
Proceedings of the 20th SIGMORPHON workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 222–229
July 14, 2023 ©2023 Association for Computational Linguistics

Glossy Bytes: Neural Glossing using Subword Encoding

Ziggy Cross1∗ Michelle Yun1∗ Ananya Apparaju2 Jata MacCabe2
Garrett Nicolai3 Miikka Silfverberg3

University of British Columbia
1{zcross,bibianna}@student.ubc.ca

2{ananya.apparaju,jatamaccabe}@gmail.com
3{garrett.nicolai,miikka.silfverberg}@ubc.ca

Abstract
This paper presents several subword-modelling-
based approaches to interlinear glossing for
seven under-resourced languages as a part of
the 2023 SIGMORPHON shared task on in-
terlinear glossing (Ginn et al., 2023). In an
interlinear glossed text (IGT), each line of the
original text is paired with one or more cor-
responding lines which encode the underly-
ing grammatical structure. While expert an-
notated glossed text is especially valuable for
the study of low-resource languages in both
theoretical linguistics and natural language pro-
cessing, generating high-quality glossed data
is expensive and time-consuming. Therefore,
approaches which aim to automatically or semi-
automatically generate glossed data can be valu-
able for linguistic research. We experiment
with various augmentation and tokenization
strategies for both the open and closed tracks
of data. We found that while subword models
may perform well for greater amounts of data,
character-based approaches remain competitive
in their performance in lower resource settings.

1 Introduction and Motivation

Subword1 representations can leverage the com-
positional nature of input words to model the mor-
phology of a language. Approaches that treat words
as atomic units have limitations when handling
morphologically rich languages (Ling et al., 2015),
where words may be composed of several meaning-
ful morphemes (which, in turn, are composed of
characters). Another limitation of the word-level
approach is its inability to handle out-of-vocabulary
(OOV) words. When data is scarce and many test
words are absent from the training set, generic OOV
handling (i.e. <UNK> tagging) is especially prob-
lematic. Recent strategies for OOV handling in neu-
ral machine translation include using pre-trained

∗*The first two authors contributed equally.
1Throughout this paper, we use character to refer to sim-

ple character-level splitting and subword to refer to all other
subword segmentation

contextualized word embeddings (Lochter et al.,
2020) or exploiting external data (Ngo et al., 2019).
However, these methods are often domain-specific
and may be unrealistic in a truly low-resource set-
ting.

In such scenarios, models capable of learning
relationships between orthographically similar se-
quences (Ling et al., 2015) may be especially valu-
able for disambiguating rare and unseen words,
as there is often overlap between an OOV word
(e.g. desktop) and those present in the vocabu-
lary (e.g. desk, top). A drawback (Plank et al.,
2016) of character-level representations lies in the
non-trivial relationship between word forms and
their meanings. Subword models may represent
a compromise between characters, which are se-
mantically void, and word-level representations.
Indeed, byte-pair encoding (BPE) (Sennrich et al.,
2016a) can effectively handle rare and unknown
words in neural machine translation, particularly
when a word-level translation may be derived from
the translation of word-internal units.

Throughout this paper, we examine several ap-
proaches to neural interlinear glossing, and our
contributions are as follows:

1. We implement a sliding-window based data
augmentation approach, drawing solely from
the given training set, to improve results for
unsegmented inputs (3).

2. We compare the outputs of input representa-
tions at two granularities (subword, character)
across various language typologies (6.1.1).

3. We provide a quantitative error analysis of
gloss tags generated at the character level
(6.1.2).

4. We compare the performance of recursive and
transformer models for pre-segmented inputs
(6.2).

222

Additionally, we propose that sequence-to-
sequence (seq2seq) models are a viable approach
for automated gloss generation in low-resource sce-
narios even for the closed-track task, where sys-
tems are trained exclusively on unsegmented input
sentences and glosses.

2 Related Work

Given the data-hungry nature of neural systems,
many approaches for automating low-resource IGT
generation (Moeller and Hulden, 2018; McMillan-
Major, 2020) have been statistical, treating gloss
generation as a token classification task where each
morphologically segmented source line is mapped
to its corresponding morphosyntactic descriptor
(MSD). As CRFs cannot encode variable-length
sequences, they do not extend to the closed-task
setting.

The baseline (Ginn, 2023) for this task uses
a BERT-based model to label each whitespace-
separated sequence with its corresponding glossed
unit. This choice in architecture is motivated by
the scarcity of training data and fails to exploit or-
thographic regularities which lend consistent clues
to the internal structures of morphologically rich
grammars.

In a recent neural approach to automated gloss
generation for Lezgi, Tsez, and Arapaho, Zhao et al.
(2020) experimented with both word and byte-pair
tokenization. While they noted that the subword
model outperformed the word-level model for all
languages but Lezgi, they did not systematically
analyze each approach.

3 Data

The data for this shared task comes from seven low-
resource languages from various language fami-
lies. Some languages in the set include a large
number of training examples, while others con-
tain very few.2 All languages have original texts
(orthographic representations) and gold-standard
glosses. Some languages also have translated lines
of text (in either English or Spanish). For the open
track, all languages except Nyangbo have morpho-
logically segmented lines, and Uspanteko has POS
annotations.

The format of the data was as follows for the
closed track:

• <t>, the orthographic representation
2For detailed information on the languages, see Table 1

Figure 1: Sliding window augmentation

• <g>, the gold standard gloss

• <l>, the translation (in English or Spanish)

The format of the data was as follows for the
open track:

• <t>, the orthographic representation

• <m>, the morphologically segmented line

• <p>, part of speech tags (Uspanteko only)

• <g>, the gold-standard gloss

• <l>, the translation (in English or Spanish)

3.1 Closed Track Data Augmentation
For the closed track, we used a sliding window
augmentation strategy (Figure 1).

Given the training set for a language, we first de-
fine a minimum window size lb = 1 and a scaling
factor p = 0.5|0.7. We count the length of each
whitespace-segmented target line in the training
set and find the average count c. The maximum
window size ub is c ∗ p. We then generate new
source and target examples by segmenting each ex-
ample in the training set into spans of length lb...ub.
These spans are added back into the training set as
new training instances.

Language Original Augmented Total

Arapaho 39501 370058 409559
Gitksan 31 827 858
Lezgi 701 44517 45218
Natugu 791 53033 53824
Nyangbo 2100 17836 19936
Tsez 3558 238190 241748
Uspanteko 9774 103365 113139

Table 1: Overview of closed track training set

3.2 Open Track Data Representation
For the open track, all sentences were split up into
individual words. Each word was represented once
for every morpheme it contained, with moving

223

’morpheme boundaries’ for each duplication (we
used a <#> tag to represent this boundary). For
example, the input re-connect-ed would be repre-
sented as follows:

<#> re <#> connec t −ed
re <#> connec t <#>ed
re − connec t <#>ed <#>

Simplifying our input like this allowed us to rep-
resent the problem as a series of morpheme clas-
sifications, rather than a variable-length sequence
output task.

Our final model only used a context size of one
word, meaning each word in the input is considered
independently. A larger model could allow us to
include several words, or even the entire sentence,
as context. A larger context could potentially allow
the model to learn syntactic patterns, however, we
decided this would be too computationally inten-
sive for the shared task, as the improvements would
likely be marginal.

Overall, this representation meant that our in-
put data had as many examples as the number of
morpheme tokens in given sentences.

Language # Sents # Words # Morphs

Arapaho 39501 139714 251655
Gitksan 31 261 429
Lezgi 701 7029 10497
Natugu 791 10140 16341
Nyangbo 2100 8669 13778
Tsez 3558 37458 74334
Uspanteko 9774 41923 60458

Table 2: Overview of open track training set

4 Model Architecture

4.1 Closed Track
Our closed track model is a standard transformer-
based sequence-to-sequence network (Vaswani
et al., 2017). We use 3 layers for both the en-
coder and decoder, as well as 6 attention heads.
Dropout is set to 0.25, and the feedforward and
embedding dimensions are set to 512 and 300, re-
spectively. The default batch size is set to 32 for
both training and inference, adjusted to 8 for Gitk-
san and 64 for Arapaho to account for differences
in the amount of available data. For training, we
used PyTorch’s implementation of the Adam op-

timizer3, with learning rate γ = 10−4, β1 = 0.9,
β2 = 0.98, and ϵ = 10−9. Each model was trained
over 50 epochs. To prevent overfitting, we stopped
the training procedure if validation accuracy did
not improve for 3 consecutive epochs.

Inputs are segmented into either BPE subwords
or characters. During the decoding phase, the de-
coder auto-regressively generates an output gloss
sequence until the <end> token is reached; at
translation time, the predicted token is selected
via a greedy decoding mechanism.

4.2 Open Track
Our open track solution was broken up into two
parts, the first being tag prediction, and the second
being stem prediction. Example glosses contained
a mix of MSDs and stems, and while our models
would be capable of predicting both together, we
decided that the two tasks should be separated due
to their vastly different vocabulary sizes. For ex-
ample, a language may only contain a few hundred
unique tags, but several thousand stems. This sep-
aration meant we could greatly reduce the output
space of each task, in turn speeding up model learn-
ing. To do this, our tag prediction model would ob-
scure all stems by replacing them with a <STEM>
tag. We could then use a more lightweight predic-
tion model for anything our tag predictor classified
as a stem.

4.2.1 Tag prediction - BiLSTM encoder
Our first approach for encoding inputs in the open
track task was using a BiLSTM model. Each ex-
ample was represented as a sequence of charac-
ters (or tags in the case of the morpheme boundary
<#>), with each character having its own randomly-
initialised embedding. Our model would retrieve
the embeddings for each character and then sequen-
tially pass them into a bidirectional LSTM network.
To get the encoding of our input we took the fi-
nal hidden states from each LSTM direction and
concatenated them into a final context vector.

4.2.2 Tag prediction - ByT5 encoder
To improve on our BiLSTM model, we used the
encoder from Google’s pre-trained ByT5 model
to generate our context vectors. This encoding
system is much more powerful than our BiLSTM
model, in part due to its higher dimensional layers,
but also its pre-trained embeddings and attention

3Other implementations of the Adam optimizer may use α
to represent the learning rate

224

mechanisms. When fine-tuning our models we ap-
plied multilingual training jointly on all shared task
languages before fine-tuning on each individual
language. This was done in order to enable some
transfer learning, which may be useful for the most
low-resource languages. To further this, multilin-
gual training sets could be supplemented with data
from high-resource languages to improve results in
the multilingual training phase (though that may be
outside the spirit of the shared task).

4.2.3 Tag prediction - Feed-forward decoder
After generating context vectors with either the
BiLSTM or ByT5 encoder, we then passed the out-
put through a feed-forward network with a single
hidden layer to generate a tag prediction. The in-
put size of the network was defined by the size of
the encoder’s output context vector, and the output
size was defined by the vocabulary size of possible
output tags observed during training time. The hid-
den layer size was tuned as a hyperparameter, but
always remained above the output dimension.

4.2.4 Stem prediction - Most common vocab
To predict stems we used a vocabulary dictionary
to map word forms seen during training with their
equivalent glosses. We used a counter to keep track
of the most common glosses for each morpheme
and used this to replace any forms predicted to
be <STEM> with their most common gloss. Any
forms not seen during training time were replaced
with <UNK> tags, though they could also be left as
the original word form, which might improve per-
formance on noun stems (such as names or places)
where the translation and gloss might match.

5 Experiments

5.1 Closed Track - Character-level
For each language-specific model, we built sepa-
rate source and target vocabularies consisting of
the set of unique characters in the transcription
(source) and gloss (target) lines of the training data.
An early error analysis showed that OOV charac-
ters were usually non-alphabetic, so we manually
added these characters to both source and target
vocabularies.

Each line was split into characters and post-
processed. Morpheme separators4 were re-attached
to preceding and following characters. In addition,

4Corresponding to the Leipzig Glossing Rules 2 and 4

whitespace was replaced with #. This step pre-
vented the generation of ill-formed glosses with
dangling separators such as ’one escape-’.5

For example, the gloss ’one escape-IMPF .’ is
tokenized and post-processed as follows, with seg-
ments delimited by a pipe character:

1. Original gloss:

one escape-IMPF .

2. Tokenized:

<start>|o|n|e|#|e|s|c|a|p|e|-|I|M|P|F|#|.|<end>

3. Post-processed:

<start>|o|n|e|#|e|s|c|a|p|e-|-I|M|P|F|#|.|<end>

5.2 Closed Track - BPE
We trained separate input and output BPE6 tok-
enizers for each dataset, defining the maximum
threshold for convergence operations given a set of
characters C as n ∗ |C| Although we set n = 16
to avoid re-training the tokenizers at different vo-
cabulary sizes, fine-tuning the number of merge
operations is likely to yield improved results.

5.3 Open Track - BiLSTM
In our first experiments, we fed the open track data
(as modelled in 3.2) into our BiLSTM encoder then
feed-forward decoder and most-common-vocab
stem prediction model. This performed very well
and could be trained within minutes when run lo-
cally on a CPU. Our model used early stopping and
would keep training only until a drop in the model’s
accuracy on the development was observed.

5.4 Open Track - ByT5
In our later experiments, we used our ByT5 en-
coder along with the feed-forward decoder and
most-common-vocab stem prediction model. This
model took significantly longer to train due to its
much more complex architecture. After one week
of training, we were unable to get it to perform
better than the BiLSTM encoder model, however,
we expect that its architecture should theoretically
allow for a higher performance ceiling given suffi-
cient training.

5Whitespace was re-inserted and duplicate separators were
removed prior to evaluation

6The Hugging Face implementation based on Sennrich
et al. (2016b)

225

https://www.eva.mpg.de/lingua/pdf/Glossing-Rules.pdf

To assist multilingual learning, inputs to this
model were prepended with a 3-character language
tag, which bypassed the byte-level encoding and
was treated as a special character with its own em-
bedding. We believe this should help the model
distinguish between orthographically similar lan-
guages, though further testing would be useful to
determine how strong this approach is.

When training this model we used checkpointing
to save the weights after each epoch. We then used
an evaluation pipeline to assess the results at each
checkpoint in order to determine the best model.
We began fine-tuning with individual languages
after 20 multilingual epochs.

6 Results & Discussion

6.1 Closed track
First, it must be noted that our approach does not
appear to extend to the truly low-resource setting
given its poor performance on Gitksan. More-
over, improvements in word accuracy are inconsis-
tent, which is unsurprising given the limitations of
character-level modelling discussed above. For the
remaining languages, our character-level sequence-
to-sequence model consistently and noticeably out-
performs the baseline model for average morpheme
accuracy. The only exception is Lezgi, where there
is no significant difference between the morpheme
accuracies. This may be due to the size of the Lez-
gian dataset as well as the structure of the language,
but we leave this question for further investigation.

6.1.1 Character vs BPE
Both the character-level and baseline models out-
performed the BPE model for all datasets apart
from Arapaho; this makes sense since the general-
izability of the byte-pair encoding algorithm (w.r.t.
identifying rare sequences in the vocabulary) de-
pends on the size and diversity of the training data.
As we used a generic approach to training each
BPE tokenizer, our results do not necessarily align
with a more robust implementation of the byte-pair
encoding algorithm. Although we suggest that BPE
modelling is likely to be a competitive approach
when more training data is available, the hands-off
appeal of the character-level approach should not
be ignored, especially in the context of the low-
resource glossing task. If the dataset is sufficiently
large, however, BPE could prove more efficient due
to its compactness.

6.1.2 Qualitative Analysis
We analyze examples of predicted glosses for Ara-
paho (3). In the positive examples (3.1, 3.5), the
predicted and target stems are consistent in mean-
ing, while the negative examples (3.3, 3.6) are less
coherent. We offer the following observations, with
the caveat that we have yet to conduct a systematic
analysis:

• There might be a relationship between stem
rarity and prediction coherence; that is, the
less frequent a stem, the less semantic similar-
ity between predicted and target tags.

• The character-based model might do a better
job at predicting semantically related tags for
morphologically complex stems.

• Misalignment errors (such as in Table 3.2),
where the model fails to generate a gloss tag
for each word in the transcription line, occur
frequently.

6.1.3 Generalization to unseen stems
The character-level model is able to successfully
predict unseen English stems (Table 3.7). When the
model encounters an unknown lexeme, it seems to
have learned to replicate the stem (or stem-internal
constituents) to preserve meaningful elements.

Notably, Arapaho is the only language where
the model learns to produce unseen English words.
(Liu et al., 2018) report similar results in their
character-level seq2seq translator for OOV han-
dling in statistical machine translation: the model
learns to produce novel English target words by
combining previously seen subwords or translit-
erating complete sequences. As their system (1)
is specifically designed for OOV prediction for
moderate-resource languages and (2) leverages ex-
ternal data (bilingual dictionaries, translation tables,
there could be a data threshold for stem generation.
With a high tag accuracy, this could prove useful
for researchers who could prioritize glossing the
stems and leverage the model to generate the tags.
Orthographic similarity may also play a role: in
our data, Arapaho is transcribed in the Latin al-
phabet while Tsez, the second-largest dataset, is
transcribed in the Cyrillic alphabet.

6.2 Open track
We found that the BiLSTM model performed
strongest compared to preliminary training on the

226

Token Original Sentence Reference Prediction

(1) heneenei3oobei’i3i’ Nuhu’ tih’eeneti3i’ he-
neenei3oobei’i3i’

IC.tell.the.truth-
3PL

IC.true-3PL

(2) Beetbeteeenehk Beetbeteeenehk wo’uuceh
nee’eesoo’

want.to-dance-
2S.SUBJ

want.to-dance-
SUBJ

(3) te3ou B Tous te3ou sandhill.crane tell.story

(4) ne’koxo’useet Ne’P ne’koxo’useet then-walk.slowly-
3.S

then-slowly-
slowly-3.S

(5) he’ihce’oo’eixootiin Noh he’ihce’oo’eixootiin NARRPAST-again-
people.assemble

NARRPAST-back-
people.are.gathering-
0S

(6) hoowuhneniinoo’ ’oh hinee 3eboosei3iihi’
hoowuhneniinoo’
hoowu...

IC.lots.of.things-
0S

NEG-too.man-0S

(7) sycamore nuhu’ sycamore huuno-
hootin

sycamore sycamore

Table 3: Error analysis for Arapaho (character level modelling)

Char Byte Baseline

Language BLEU Word Morph BLEU Word Morph BLEU Word Morph

Arapaho 0.61 0.72 0.74 0.65 0.74 0.76 0.418 0.701 0.519
Gitksan 0.00 0.04 0.06 0.00 0.02 0.09 0.045 0.291 0.163
Lezgi 0.44 0.52 0.48 0.30 0.28 0.32 0.520 0.557 0.492

Nyangbo 0.72 0.79 0.82 0.68 0.73 0.76 0.742 0.824 0.782
Tsez 0.72 0.77 0.76 0.63 0.65 0.65 0.578 0.721 0.529

Uspanteko 0.63 0.71 0.70 0.54 0.63 0.63 0.538 0.703 0.655
Natugu 0.52 0.58 0.51 0.42 0.35 0.38 - - -

Table 4: Closed track evaluation results

ByT5 architecture. We believe that additional fine-
tuning for individual languages on the ByT5 model
would improve performance enough to beat the
BiLSTM model results, however, the model’s com-
putational complexity meant we didn’t have the
time required to train the model to this level. Our
BiLSTM model was able to outperform the base-
line when used on Gitksan, Lezgi, Tsez, and Us-
panteko. It was not able to beat the baseline on
Arapaho and Nyangbo.7

The biggest strength of the BiLSTM model over
the ByT5 model was its significantly lower com-
putational complexity. We found that the BiLSTM
model could be trained in minutes with a consumer-

7For details on model performance, see Table 5

grade CPU, and the transformer-based ByT5 model
took up to several hours to train a single epoch
when using a research-grade GPU, which is what
likely led to its worse performance in our final re-
sults. The BiLSTM architecture is impressively
competent for the interlinear glossing task, and its
short training time with strong performance shows
that this model is a strong contender, even against
the vastly more complex transformer model.

6.3 Future Work
Further research could investigate the relation-
ship between morphological attributes (such as
morpheme-to-word ratio) and the extent to which
neural models can leverage compositional cues in
orthographic sequences.

227

BiLSTM ByT5 Baseline

Language BLEU Word Morph BLEU Word Morph BLEU Word Morph

Arapaho 0.76 0.84 0.90 0.64 0.76 0.84 0.792 0.854 0.911
Gitksan 0.13 0.38 0.52 0.07 0.16 0.37 0.142 0.250 0.300
Lezgi 0.71 0.83 0.87 0.69 0.82 0.85 0.420 0.326 0.501

Nyangbo 0.60 0.72 0.81 0.23 0.50 0.58 0.784 0.847 0.892
Tsez 0.75 0.79 0.88 0.45 0.56 0.72 0.686 0.742 0.850

Uspanteko 0.64 0.77 0.82 0.39 0.66 0.69 0.649 0.759 0.813
Natugu 0.84 0.89 0.93 0.43 0.76 0.84 - - -

Table 5: Open track evaluation results

Additionally, we would like to implement some
utilisation of the translation track. For exam-
ple, this could be used to help resolve unknown
("<UNK>") tokens, by checking which lemmas
have already been predicted and selecting the most
likely of the rest. In our current approach, this
potentially valuable data is left unused.

Another approach we would like to try for resolv-
ing unknown tokens is choosing a ’nearest neigh-
bor’ vocabulary item to replace any unknown stems.
This would help mitigate the impact of misspellings
and input noise, which our current stem prediction
model (used in the open track models) is not robust
to.

When predicting output tags in our open track
models, which pair an encoder with a feed-forward
decoder, an improved approach could involve feed-
ing previous tag predictions into the model. This
would allow us to model some (unidirectional) re-
lationships between words without increasing the
context size. This could easily be done by replacing
the feed-forward decoder with a recursive decoder,
such as a unidirectional LSTM or GRU.

For our BiLSTM model, implementing a pa-
tience mechanism into the early stopping might
also allow for some improvements in performance
and prevent underfitting.

We would also like to train our ByT5 model on
a larger transformer architecture. We are currently
using Google’s ByT5-small model, as implemented
on Hugging Face, however, there are several larger
models that could easily be swapped in. In addition
to this, models could be trained on larger contexts
in order to learn inter-token patterns. For example,
we could use a context of 3 words (the target word
plus one word on either side) instead of only giving
the model one word at a time.

For low-resource languages, we would also like

to try Good-enough Compositional Augmentation
(Andreas, 2020), as well as other data augmentation
strategies. We believe this would be beneficial for
models with very few training examples, such as
Gitksan.

On closed-track tasks, we suggest that using a
beam search decoding algorithm may yield better
results than the current greedy decoding implemen-
tation, which has limited performance, particularly
with longer sequences.

7 Conclusion

In this paper, we explored the potential of us-
ing subword representations in grammatical gloss-
generating models to ’learn’ the morphological pat-
terns of a low-resource language. At a byte-pair
level, we found this strategy to be competitive but
dependent on the amount of training data available.
As such, the byte-pair tokenized model performed
the best for Arapaho (the dataset with the most
tokens). We recognized that there might be more
robust ways to implement this tokenization for lan-
guages with fewer tokens, and attributed some of
the underperformance of the model in other lan-
guages to our generic tokenization strategy. We
found that at a character level, even with no pre-
augmentation and fewer tokens, the model deliv-
ered impressive results. We propose that the char-
acter level modelling approach excels in terms of
both accessibility and performance in this setting.

Acknowledgements

We would like to thank Hariharavarshan Nandaku-
mar and Jayathilaga Ramajayam for their help in
early experiments using CRF modelling.

We would like to thank Farhan Samir for his help
in preparing the ByT5 model.

228

This research was supported in part through com-
putational resources and services provided by Ad-
vanced Research Computing at the University of
British Columbia.

References
Jacob Andreas. 2020. Good-enough compositional data

augmentation. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7556–7566, Online. Association for
Computational Linguistics.

Michael Ginn. 2023. Sigmorphon 2023 shared task of
interlinear glossing: Baseline model.

Michael Ginn, Sarah Moeller, Alexis Palmer, Anna
Stacey, Garrett Nicolai, Mans Hulden, and Miikka
Silfverberg. 2023. Findings of the SIGMORPHON
2023 shared task on interlinear glossing. In Pro-
ceedings of the 20th SIGMORPHON Workshop on
Computational Research in Phonetics, Phonology,
and Morphology. Association for Computational Lin-
guistics.

Wang Ling, Chris Dyer, Alan W Black, Isabel Trancoso,
Ramón Fermandez, Silvio Amir, Luís Marujo, and
Tiago Luís. 2015. Finding function in form: Compo-
sitional character models for open vocabulary word
representation. In Proceedings of the 2015 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 1520–1530, Lisbon, Portugal. As-
sociation for Computational Linguistics.

Nelson F. Liu, Jonathan May, Michael Pust, and Kevin
Knight. 2018. Augmenting statistical machine trans-
lation with subword translation of out-of-vocabulary
words.

Johannes V. Lochter, Renato M. Silva, and Tiago A.
Almeida. 2020. Deep learning models for represent-
ing out-of-vocabulary words.

Angelina McMillan-Major. 2020. Automating gloss
generation in interlinear glossed text. Proceedings of
the Society for Computation in Linguistics, 3.

Sarah Moeller and Mans Hulden. 2018. Automatic
glossing in a low-resource setting for language doc-
umentation. In Proceedings of the Workshop on
Computational Modeling of Polysynthetic Languages,
pages 84–93, Santa Fe, New Mexico, USA. Associa-
tion for Computational Linguistics.

Thi-Vinh Ngo, Thanh-Le Ha, Phuong-Thai Nguyen,
and Le-Minh Nguyen. 2019. Overcoming the rare
word problem for low-resource language pairs in neu-
ral machine translation. In Proceedings of the 6th
Workshop on Asian Translation. Association for Com-
putational Linguistics.

Barbara Plank, Anders Søgaard, and Yoav Goldberg.
2016. Multilingual part-of-speech tagging with bidi-
rectional long short-term memory models and auxil-
iary loss. arXiv preprint arXiv:1604.05529.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016a. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715–1725,
Berlin, Germany. Association for Computational Lin-
guistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016b. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need.

Xingyuan Zhao, Satoru Ozaki, Antonios Anastasopou-
los, Graham Neubig, and Lori Levin. 2020. Auto-
matic interlinear glossing for under-resourced lan-
guages leveraging translations. In Proceedings of
the 28th International Conference on Computational
Linguistics, pages 5397–5408, Barcelona, Spain (On-
line). International Committee on Computational Lin-
guistics.

A Hyperparameters

For the model using ByT5 encoding, the output
decoder (4.2.3) used one hidden layer of size 1024,
which was large enough to encompass the approxi-
mately 700 size tag vocabulary.

For the model using BiLSTM encoding, the hid-
den layer size changed based on the size of the
language-specific tag vocabulary (as this model did
not use any multilingual training).

No other hyperparameters were optimised for
the open track.

All of our model training and prediction code
for the shared task can be accessed on GitHub at
https://github.com/michelleyun98/
sigmorphon2023-IGT.

229

https://doi.org/10.18653/v1/2020.acl-main.676
https://doi.org/10.18653/v1/2020.acl-main.676
http://arxiv.org/abs/2303.14234
http://arxiv.org/abs/2303.14234
https://doi.org/10.18653/v1/D15-1176
https://doi.org/10.18653/v1/D15-1176
https://doi.org/10.18653/v1/D15-1176
http://arxiv.org/abs/1808.05700
http://arxiv.org/abs/1808.05700
http://arxiv.org/abs/1808.05700
http://arxiv.org/abs/2007.07318
http://arxiv.org/abs/2007.07318
https://aclanthology.org/W18-4809
https://aclanthology.org/W18-4809
https://aclanthology.org/W18-4809
https://doi.org/10.18653/v1/d19-5228
https://doi.org/10.18653/v1/d19-5228
https://doi.org/10.18653/v1/d19-5228
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://doi.org/10.18653/v1/2020.coling-main.471
https://doi.org/10.18653/v1/2020.coling-main.471
https://doi.org/10.18653/v1/2020.coling-main.471
https://github.com/michelleyun98/sigmorphon2023-IGT
https://github.com/michelleyun98/sigmorphon2023-IGT

