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Abstract

Due to the lack of data resources, rule-based
or transfer learning is mainly used in the mor-
phological tagging of low-resource languages.
However, these methods require expert knowl-
edge, ignore contextual features, and have error
propagation. Therefore, we propose a joint
morphological tagger for low-resource agglu-
tinative languages to alleviate the above chal-
lenges. First, we represent the contextual in-
put with multi-dimensional features of agglu-
tinative words. Second, joint training reduces
the direct impact of part-of-speech errors on
morphological features and increases the in-
direct influence between the two types of la-
bels through a fusion mechanism. Finally, our
model separately predicts part-of-speech and
morphological features. Part-of-speech tagging
is regarded as sequence tagging. When pre-
dicting morphological features, two-label ad-
jacency graphs are dynamically reconstructed
by integrating multilingual global features and
monolingual local features. Then, a graph con-
volution network is used to learn the higher-
order intersection of labels. A series of exper-
iments show that the proposed model in this
paper is superior to other comparative models.

1 Introduction

Morphological tagging describes the lexical infor-
mation of a word in a sentence from the part-of-
speech (PoS) and morphological features (MFs;
case, person, mood, tense, etc.) (Özateş and
Çetinoğlu, 2021) and is an essential task in ag-
glutinative language information processing. Mor-
phological tagging can analyze semantics (Kli-
maszewski and Wróblewska, 2021), so some mor-
phological knowledge will be added to many down-
stream tasks, such as dependency parsing (Kli-
maszewski and Wróblewska, 2021), named entity
recognition (Kim and Kim, 2020), language mod-
els (Park et al., 2021), and machine translation (Jon
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et al., 2021), to assist the model in learning seman-
tics and improve interpretability. An example is
given in Table 1. The first line shows a sentence,
the second line shows its lemma, and the third line
shows the morphosyntactic description (MSD) la-
bels.

The cats are sleeping .
the cat be sleep .

DET N;PL V;PRS;3;PL V;V.PTCP;PRS PUNT

Table 1: An example of morphological analysis in En-
glish

In recent years, there have been many achieve-
ments in morphological tagging, among which SIG-
MORPHON 2019 shared task 2 is a significant
milestone (McCarthy et al., 2019), and many cross-
lingual morphological tagging models have been
proposed. High-resource languages usually use
deep learning models and regard morphological tag-
ging as a sequence labeling (Özateş and Çetinoğlu,
2021) or sequence generation task (Oh et al., 2019).
The study of English and Chinese morphological
tasks began relatively early. Supported by large-
scale labeled datasets and large language models,
the morphological tagging technology of these lan-
guages has reached a mature level. However, the
morphological tagging of low-resource languages
remains to be further researched. Finite-state trans-
ducer (FST) and transfer learning are the primary
strategies for constructing morphological tagger in
low-resource languages (Wiemerslage et al., 2022;
Ibrahim et al., 2018; Rueter et al., 2021; Cotterell
and Heigold, 2017). The FST model represents
orthographic rules as state transition conditions
and can be understood as the transfer of surface
relations. Graph convolution networks (GCN) can
also explore label relationships (Ma et al., 2021;
Zhou et al., 2023). Morphological tagging based
on FST focuses on lexical rules of words, which
require many linguistic rules. In addition, there are
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problems such as poor semantic ability, ambiguity,
rule conflicts, and the inability to express deep lex-
ical rules. In transfer learning, high-resource lan-
guage knowledge is transferred to a low-resource
language, and a tagging model is built by deep
learning models. If a sequence labeling or gener-
ation model based on deep learning is used with
low resources languages, error prediction at the
previous time cause error propagation.

In agglutinative languages, a word is formed
with a lemma and several suffixes. In the Uyghur
word, "almidi" (translation: he/she/they did not
pick up), "al" is lemma, "mi(a)", "d" and "i" are suf-
fixes, its MSD label: ‘V;SG/PL;3;NEG;PST’. The
lemma represents the word’s meaning, and the suf-
fix represents the grammatical category (Pan et al.,
2020). Each suffix represents grammatical informa-
tion and corresponds to a morphosyntactic descrip-
tion label (Seker and Tsarfaty, 2020). Morphologi-
cal taggers in low-resource agglutinative language
mainly focus on rule-based and statistical models
(Ibrahim et al., 2018; WUSIMAN et al., 2019; Tole-
gen et al.), while relatively few studies are based
on transfer learning or deep learning (Toleu et al.,
2017; Liu et al., 2021; Toleu et al., 2022). Con-
ventional methods rely on human-designed rules,
which are limited to surface rules in the dataset and
cannot capture hidden rules and learn or represent
deep grammar rules.

In this paper, we investigate (1) which features
in agglutinative language are related to MSD la-
bels, (2) how to reduce the direct impact of error
propagation, and (3) whether it is possible to ac-
curately predict more complete MSD labels using
label relationships and word representation in low-
resource languages. Therefore, to overcome these
issues, we first represent the input word by con-
textual and word-formation features. Second, to
reduce error propagation caused by PoS, morpho-
logical tagging is divided into PoS tagging and MF
tagging. Through literature research and experi-
ments, it has been found that PoS can alleviate
ambiguity, and PoS affects the prediction of mor-
phological feature labels. Inspired by the work of
(Li et al., 2021), a fusion mechanism is adopted for
the middle layer of the two tasks. Finally, the out-
put of the fusion mechanism is input into the condi-
tional random field (CRF) layer to predict the PoS
of each word. We pretrain labels in the MF tagging
model and calculate relevant label co-occurrence
statistics for the high-resource agglutinative lan-

guage to learn the relationship between labels. The
co-occurrence of irrelevant labels is calculated for
the Uyghur (Ug), Kazakh (Kz), Tatar (Tt), and
Yakut (Yk) datasets. A dynamic adjacency graph
is reconstructed by using the above relationships
and a GCN to learn the label relationship again to
find the hidden relationships between labels. Then,
the MF labels of each word are predicted by us-
ing the word feature and label relationship. We
evaluate our model on four low-resource agglutina-
tive languages, Uyghur, Kazakh, Tatar, and Yakut,
in universal dependencies (UD), and experiments
show that the performance of the model proposed
in this paper is superior to that of other comparable
models. The model’s average accuracy in four lan-
guages reaches 85.29%, and the average F1 score
reaches 92.61%.

Our contributions are highlighted as follows:

• This paper proposes a joint morphological tag-
ging model that divides morphological tag-
ging into PoS and MF tagging. Furthermore,
the middle layer is fused to transform direct
influence into indirect influence.

• To further explore the subtle and hidden rela-
tionships between MF labels of low-resource
agglutinative languages, this paper describes
the universal relationship of agglutinative lan-
guages and the characteristic relationship of a
monolingual language. The final relationship
representation of the monolingual MF labels
is dynamically constructed through a GCN.

• We conduct experiments on the Uy, Kz, Tt,
and Yk datasets, and the experimental results
prove the effectiveness of the model proposed
in this paper. This paper also fills the gap
in the research on fine-grained morphologi-
cal tagging of low-resource agglutinative lan-
guage based on deep learning.

2 Related Work

Morphological processing is the primary task of
natural language processing. Relevant tasks in-
clude but are not limited to the following: mor-
phological tagging (Özateş and Çetinoğlu, 2021),
morphological segmentation (Batsuren et al., 2022),
lemmatization (Zalmout and Habash, 2020), and
morphological analysis (Wiemerslage et al., 2022).
There is also a close connection between these sub-
tasks. For example, morphological analysis can be
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split into lemmatization and morphological tagging.
Similar to other tasks, morphological tagging tasks
can also be summarized as rule learning (Forbes
et al., 2021; Kuznetsova and Tyers, 2021), statisti-
cal learning (Çöltekin and Barnes, 2019; Mueller
et al., 2013), and deep learning(Seker and Tsarfaty,
2020; Li and Girrbach, 2022), according to differ-
ent research methods. Recurrent neural networks
or pretrained language models have been widely
used in morphological tagging for high-resource
languages. Nine cross-lingual models were submit-
ted for SIGMORPHON 2019 shared task 2, signifi-
cantly promoting the development of morphologi-
cal analysis (McCarthy et al., 2019). The winning
model, UDify, was proposed by Kondratyuk (2019)
and combines a multilingual pretrained language
model and several fine-tuning strategies. They
trained multilingually over all treebanks in the first
stage and then monolingually used saved multilin-
gual weights in the second stage. Finally, the model
predicts each grammatical category. Klimaszewski
and Wróblewska (2021) proposed a fully neural nat-
ural tagging model, COMBO, for accurate PoS tag-
ging, morphological analysis, lemmatization, and
(enhanced) dependency parsing. It is a BERT-based
end-to-end multilingual model. Li and Girrbach
(2022) studied word segmentation and morphologi-
cal analysis of Sanskrit and proposed three models:
word segmentation, morphological analysis, and
combined segmentation and analysis models. The
combined segmentation and analysis model is an
end-to-end pipeline model. Nicolai et al. (2020)
proposed a morphological analysis and generation
model for more than one thousand languages. They
leveraged a parallel corpus to project from English
to other low-resource languages and exploited a
morphological annotation tool. Two separate se-
quence transduction models, one neural and one
nonneural network model, were trained, and each
model produced an N-best list. The tagging model
achieved better performance in high resources. Cot-
terell and Heigold (2017) trained character-level
recurrent neural taggers through language transfer
to predict the morphological tagger of high and
low resource languages. Learning joint character
representations among multiple related languages
successfully enables knowledge transfer from the
high-resource languages to the low-resource, im-
proving accuracy by up to 30%.

It is difficult to achieve high accuracy using
a deep learning or cross-lingual transfer learning

model for low-resource languages. Because neither
FST nor CRF requires a large dataset, it is com-
mon to achieve morphological tagging by using
these two models for low-resource languages. In
the FST method (Tolegen et al.; Kuznetsova and
Tyers, 2021), researchers construct language re-
sources, such as morphological and orthographic
rules, and then design a morphological analyzer.
WUSIMAN et al. (2019) proposed a character-level
morphological collaborative analysis model based
on the CRF. Morphological segmentation, annota-
tions, and phonetic changes were combined into
a composite label for each character. Toleu et al.
(2022) proposed a sequence-to-sequence model of
morphological disambiguation. It was hypothe-
sized that the vector representation of the correct
analysis should be closer to that of the context vec-
tor, and the model predicts the correct MSD label
by calculating the similarity. FST and statistical
methods require many morphological rules or high-
quality annotated data, leading to expensive labor
costs. Furthermore, the model cannot be combined
with contextual features very well, which can eas-
ily cause ambiguity problems. In addition, some
problems, such as lexical rule conflicts and long
running times, may occur.

Therefore, to avoid ambiguity and improve the
model performance of predicting more complete
MSD labels, the proposed model uses a pretrained
model to represent words via contextual features.
By jointly training PoS and MF tags, the direct im-
pact of PoS tags on MF tags is reduced. The related
morphological tag relations of the agglutinative lan-
guage in the treebank are learned and transferred to
low-resource languages, and introducing irrelevant
tag relations between the low-resource languages
and dynamically reconstructing the relations be-
tween tags, thus alleviating the problem of data
resource scarcity.

3 Joint Learning Model for
Morphological Tagging

3.1 Task definition

Morphological tagging is a word-level task, and la-
bels are analyzed in terms of context (Wiemerslage
et al., 2022). The definition of the morphological
tagging task is as follows: a sentence S consists of n
words, S = {w1, w2, . . . , wn}. The morphological
label of the word wi is Ti, Ti = {t1, t2, . . . , tm},
where t1 is the PoS label, and the following la-
bel is the MF label. Therefore, when the input of
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the model is sentence S, the output is each word’s
morphological label, namely, {T1, T2, . . . , Tn}.

3.2 Model framework

The overall structure of the joint morphological
tagging model is shown in Figure 1. We divide the
morphological tagging task into two subtasks, PoS
tagging and MF tagging. The input sentence is S =
{E1,E2, . . . ,En}, where Ei ∈ Rde is the vector
of the word wi, and de is the dimension of the
vector. First, we input the vector into the BiLSTM
layer for each task and encode the sentence through
the BiLSTM layer to obtain the hidden state of the
context vector, H = [h1,h2, ...,hn], where hi ∈
R2d. Second, to achieve mutual influence between
the two labels, we fuse the output of the BiLSTM
layer. Finally, the fused results are input into the
inference layer of the model.

BiLSTM_POS

Fusion Machanism

BiLSTM_MA

…

CRF

MFRN

Sigmoid

…

…

Figure 1: The overall model architecture

The CRF model in the inference layer predicts
the PoS label of the word. The morphological
feature relation network (MFRN) in the inference
layer is dot multiplied by the fused output. We
deploy a sigmoid activation function to acquire the
probability of each tag, and a tag with a probabil-
ity value higher than 0.5 is output. The total loss
function of the model is:

L = (1− λ)LPoS + λLMT (1)

where LPoS is the loss function of the CRF layer,
LMT is the loss function of the MFRN network,
λ is the manually set weight value, and λ ∈
[0, 1]. Through experiments, it is found that when
λ = 0.6, the model performance is the best. The
loss function of the PoS tagger is a negative log-
likelihood function, as shown in Equation 2. Given
N training data, xi represents the ith input se-
quence, yi represents the real tag sequence of the
ith sequence, and

(
yi | xi

)
is the probability of the

real tag sequence. The MF tagging loss function is

the binary cross-entropy loss function, as shown in
Equation 3. Similarly, given N training data, each
input sequence has M words, z represents the real
label, and z̄ represents the label predicted by the
model. zijk indicates whether the k − th label is
in the jth word of the ith input sequence.

LPoS = −
N∑

i=1

log p
(
yi | xi

)
(2)

LMT =−
N∑

i=1

M∑

j=1

|LMT |∑

k=1

zijk log z̄ijk+

(
1− zijk

)
log
(

1− z̄ijk
)

(3)

3.2.1 Input embedding layer
The input embedding Ei consists of three parts:
word embedding Wi, morphological embedding
Mi and local context embedding Ci. The dimen-
sion of each embedding is de. The embeddings
of words and local context are generated by the
pretrained language model. We use the Chinese
minority pretrained language model1 (CINO) for
Uyghur and the pretrained cross-lingual language
model2 (XLM)-RoBERTa for Kazakh, Tatar and
Yakut. Since the pretrained models break the mor-
phological rules by splitting words into different
subwords, we use a BiLSTM layer to generate Ug
and Kz morphological embeddings (Abuduwaili
et al., 2022; Makhambetov et al., 2015) (Tt and
Yk have no available morphological segmentation
tools, and no morphological embeddings are added,
only char-based embeddings are used). The final
input is generated by concatenating the word, lo-
cal context and morphological embeddings. The
structure of the input layer is shown in Figure 2.

PLM

…… …

BiLSTM_Mor

Concat

…

Concat

Figure 2: Input layer structure

1https://huggingface.co/hfl/cino-base-v2
2https://huggingface.co/xlm-roberta-base
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3.2.2 Fusion mechanism
We design a fusion mechanism to effec-
tively exchange information between the
BiLSTMPoS and BiLSTMMF layers. The
output results of the BiLSTMPoS layer,
where HPoS = [hPoS

1 ,hPoS
2 , ...,hPoS

n ],
and BiLSTMMF layer, where
HMF = [hMF

1 ,hMF
2 , ...,hMF

n ], are nonlin-
early transformed to generate Hnew

PoS and Hnew
MF ,

and σ (·) denotes the softmax activation function,
as follows:

Hnew
MF = σ

(
(WMFHMF )×HT

PoS

)
×HPoS

(4)

Hnew
PoS = σ

(
(WPoSHPoS)×HT

MF

)
×HMF

(5)

3.2.3 Morphological feature relation network
The input of this module consists of three parts: the
relevant label adjacency (RLA) matrix, irrelevant
label adjacency (ILA) matrix, and label embedding
(LE). A detailed description of the label relation
is provided in the Appendix A. In this paper, we
construct an MF label dataset using agglutinative
languages for UD datasets. We utilize the label’s
co-occurrence to obtain the label embedding in this
dataset. Given the label set L = {l1, l2, ..., ln},
the label embedding after training is El ∈ R|n|×dl ,
where n is the number of label types and dl is the
embedding dimension. Each label embedding is:

eil = El(li) (6)

The initial label input of the MFRN is the pre-
trained label embedding, which is finetuned during
the training. The structure of the MFRN is shown
in Figure 3.

The two adjacency matrices represent the rela-
tionships between relevant and irrelevant labels.
Due to the lack of morphological tagging datasets
in both languages, we construct a label adjacency
matrix to explore the universal relationship be-
tween labels more thoroughly using the above la-
beled datasets. Each language has characteristic
features that affect the relationships between re-
lated labels. Therefore, four irrelevant label adja-
cency matrices are constructed for the Ug, Kz, Tt
and Yk datasets. The relevant label adjacency ma-
trix is constructed on all languages, which has uni-
versal features, while the irrelevant label adjacency
matrices have unique features for each language.

Hidden_State

… … …

…

…

…
…

… … …

…

…

…

…

…GCN

RELU

GCN

RELU

GCN

RELU

GCN

RELU

Conv_layer Conv_layer

Sigmoid

… … …

…

…

…

…

GCN

RELU

GCN

RELU

FC

LE

RLA ILA

DA

Figure 3: The MFRN structure

Then, we utilize a GCN (Kipf and Welling, 2016)
to learn the different relationships between labels
guided by the label adjacency matrices. Therefore,
labels are treated as nodes and label relationships
as edges, and morphological relationships are pro-
jected into undirected graphs. An undirected graph
g with n nodes is represented by an adjacency ma-
trix, RLA ∈ Rn×n. Similarly, ILA ∈ Rn×n.
Each element Aij in the matrix indicates the rela-
tionship between the ith and the jth nodes. Specif-
ically, ILAij = 1 if the ith node is connected to
the jth node, and ILAij = 0 otherwise. After that,
the two matrices are normalized as follows:

R̃LA = D
− 1

2
RLARLAD

− 1
2

RLA (7)

ĨLA = D
− 1

2
ILAILAD

− 1
2

ILA (8)

where DRLA and DILA are diagonal degree ma-
trices with entries DRLAij =

∑
j RLAij , and

DILAij =
∑

j ILAij , respectively. We add a self-
loop for each node in the GCN. ILA = ILA+ IN
and RLA = RLA+ IN , where IN is the identity
matrix. The multilayer GCN learns the relationship
between labels. The output of layer Hl is:

Hl = σ
(
ĀHl−1Wl−1

)
(9)

where σ (·) denotes the leaky rectified linear unit ac-
tivation function, Ā represents the normalized ad-
jacency matrix (RLA and ILA), Hl−1 represents
the output of the previous layer, and W ∈ Rdl×d′
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represents the parameter to be learned. H0 is the
initial label embedding. The final outputs of the
two multilayer GCNs are concatenated to represent
the new label embedding, as follows:

LE = H2
RL ⊕H2

IL (10)

where H2
RL and H2

IL represent the output of the
relevant label and irrelevant label fed into the mul-
tilayer GCN, respectively, and the new label em-
bedding LE ∈ R|n|×2d′ . It is difficult to find the
hidden relationship between labels only by the sta-
tistical rules of labels in the training data, and there
will also be noise. Therefore, we utilize the GCN
to extract the features from H2

RL and H2
IL, and

multiply the two results to dynamically reconstruct
the adjacency graph DA:

DA = σ
((

WaH
2
RL

)
×
(
−WbH

2
IL

)T) (11)

where Wa and Wb are 1×1 convolution layers, and
σ (·) denotes the sigmoid activation function. We
normalize the reconstruction adjacency matrix and
obtain a new dynamic reconstruction adjacency ma-
trix D̃A. The newly generated label embedding
and adjacency matrix are input into another multi-
layer GCN, and the output result of the dynamic
reconstruction network H4 is obtained. Finally, we
combine the output of each GCN layer through a
fully connected layer to output the final label rep-
resentation HS, where HF ∈ R|n|×3d′ , as follows:

HF = H4 ⊕H2
RL ⊕H2

IL (12)

HS = WcH
F (13)

4 Experiments

4.1 Data
We evaluate the proposed model with low-resource
agglutinative languages in the UD treebank (ver-
sion 2.10), such as the Uyghur, Kazakh, Tatar, and
Yakut (UKTY) datasets3. The UD treebank is a
sentence-level dataset that includes many types of
PoS labels. Since the annotation type in UD is in
the CoNLL-U format, to ensure the integrity of
morphological labels and the comparability of ex-
perimental results, we use a tool (McCarthy et al.,
2018) to convert the data in CoNLL-U format into
the UniMorph format and split all datasets into
training, testing, and validation sets in an 8:1:1 pro-
portion. The statistics of the dataset are shown in
Table 2.

3https://universaldependencies.org/#download

4.2 Experimental results and analysis

4.2.1 Overall performance

We seek to compare our model to recurrent cross-
lingual models with the best performance in this
experiment. The experimental results are shown in
Table 3. A detailed description of implementation
details is provided in Appendix B.

Neural tagger (McCarthy et al., 2019): This is
the baseline model of SIGMORPHON 2019 shared
task 2. It generates the morphological tag sequence
of each word through a multilayer BiLSTM model.
Multi-Team: Üstün et al. (2019) proposed a multi-
team (multi-attention and multi-decoder) morpho-
logical analysis model. The model’s performance
is improved by introducing pretrained word em-
beddings to initialize the input. Morpheus (Yildiz
and Tantuğ, 2019): This model generates word
embedding and context-aware word embedding us-
ing LSTM and BiLSTM and then inputs the two
kinds of word embedding into a decoder to generate
morphological labels. UDify: Kondratyuk (2019)
proposed a morphological tagging model based on
multilingual bidirectional encoder representations
from transformers (BERT). This model was the
winner of SIGMORPHON 2019 shared task 2. UD-
Pipe: This model proposed by Straka and Straková
(2020) adds pretrained contextualized embeddings
(generated by BERT) to the input and uses individ-
ual morphological features for regularization. UD-
Pipe placed second in SIGMORPHON 2019 shared
task 2. COMO: Klimaszewski and Wróblewska
(2021) proposed a fully neural NLP tagging sys-
tem of PoS, morphological analysis, lemmatization,
and dependency parsing. It achieved better predic-
tion quality than that of SOTA methods at the time.

Table 3 shows the experimental results of sev-
eral SOTA models and our model for the UKTY
datasets. We measure the performance of models
in terms of precision (P), recall (R), F1 score, and
accuracy (ACC). The model proposed in this paper
achieves a high F1 score and accuracy. Because
UDify, UDPipe, and COMBO models are based
on BERT, we also conducted comparative experi-
ments on BERT. The experimental results of these
models show that except in the Tt, the accuracy and
F1 score are not significantly different, and the F1
score is slightly lower. This is because MSD is a set
of labels, and the accuracy evaluates the integrity of
the predicted MSD label, while the F1 score (P and
R) evaluates whether the prediction results for each
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Dataset
UD_Uyghur-UDT UD_Kazakh-KTB UD_Tatar-NMCTT UD_Yakut-YKTDT

Train Valid Test Label Train Valid Test Label Train Valid Test Label Train Valid Test Label
#Sentences 2764 346 346

45
862 108 108

57
118 15 15

50
231 29 29

36
#Words 32174 3538 4615 8483 1085 1121 1776 222 282 1144 131 128

Table 2: Dataset statistics.

Lang Ug Kz Tt Yk Avg.
P R F1 ACC. P R F1 ACC. P R F1 ACC. P R F1 ACC. F1 ACC.

Neural tagger 85.90 87.30 86.60 79.40 87.39 86.86 87.12 78.31 84.77 83.22 83.99 75.80 88.31 85.80 87.04 84.38 86.19 79.47
Multi-Team 89.56 89.86 89.71 82.54 88.91 88.71 88.81 80.38 79.16 79.72 79.44 65.25 84.38 82.09 83.22 77.42 85.30 76.40
Morpheus 90.38 89.09 89.73 83.90 88.39 86.82 87.60 78.50 59.27 54.93 57.02 39.01 70.07 67.19 68.60 62.50 75.74 65.98

UDify 88.42 88.16 88.29 83.73 92.79 92.52 92.66 86.98 83.38 82.50 82.94 75.53 85.53 84.94 85.25 78.91 87.29 81.29
UDPipe* 88.15 89.43 88.79 81.13 - - - - - - - - - - - - 88.79 81.13

COMBO** 86.48 86.07 86.27 77.14 - - - - - - - - - - - - 86.27 77.14
Our model-BERT 90.87 87.05 88.92 81.05 95.24 95.16 95.20 88.40 85.27 83.38 84.31 65.38 87.58 86.95 87.26 77.31 88.86 76.73

Our model-XLM/CINO 94.87 96.18 95.52 91.60 96.92 97.32 97.12 92.82 89.18 87.20 88.18 76.40 90.03 89.23 89.63 80.34 92.61 85.29
* The UDPipe web service can be accessed directly via API. And only the Uyghur model is available, so only Uyghur

is tested in the test set.
** The COMBO model is only available on Uyghur, and the trained model is loaded in the test.

Table 3: Experimental results of morphological tagging.

label in the MSD label are correct. In languages
with extremely low resources (Yk and Tt), neural
tagger is superior to other baseline models. UDify
demonstrated stable performance in four languages.
For the Ug dataset, compared with the results of
Morpheus, our CINO-based model increases the
F1 score and accuracy by 5.79% and 7.70%, re-
spectively. For the Kz dataset, compared with the
results of UDify, our XLM-based model increases
the F1 score and accuracy by 4.46% and 5.84%,
respectively. For the Tt dataset, compared with
the results of neural tagger, our XLM-based model
increases the F1 score and accuracy by 4.19% and
0.60%, respectively. For the Yk dataset, compared
with the results of neural tagger, our XLM-based
model increases the F1 score by 2.59% and de-
creases the accuracy by 4.04%.

4.2.2 Analysis and discussion

To further verify the impact of each module on the
model performance, we perform a series of experi-
ments. The experiments mainly explore the influ-
ence of the input, fusion mechanism, and different
label relationships on the model performance.

Different inputs. Morphology and context will
influence the morphological labels of words. There-
fore, to explore the impact of different input fea-
tures on the model performance, a group of ablation
experiments is conducted around words, morphol-
ogy, and local context, and the experimental results
are shown in Table 4.

From the experimental results in Table 4, it is
found that local context and morphology can affect
morphological tagging. Adding local context in
low-resource agglutinative language can increase

Lang. w w+3g w+5g w+7g w+m w+m+3g
Ug 86.64 89.32 90.31 90.45 88.95 91.60
Kz 86.79 91.17 90.56 91.08 90.24 92.82
Tt 75.80 76.40 76.80 79.12 - -
Yk 75.31 80.34 74.53 62.34 - -

Table 4: The impact of different inputs on model accu-
racy (%). ‘w’ represents word, ‘g’ represents gram, and
‘m’ represents morphology.

the model’s accuracy, but sentence length can affect
the growth rate. Because the sentence is shorter, the
model learns less critical contextual information
and more noise. Based on Table 2, it is found
that the average sentence level of the Yk dataset
is less than 5 (the average length of sentence is
4.41), so when the window size is 5-7, the model’s
accuracy starts to drop. Therefore, considering the
dataset and practical application, this model uses
the local context feature with a window size of 3
in the model. Words are composed of lemma and
suffixes (morpheme) in agglutinative languages.
The suffixes deeply affect morphological labels. In
Table 4, adding morphological features to the Ug
and Kz languages can also significantly improve
the accuracy of the model.

Fusion mechanism. We jointly train the PoS
and MF tagging models to reduce the impact of
error propagation. However, the impact of the two
labels on each other cannot be ignored in morpho-
logical tagging. Table 5 shows the experimental
results without a fusion mechanism:

Compared to the four datasets, the fusion mech-
anism performs more significantly on datasets with
smaller datasets (Tt and Yk). From the experimen-
tal results, it was found that the average F1 score
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Lang. F1 ACC.
Ug 94.05 (↓1.47) 89.64(↓1.96)
Kz 96.11(↓1.01) 91.10(↓1.72)
Tt 80.07(↓8.11) 73.67(↓2.73)
Yk 78.46(↓11.17) 63.91(↓16.43)

Avg. ↓∆5.44 ↓∆5.71

Table 5: The influence of the fusion mechanism on the
model.

and average accuracy of the model with the fusion
mechanism increased by 5.44% and 5.71%, respec-
tively. It also proves that the two labels have an
interactive relationship, and the fusion mechanism
also plays an indirect constraint role.

Different label relationships. We conduct abla-
tion experiments for adding initial label (INL) rela-
tionships, irrelevant label (IRL) relationships, pre-
trained label (PL) relationships and reconstructed
label (RL) relationships in the model. The experi-
mental results are shown in Table 6.

Relation Ug Kz Tt Yk
baseline 86.75 88.01 70.53 72.66

baseline + INL 85.61 70.05 39.33 42.72
baseline+INL+IRL 88.62 88.91 73.97 75.44
baseline+PL+IRL 89.97 91.01 75.67 78.99

baseline+PL+IRL+RL 91.60 92.82 76.40 80.34

Table 6: The influence of different label relationships.
We report accuracy (%) of MSD label for all tokens.

In Table 6, the baseline represents the model
without any relationship learning. The baseline
learns and represents the relationship between the
surface and the inside of the label by adding differ-
ent label relationships and finally outputs the MF
label of the word in combination with the input
content. In the experiment, when adding the ini-
tial label relationship (statistical relationship), the
accuracy of the model in Tt and Yk significantly de-
creases. After adding irrelevant label relationships,
the accuracy rate shows an upward trend. Although
prior knowledge was added to the model, it was
difficult to fully learn the relationships between la-
bels due to the small dataset with various labels.
After adding prior knowledge of irrelevant labels,
it can constrain the relationships between labels.
We believe that there are similarities between lan-
guages of the same language family. After adding
pretrained label embedding, the model learns the
universal relationship of the agglutinative MF la-
bels. Adding the reconstruction relationship en-
ables the model to capture more label relationships

in dynamic learning. These methods can learn the
hidden relationship between labels, thus improving
the robustness of the model.

Error analysis. This paper selects Kazakh,
which has the more types of morphological labels
(57) and has the longest morphological labels (8)
in the dataset, as an example to further analyze
the model’s performance in predicting long labels
compared to other models. The model proposed
in this paper can effectively predict short- or long-
label problems through label relationships. The
experimental results are shown in Table 7.

Label length 1-3 4 5 6 7 8
Overlap 53.82 23.53 20.00 56.00 54.35 57.14

Neural tagger 20.21 29.41 60.00 28.00 32.61 21.43
Multi-Team 17.99 27.45 60.00 26.00 30.43 28.57
Morpheus 18.74 35.29 80.00 30.00 39.13 50.00

UDify 9.84 37.25 60.00 30.00 26.09 21.43
Our model 5.82 13.73 40.00 18.00 13.04 7.14

Table 7: The impact of label length and both (word and
lemma) overlaps (%) on model error rate (%). Both
overlap means the word and lemma occur in the training
and test set.

From Table 7, it is found that in addition to the
impact of data size on model performance, the
length of labels and the overlap can also affect
model performance. The label length is short (1-3),
and the overlap is high, so the model’s error rate
is also relatively low. When the label length is 5,
the overlap is the lowest, and the model’s error rate
is the highest. When the overlap is approximately
similar (length=1-3 and length=7, ∆=0.53%), the
label length is longer, and the model’s error rate is
higher. Compared with a label length of 6 and 8, al-
though the overlap is slightly different (∆=1.14%),
the neural tagger, UDify, and our model have lower
errors when the label length is 8. This is the result
of overlap influencing the model. Compared to
other models, our model is less affected by label
length and overlap.

5 Conclusion

This paper proposes a joint morphological tagging
model based on a neural network for low-resource
agglutinative languages. First, to effectively cap-
ture the multi-dimensional information of the input
words, the model uses the morphological, word and
local context features to represent the input words.
Second, to reduce the impact of the PoS label on the
MF label, the two models are jointly trained, and a
fusion mechanism is used to complete the interac-
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tion between the two middle layers. Finally, PoS
tagging is regarded as sequence labeling, and the
CRF model predicts the PoS tag. MF tagging is re-
garded as a classification task, and a new adjacency
graph is dynamically reconstructed by using the
two relationships between labels and GCNs. GCNs
are used to express the higher-order relationship
between labels. This model combines the universal
features of agglutinative languages and the char-
acteristic features of UKTY languages, learns the
relationship between labels, and effectively allevi-
ates the problems caused by data scarcity. The ex-
periments conducted with UD treebanks show that
the proposed morphological tagging model outper-
forms other models. We explore the morphological
tagging model based on a neural network under
low resources as an example. In future research,
we will continue to optimize the model’s relation-
ship representation and threshold selection abilities,
and further improving the model’s performance.

Limitations

The method proposed in this paper has some limi-
tations:

(1) This model learns not only the features of
words, word formation, and context but also the
relationships between labels. When there is too
much noise, it can disturb the relationship between
labels.

(2) The model needs more training time than
other models to learn pretrained label relationships.

Acknowledgements

We gratefully thank the anonymous reviewers for
their insightful comments. This work is sup-
ported by the National Natural Science Foundation
of China (grant numbers 62166044, 61762084)
and the Natural Science Foundation of Xin-
jiang Uyghur Autonomous Region under Grant
No.2021D01C079.

References
Gulinigeer Abuduwaili, Kahaerjing Abiderexiti, Yunfei

Shen, and Aishan Wumaier. 2022. Research on the
uyghur morphological segmentation model with an
attention mechanism. Connection Science, 34:2577–
2596.

Khuyagbaatar Batsuren, Gábor Bella, Aryaman Arora,
Viktor Martinovic, Kyle Gorman, Zdeněk Žabokrt-
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A Label Relationship

We divide label relationships into two categories:
relevant and irrelevant relationships. As shown in
the label adjacency matrix in Table 8, if there are
nonzero data in the relative position of two labels,
they are relevant; otherwise, they are irrelevant. For
example, labels A and B are relevant, and labels A
and D are irrelevant.

A B C D
A 0 5 10 0
B 5 0 4 0
C 10 4 0 0
D 0 0 0 0

Table 8: Label adjacency matrix

B Implementation Details

The experimental environment is based on Python
3.8 4 and the PyTorch 1.9.0 deep learning frame-
work 5. The word vector dimension is 768, the mor-
phological embedding dimension is 300, the num-
ber of BiLSTMmor hidden units is 768, and the lo-
cal context vector dimension is 768. BiLSTMPoS

and BiLSTMMT each have 768 hidden units, and
the label embedding dimension is 300. The Adam
optimizer is used for training, and a dropout rate of
0.5 is enforced during training. We train each con-
figuration using a batch size of 64, a learning rate
of 0.01, and the leaky rectified linear unit activation
function in the GCN.

4https://www.python.org/downloads/
5https://pytorch.org/
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