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Abstract

In this paper we explore a very simple non-
neural approach to mapping orthography to
phonetic transcription in a low-resource con-
text with transfer data from a related language.
We start from a baseline system and focus our
efforts on data augmentation. We make three
principal moves. First, we start with an HMM-
based system (Novak et al., 2012). Second, we
augment our basic system by recombining le-
gal substrings in restricted fashion (Ryan and
Hulden, 2020). Finally, we limit our transfer
data by only using training pairs where the pho-
netic form shares all bigrams with the target
language.

1 Introduction

This paper describes the submission by our team to
the 2022 version of the SIGMORPHON grapheme-
to-phoneme conversion challenge (McCarthy et al.,
2022). Here we describe our efforts to improve
grapheme-to-phoneme mapping for low-resource
languages in a non-neural context using only data
augmentation techniques.

The problem in the low-resource condition was
to map from graphemes to phonetic segments with
extremely limited data. Specifically, there were 10
languages with 100 training pairs and 100 devel-
opment pairs. Each pair was a word in its ortho-
graphic representation and a phonetic transcription
of that word. In addition, for each language, there
were up to 1000 additional training pairs in a “re-
lated” language. Systems were then tested on 100
additional pairs for each language. The 10 lan-
guages are given in Table 1 along with their codes
and the number of additional training pairs.

In addition, there was a higher-resource condi-
tion where each language had 1000 pairs without
transfer data; our focus was the low-resource con-
dition.

2 Initial neural approaches

We started with a fairly generic transformer system
inspired by one of the 2020 baseline systems (Gor-
man et al., 2020). The system we used is adapted
from the OpenNMT base (Klein et al., 2017) and
is similar to the one used by Hammond (2021) in
the 2021 challenge. There is a 512-element embed-
ding layer in both encoder and decoder. There are
six layers in both encoder and decoder and each
layer also has 512 nodes. The systems are con-
nected by a 8-head attention mechanism (Luong
et al., 2015). Training proceeds in 1,000 steps and
the decay method is Noam. Optimization is Adam,
the batch size is 8, and the dropout rate is 0.1.1

Using this system and running 1000 steps, per-
formance on validation data is terrible as seen in
Table 2. In column 1 we give the language codes;
column 2 has performance for the 100-pair condi-
tion; column 3 gives the results for the 1000-pair
condition; and column 4 gives the results with trans-
fer data included.

To get a sense of how much data might be re-
quired to get decent performance, we ran a similar
transformer configuration over subsets of the CMU
pronouncing dictionary (Weide, 1998) for 5 epochs
and got the performance in Table 3. The point of
this chart is that 100 data pairs is orders of magni-
tude less than what is needed.

3 An HMM-based approach

Based on how poorly our neural approaches per-
formed with such limited data, we went back to
classical HMM-based approaches, specifically se-
lecting the Phonetisaurus system (Novak et al.,
2012).

This system is based on OpenFST and uses
weighted finite-state transducers and expectation-

1Full configuration files for this and the experiments be-
low are available at https://github.com/hammondm/
g2p2022.
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Target language Code Transfer language Code Number
Bengali ben Assamese asm 1000
Burmese bur Shan shn 841
German ger Dutch dut 1000
Irish gle Welsh wel 1000
Italian ita Romanian rum 1000
Persian per Pashto pus 721
Swedish swe Norwegian Nynorsk nno 1000
Tagalog tgl Cebuano ceb 126
Thai tha Eastern Lawa lwl 253
Ukrainian ukr Belarusian bel 1000

Table 1: Languages, codes, and the number of additional training pairs in the transfer language

Lang 100 1000 all
ben 100.00 93.15 98.63
ger 99.00 93.00 98.00
ita 99.00 92.00 97.00
per 98.21 94.64 100.00
swe 100.00 93.00 92.00
tgl 99.00 92.00 98.00
tha 98.00 78.00 99.00
ukr 100.00 91.00 100.00
gle 100.00 94.00 100.00
bur 100.00 81.00 99.00
mean 99.32 90.17 98.16

Table 2: Validation WER for all languages with encoder-
decoder after 1000 steps

Data WER
1000 100.00
5000 100.00
10000 83.00
20000 69.00
30000 65.00
133802 53.55

Table 3: Validation WER for CMU with a transformer
for 5 epochs with different amounts of data

Lang 100/2 100/3 1000/2 1000/3
ben 91.78 91.78 65.75 68.49
ger 88.00 86.00 57.00 61.00
ita 54.00 54.00 33.00 25.00
per 87.50 89.29 76.79 67.86
swe 83.00 82.00 65.00 55.00
tgl 34.00 34.00 19.00 18.00
tha 97.00 95.00 74.00 72.00
ukr 86.00 89.00 57.00 50.00
gle 93.00 95.00 57.00 51.00
bur 98.00 98.00 49.00 48.00
mean 81.22 81.4 55.35 51.63

Table 4: Validation WER for Phonetisaurus without
augmentation

maximization to compute the best many-to-many
alignment of letters and phonetic symbols. The
system offers a number of different options for
alignment and decoding, but we ran it in its most
“generic” form.

In Table 4 we give WER for 100 pairs and for
1000 pairs. We can use bigrams or trigrams for the
alignment and both are given. The point is that,
out of the box, the HMM system performs much
better than the neural systems. Compare Table 4
with Table 2.

4 Augmentation steps

We tried several kinds of augmentations. The first
was the substring approach developed by Ryan and
Hulden (2020). In this approach plausible align-
ments from the beginnings and ends of words are
recombined. In the original approach, techniques
were used to increase the likelihood that the align-
ment point occurred at a plausible C-V or V-C
juncture. We found that this did not work for all
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languages in our test set, presumably due to how
limited the data were. We therefore disabled this
feature.

The other augmentation we used applied to the
transfer data. If one looks at the training pairs, it’s
apparent that in a number of cases, the languages
are not terribly similar.

For example, Irish and Welsh are indeed related
and the diligent linguist can easily find cognates.
For example, the Welsh word for ‘book’ is llyfr
[ì1v1r] and the Irish word is leabhar [lj@urG]. The
Welsh word for ‘man’ is dyn [d1:n]; the Irish word
for ‘person’ is duine [dGInj@]. There are also similar
grammatical features. For example, both languages
use initial consonant mutation as a grammatical
mechanism, both have VSO word order, and both
have inflected prepositions.

On the other hand, the orthographic conventions
of the two languages are extremely divergent, as
are the phonetic inventories. For example, Irish has
a contrast between palatalized and plain consonants
that is completely absent in Welsh. This contrast is
reflected in the orthography where adjacent front
vowel letters i and e indicate that a consonant is
palatalized. This orthographic practice applies on
both sides of a consonant. Thus, if a consonant
is intervocalic and palatalized, it will have front
vowels on both sides; if it’s not palatalized, it will
have back vowels. On the other hand, unlike Irish,
Welsh strikingly can use w and y as vowels giving
rise to words that seem quite unpronouncable, e.g.
tywydd [th@w1D] ‘weather’ or gŵr [gu:r] ‘husband’.

With this in mind, we tried approaches that
would limit the transfer data to just those pairs
that were most like the target language.

We tried three approaches in this vein. First,
we only took pairs where the phonetic segments
of the transfer language were in the inventory of
the target language. Second, we further restricted
the pairs to only those where the phonetic bigrams
of the transfer language all occurred in the target
language. Finally, we only included pairs where
all orthographic characters in the transfer language
occurred in the target language.

Different combinations of these options appear
in Table 5. The second column gives validation
WER for all 100 training pairs plus all transfer
data (all). In the third column we have results
when only transfer pairs with shared phonetic el-
ements are included (phon). In column 4, we
only include transfer pairs where the phonetic and

orthographic elements are shared with the target
language (phonorth). In column 5, we further re-
strict that so all phonetic bigrams must be shared
(phorth+bg). In column 6, we leave the ortho-
graphic relationship unrestricted, but require shared
phonetic bigrams (phbg). Finally, in column 7, we
have shared bigrams and we add 1900 forms cre-
ated with shared legal prefixes and suffixes from
the target language (phbg+1900).

Looking at Table 5, we see that adding all trans-
fer data diminishes performance. If we restrict
the phonetic relationship between the transfer data
and the target language, we get some improvement.
We also get improvement if we restrict the rela-
tionship further with either phonetic bigrams or
orthographic overlap, but curiously those two crite-
ria do not help simultaneously. Finally, we see that
we get still further improvement with the substring
recombination technique.

Performance on the test data of course varies
slightly from what we saw with the validation data
so we give those results in Table 6 for the full
1000 pairs, the small 100-pair set, and our final sys-
tem with phonetically-restricted transfer data (us-
ing phonetic bigrams) plus substring recombined
forms.

5 Conclusion

In conclusion, we’ve seen several effects. First, a
simple encoder-decoder or transformer does not
perform well with so few data. Second, an HMM-
based approach does better, and does better still
when we restrict the kind of transfer data that is
used. Specifically, transfer data should be restricted
based on how similar it is to the target language.
Similarity in terms of phonetics is clearly benefi-
cial, but similarity in terms of orthography seems to
help as well. Finally, we saw that the substring re-
combination technique of Ryan and Hulden (2020)
can be added on top of these moves for an addi-
tional benefit.
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