji in the target form is the same as the
number of Kanji in the source lemma. Therefore,
we copy Kanji from the source by replacing the pre-
dicted placeholders. The order of Kanji in source
and target does not change. In case of predicting
fewer placeholders in the predicted form than there
are Kanji in the source lemma, which is an error,
we copy as many Kanji as there are placeholders
in the predicted form from left to right. In case of
predicting more placeholders in the predicted form
than there are Kanji in the source lemma, which
also is an error, we leave additional placeholders
unchanged, i.e. we do not change the predicted
placeholder symbol, but still copy as many Kanji
as possible from left to right.

D Full Results

Morphological Inflection In Table 5, we report
the official test set accuracies achieved by our
model for all languages. For comparison, we also
show results of the neural and the non-neural base-
line. Likewise, we report official test set edit dis-
tances in Table 6.

These results show some interesting patterns.
For example, the neural baseline performs worst on
Japanese, which we assume is an effect of the al-
phabet (see Appendix C). Therefore, our proposed
pre- and postprocessing for Japanese is important.
Alternatively, a copy mechanism could be used.

Another trend is that our model performs
strongly on semitic languages (e.g. afb, amh, arz,
heb, heb_unvoc), especially compared to the non-
neural baseline. Here, non-concatenative morphol-
ogy gives our model an advantage, because usually
individual transforms do not involve multiple char-
acters, such as suffix ngrams. Remember that our
model can only predict exactly one form character
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Track 1 Track 2

Word Level Morph. Level Word Level Morph. Level

CTC Morph CTC Morph CTC Morph CTC Morph

Arapaho 77.90 78.79 76.56 78.57 85.12 85.80 90.93 91.37
Tsez 80.96 80.94 70.29 73.95 85.68 85.79 91.16 92.01
Gitksan 04.69 21.09 09.26 11.72 13.80 26.56 17.08 50.22
Lezgi 78.10 78.78 62.03 62.10 85.44 83.41 83.45 87.61
Natugu 80.20 81.04 56.38 56.32 87.83 87.92 90.17 92.32
Nyangbo 85.34 85.05 86.74 85.24 85.90 87.98 89.96 91.40
Uspanteko 68.86 71.01 60.42 62.55 77.21 78.46 83.45 84.51

Table 4: Interlinear glossing: Official test set accuracies for all languages. Higher is better. CTC refers to our
CTC-based baseline model, “Morph” refers to our model that learns morphological segmentation in a unsupervised
way for track 1. In track 2, we simply use the provided representation.

from each combination of transduction lemma char-
acter and condition set. This shows that our model
is able to capture complex patterns, but may not be
optimal to generate extensive surface transforms.

Interlinear Glossing In Table 4, we report of-
ficial test set accuracies achieved by our models
for all languages. In most cases, our Morph model
is superior to the CTC model, which confirms the
benefit of morpheme segmentations for the task
of interlinear glossing. The same conclusion is
supported by the stark differences between track 1
and track 2. In track 2, performance is generally
much better, especially when looking at morpheme
level accuracies. Remember that we only use the
ground-truth morpheme segmentation as additional
information in track 2. We conclude that research
in morpheme segmentation will be useful for com-
putational models for interlinear glossing as well.

Ours Neural ¬ Neural

afb 75.8 80.1 30.8
amh 83.8 82.2 65.4
arz 87.6 89.6 77.9
bel 56.3 74.5 68.1
dan 85.7 88.8 89.5
deu 74.5 83.7 79.8
eng 96.0 95.1 96.6
fin 67.6 85.4 80.8
fra 67.9 73.3 77.7
grc 36.7 54.0 52.6
heb 82.7 92.0 30.9
heb(2) 81.3 83.2 64.5
hun 75.9 80.5 74.7
hye 85.9 91.0 86.3
ita 84.7 94.1 75.0
jap 95.3 26.3 64.1
kat 70.5 84.5 82.0
klr 96.4 99.5 54.5
mkd 86.7 93.8 91.6
nav 53.6 52.1 35.8
rus 82.1 90.5 86.0
san 54.5 66.3 62.2
sme 58.5 74.8 56.0
spa 88.7 93.6 87.8
sqi 71.5 85.9 83.4
swa 94.7 93.7 60.5
tur 81.8 95.0 64.6

Table 5: Official test set accuracies for all languages.
Higher is better. “Neural” and “¬ Neural” refer to the
neural and non-neural baseline, respectively. “heb(2)”
refers to the heb_unvoc dataset.
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Ours Neural ¬ Neural

afb 0.49 0.38 1.47
amh 0.22 0.24 0.59
arz 0.24 0.22 0.46
bel 1.31 0.64 0.90
dan 0.34 0.25 0.17
deu 1.00 0.48 0.80
eng 0.07 0.09 0.06
fin 0.63 0.21 0.26
fra 0.86 0.45 0.37
grc 1.43 1.00 1.04
heb 0.44 0.21 1.82
heb(2) 0.30 0.28 0.48
hun 0.57 0.44 0.47
hye 0.43 0.20 0.30
ita 0.43 0.12 0.75
jap 0.09 1.20 0.80
kat 0.79 0.35 0.51
klr 0.05 0.00 0.84
mkd 0.38 0.09 0.15
nav 1.37 1.55 1.88
rus 0.56 0.38 0.46
san 1.01 0.71 0.90
sme 0.88 0.65 0.89
spa 0.31 0.10 0.17
sqi 0.74 0.27 0.38
swa 0.06 0.06 4.10
tur 0.58 0.17 0.87

Table 6: Official test set edit distances for all languages.
Lower is better. “Neural” and “¬ Neural” refer to the
neural and non-neural baseline, respectively. “heb(2)”
refers to the heb_unvoc dataset.

185


