@inproceedings{hammond-2023-low,
title = "Low-resource grapheme-to-phoneme mapping with phonetically-conditioned transfer",
author = "Hammond, Michael",
editor = {Nicolai, Garrett and
Chodroff, Eleanor and
Mailhot, Frederic and
{\c{C}}{\"o}ltekin, {\c{C}}a{\u{g}}r{\i}},
booktitle = "Proceedings of the 20th SIGMORPHON workshop on Computational Research in Phonetics, Phonology, and Morphology",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.sigmorphon-1.29",
doi = "10.18653/v1/2023.sigmorphon-1.29",
pages = "245--248",
abstract = "In this paper we explore a very simple nonneural approach to mapping orthography to phonetic transcription in a low-resource context with transfer data from a related language. We start from a baseline system and focus our efforts on data augmentation. We make three principal moves. First, we start with an HMMbased system (Novak et al., 2012). Second, we augment our basic system by recombining legal substrings in restricted fashion (Ryan and Hulden, 2020). Finally, we limit our transfer data by only using training pairs where the phonetic form shares all bigrams with the target language.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hammond-2023-low">
<titleInfo>
<title>Low-resource grapheme-to-phoneme mapping with phonetically-conditioned transfer</title>
</titleInfo>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Hammond</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 20th SIGMORPHON workshop on Computational Research in Phonetics, Phonology, and Morphology</title>
</titleInfo>
<name type="personal">
<namePart type="given">Garrett</namePart>
<namePart type="family">Nicolai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eleanor</namePart>
<namePart type="family">Chodroff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frederic</namePart>
<namePart type="family">Mailhot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Çağrı</namePart>
<namePart type="family">Çöltekin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper we explore a very simple nonneural approach to mapping orthography to phonetic transcription in a low-resource context with transfer data from a related language. We start from a baseline system and focus our efforts on data augmentation. We make three principal moves. First, we start with an HMMbased system (Novak et al., 2012). Second, we augment our basic system by recombining legal substrings in restricted fashion (Ryan and Hulden, 2020). Finally, we limit our transfer data by only using training pairs where the phonetic form shares all bigrams with the target language.</abstract>
<identifier type="citekey">hammond-2023-low</identifier>
<identifier type="doi">10.18653/v1/2023.sigmorphon-1.29</identifier>
<location>
<url>https://aclanthology.org/2023.sigmorphon-1.29</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>245</start>
<end>248</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Low-resource grapheme-to-phoneme mapping with phonetically-conditioned transfer
%A Hammond, Michael
%Y Nicolai, Garrett
%Y Chodroff, Eleanor
%Y Mailhot, Frederic
%Y Çöltekin, Çağrı
%S Proceedings of the 20th SIGMORPHON workshop on Computational Research in Phonetics, Phonology, and Morphology
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F hammond-2023-low
%X In this paper we explore a very simple nonneural approach to mapping orthography to phonetic transcription in a low-resource context with transfer data from a related language. We start from a baseline system and focus our efforts on data augmentation. We make three principal moves. First, we start with an HMMbased system (Novak et al., 2012). Second, we augment our basic system by recombining legal substrings in restricted fashion (Ryan and Hulden, 2020). Finally, we limit our transfer data by only using training pairs where the phonetic form shares all bigrams with the target language.
%R 10.18653/v1/2023.sigmorphon-1.29
%U https://aclanthology.org/2023.sigmorphon-1.29
%U https://doi.org/10.18653/v1/2023.sigmorphon-1.29
%P 245-248
Markdown (Informal)
[Low-resource grapheme-to-phoneme mapping with phonetically-conditioned transfer](https://aclanthology.org/2023.sigmorphon-1.29) (Hammond, SIGMORPHON 2023)
ACL