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Introduction

eWelcome to the 20th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology,
and Morphology, to be held on July 14, 2023 as part of ACL in Toronto. The workshop aims to bring
together researchers interested in applying computational techniques to problems in morphology, phono-
logy, and phonetics. Our program this year highlights the ongoing investigations into how neural models
process phonology and morphology, as well as the development of finite-state models for low-resource
languages with complex morphology.

We received 22 submissions, and after a competitive reviewing process, we accepted 12, for an accep-
tance rate of 54.5%. The workshop is very happy to present two invited talks this year. Carmen Saldana,
from the University of Zürich, and CUNY’s Kyle Gorman presented talks at this year’s workshop.

This year also marks the seventh iteration of the SIGMORPHON Shared Task. We hosted two Shared
Tasks this year:
The UniMorph Shared Task on Typologically Diverse and Acquisition-Inspired Morphological Inflection
Generation continued SIGMORPHON’s tradition of shared tasks that investigate inflectional patterns.
The task had two parts. The first part invited participants to build models that predict an inflected form
from either a lemma, or other inflected form, as well as desired properties of the output. The second
part investigates the cognitive plausibility of inflectional forms - namely, the task asks users to train a
classification model that determines the phonological constraints that lead to generalization patterns in
Korean; the final part investigates child-like errors made by inflectional systems.

The Shared Task on Interlinear glossing challenges participants to automate the process of glossing mor-
phological processes in lower-resource languages - a task that is essential in language documentation.
In the open track, participants train a model that produces a morphologically-specified gloss from the
original source sentence, a canonically-segmented representation, and optionally, a second language tran-
slation. In the closed track, the segmented representation is absent.

We also present the results from the 2022 Shared Task on Cross-Lingual and Low-Resource Grapheme-
Phoneme prediction. Due to time constraints with last year’s proceedings, we were unable to publish the
results. We apologize to the organizers and participants, who have had to wait a year to see their work in
print.

We are grateful to the program committee for their careful and thoughtful reviews of the papers submitted
this year. Likewise, we are thankful to the shared task organizers for their hard work in preparing the
shared tasks. We are looking forward to a workshop covering a wide range of topics, and we hope for
lively discussions.

Garrett Nicolai, Eleanor Chodroff, Çagri Çöltekin, and Fred Mailhot, workshop organization team.
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Çagri Çöltekin, University of Tübingen
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Keynote Talk: Cross-linguistic recurrent patterns in
morphology mirror human cognition

Carmen Saldana
University of Zürich

2023-07-14 08:30:00 –

Abstract: A foundational goal of language science is to detect and define the set of constraints that
explain cross-linguistic recurrent patterns (i.e., typological universals) in terms of fundamental shared
features of human cognition. In this talk, I will present a series of Artificial Language Learning expe-
rimental studies which test a hypothesised link between biases in language learning and morphological
universals in typology both at the syntagmatic (i.e., morpheme order) and paradigmatic levels (e.g.,
structure of inflectional paradigms). I will focus in particular on two types of universals in inflectional
morphology: (1) affixes with stronger structural relationships to the word stem tend to appear linearly
closer to it, and (2) different categories with the same identity (be it the same word form, or the same
word structure) in morphological paradigms tend to be semantically similar. The results from the studies
I will present provide evidence in favour of a shared typological and learning bias towards compositional
transparency and locality in morpheme order, and a bias towards partitions of morphological paradigms
that reflect semantic relatedness. In light of these results, I will argue that cross-linguistic recurrent mor-
phological patterns mirror to some extend universal features of human cognition.

Bio: Carmen Saldana is currently a postdoctoral fellow in the Department of Comparative Langua-
ge Science at the University of Zurich. Her research focuses on investigating the cognitive biases and
processes that shape the current cross-linguistic distributions of morphosyntactic features and their evo-
lution. Her work specifically contributes to the understanding of the relationship between individuals’
cognitive biases at play during language learning and use and universal tendencies in morpheme order
and paradigmatic morphological structure. She carries out her research within a comprehensive interdi-
sciplinary framework combining methods from linguistic theory, quantitative typology and experimental
linguistics.
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Keynote Talk: Deep Phonology Features in Computational
Phonology

Kyle Gorman
City University of New York

2023-07-14 13:00:00 –

Abstract: The linguist Ray Jackendoff considers “the discovery of distinctive features . . . to be a scienti-
fic achievement on the order of the discovery and verification of the periodic table in chemistry.” Despite
this, quite a bit of work in phonology—whether formal or computational—works with extensional sets of
indivisible segments rather than the intensional, internally-structured definitions derived from distinctive
features. In this talk I will first present philosophical and empirical arguments that phonological patterns
are defined intensionally: segments are bundles of features and processes are defined in terms of “natural
classes”, or conjunctions of feature specifications. Then, I will argue against the received wisdom—both
in formal and computational phonology—that phonological patterns should be specified “minimally”, in
terms of the fewest possible features consistent with the observed data. I show that feature minimiza-
tion has undesirable cognitive and computational properties. In contrast, feature maximization—which,
under the intensional view, is equivalent to set intersection—is empirically adequate and free of the pro-
blems that plague feature minimization.

Bio: Kyle Gorman is a professor of linguistics at the Graduate Center, City University of New York, and
director of the master’s program in computational linguistics. He is also a software engineer at Google
LLC. Along with his collaborators, he is the author of Finite-State Text Processing and of award-winning
papers at ACL 2019 and WNUT 6.
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Translating a low-resource language using GPT-3 and a human-readable
dictionary

Micha Elsner and Jordan Needle
Department of Linguistics
The Ohio State University

Columbus, Ohio
{elsner.14,needle.6}@osu.edu

Abstract
We investigate how well words in the polysyn-
thetic language Inuktitut can be translated by
combining dictionary definitions, without use
of a neural machine translation model trained
on parallel text. Such a translation system
would allow natural language technology to
benefit from resources designed for community
use in a language revitalization or education
program, rather than requiring a separate paral-
lel corpus. We show that the text-to-text gener-
ation capabilities of GPT-3 allow it to perform
this task with BLEU scores of up to 18.5. We
investigate prompting GPT-3 to provide mul-
tiple translations, which can help slightly, and
providing it with grammar information, which
is mostly ineffective. Finally, we test GPT-3’s
ability to derive morpheme definitions from
whole-word translations, but find this process
is prone to errors including hallucinations.

1 Introduction

In low-resource language communities, resource
creation efforts are restricted by the limited time
community members can contribute— and this
problem is worsened when effort must be divided
between development of community-facing re-
sources and those targeted at machines. Language
revitalization and pedagogy programs need dictio-
naries (especially those which incorporate tools for
morphological analysis and flexible search) and
grammar lessons, while machine translation sys-
tems need large corpora. If community-facing re-
sources could be used within machine learning sys-
tems to compensate for the limited availability of
text, community efforts could serve both pedagogi-
cal and technological goals at the same time. But
while this has occasionally been attempted, tech-
niques for doing so are still not effective enough to
serve as standard methods.

One reason why community-facing resources
like bilingual dictionaries have not been widely
used in applications like low-resource translation is

that understanding definitions can require sophisti-
cated tools for natural language understanding. Re-
cent advances in large language model technology
(LLMs) provide a promising candidate for such
a toolset, at least for definitions written in high-
resource languages. In this paper, we investigate
methods for using a representative LLM, GPT-3, to
translate multi-morphemic words in Inuktitut using
dictionary definitions for the morphemes. In addi-
tion, we measure GPT-3’s capacity to perform the
reverse task of inferring the dictionary definition of
a morpheme given a decomposed word in which it
occurs.

Inuktitut is a polysynthetic language in which
words can be very long and morphologically com-
plex. As such, it is representative of a number of
languages of the Americas for which natural lan-
guage processing tasks have historically been dif-
ficult due to limited resources and typological dif-
ferences from better-resourced languages (Mager
et al., 2018a). Computational tools are an impor-
tant part of education or revitalization efforts for
American languages, including Inuktitut (Ngoc Le
and Sadat, 2020).

We show that GPT-3 can stitch together English
dictionary definitions to produce reasonable transla-
tions of many Inuktitut words. We investigate two
further questions: methods for dealing with mor-
phemes with multiple definitions, and the extent to
which performance can be improved by priming
GPT-3 with some grammatical information. We
envision our system as one component of an inter-
active dictionary/translation system, in which a hu-
man learner or non-native speaker asks for possible
analyses of a morphologically complex form and
is given both a morph-by-morph gloss and some
possible translations into fluent English. This kind
of system might help to bridge the gap between
a conventional dictionary, which is incapable of
interactively translating morphologically complex
words into fluent English, and full-scale neural ma-
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chine translation (NMT), which is data-hungry and
non-transparent. We further see possibilities for
suggesting new dictionary definitions which can be
curated by native speakers. Finally, we believe it
holds some potential as a stepping stone towards
larger-scale NMT applications by providing simple
examples for use in a curriculum learning paradigm
(Platanios et al., 2019; Liang et al., 2021, among
others).

2 Related work

The use of bilingual dictionary entries in neu-
ral machine translation was pioneered by Luong
et al. (2015), who augment an English/French MT
system with mechanisms for aligning rare words
across languages, then copying material from def-
initions to translate them. This work makes sev-
eral key assumptions about the benefits dictionary
definitions can provide. In particular, it assumes
a relatively capable NMT system already exists.
Because of this, the main contribution of the dictio-
nary is to provide lexical equivalents for rare items.
In most cases, these are content words, and their
definitions, once known, are easily integrated into
the translated sentence (Dinu et al., 2019; Zhang
et al., 2021). Pham et al. (2018); Niehues (2021)
are among the earliest to provide dictionary infor-
mation as augmented input rather than via a cus-
tom architecture (thus moving toward a zero-shot
method), but still requires the NMT system to be
trained to use definitions.

Our work follows from recent approaches which
use LLMs rather than purpose-built NMT sys-
tems. The ability of LLMs to translate some high-
resource language pairs in a prompt-based zero
or few-shot setting is established by Brown et al.
(2020). Some other recent papers attempt to aug-
ment LLMs with information derived from dictio-
naries or phrase tables. Sun et al. (2022) translates
full sentences, using hints from a phrase aligner
(Dou and Neubig, 2021). Their approach also em-
phasizes the monolingual text-to-text generation
capacity of LLMs, but uses aligned phrases rather
than dictionary definitions intended for human read-
ers. The closest point of comparison to our work
is Ghazvininejad et al. (2023), which improves
translation performance by augmenting few-shot
prompts with dictionary translations for a few se-
lected words. Unlike our setting, where the base-
line NMT system performs poorly, their languages
are selected so that the baseline NMT model per-

forms reasonably without augmentation (10-30%
BLEU).

In contrast to these approaches, we assume a
setting in which common morphs, including func-
tional as well as content items, must be translated
with the aid of the dictionary. While this is an arti-
ficial constraint in the case of Inuktitut, which does
have enough parallel text to train an NMT system,
it is the case for other low-resource polysynthetic
languages of the Americas which lack parallel cor-
pora large enough to train any NMT system. Even
where data is more plentiful, dictionary definitions
are potentially helpful for translating functional
items in polysynthetic languages because these lan-
guages can have very large paradigms with very
unbalanced attestations in corpora. Inuktitut has a
polypersonal agreement system in which subject
and object person and number are both marked on
verbs; some subject-object markers rarely appear
in written corpora due to discourse constraints (for
example, dual subjects). Other morphosemantic
distinctions (such as dual number, evidentiality, in-
tensifiers and applicatives) which are common in
American languages but rare in European ones, are
translated in very different ways across contexts,
leading MT systems to misalign them due to lim-
ited data (Mager et al., 2018b).

In this setting, dictionary definitions may be
patched together in relatively complex ways. First,
composing the definitions is more difficult than
simple concatenation: takujara “I see him/her” is
made up of taku “see” and jara “I . . . him/her”
(1SG>3SG). Second, Inuktitut uses derivational
processes to express terms which have independent
content words in English. qukiut “gun” is made
up of qukit “shoot” and the instrumental marker
ut. While a literal translation would produce “an
instrument for shooting”, the leap to paraphrase
this expression as “gun” requires a deeper represen-
tation of English semantics. Thus, while previous
systems could use dictionary material mainly by
copying, our task setting emphasizes text-to-text
generation.

Related tasks which use language modeling to
patch together fragments of target-language struc-
ture include bag-to-sequence word ordering (Hasler
et al., 2017) and dependency linearization (Mille
et al., 2020). Generating fluent text from grammati-
cal element annotations is also similar to generating
translations from glosses (Zhang and Duh, 2021;
Garera and Yarowsky, 2008), although, despite re-
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cent interest in glosses (e.g. Moeller and Hulden,
2021), this task is also comparatively understudied.

Inuktitut itself is one of the best-resourced in-
digenous American languages, with a large paral-
lel corpus collected from the Nunavut Parliamen-
tary Hansards (Joanis et al., 2020); their baseline
NMT system yields an IU→EN BLEU score of
35.0. This dataset was used as a challenge for the
Workshop on Machine Translation in 2020 (Bar-
rault et al., 2020). Scores remained low compared
to better-resourced languages— the system rated
highest by humans reports a BLEU score of only
29.1 on test (Zhang et al., 2020). As stated, we use
Inuktitut as a potential model for less-resourced
polysynthetic languages where even this level of
NMT performance is not available.

In addition to assuming access to a dictionary,
we also assume access to a system which provides
canonical morphological segmentations (based on
Farley (2012) and further described in Section 3),
so that a complex word can be decomposed into
parts whose lexical entries can be accessed. Such
systems (Wiemerslage et al., 2022) can be devel-
oped with access to substantially less data than
NMT systems. They may be created using finite-
state toolkits (Park et al., 2021) or supervised learn-
ing from relatively small annotated datasets (Mager
et al., 2020; Liu et al., 2021), potentially incorpo-
rating active learning (Grönroos et al., 2016).

Segmentation of Inuktitut is easier than
translation— Uqailaut (Farley, 2012) is a widely
used finite-state system for canonical segmentation
of Inuktitut. Micher (2017) describes an improved
segmenter with neural disambiguation; Roest et al.
(2020) conduct more recent experiments on seg-
mentation using Transformer networks. While our
assumption that a segmentation system is available
constitutes a weakness of our method, we hope that
future work can continue to reduce the resource
burden of developing such systems and can also
tie their development more closely to community-
facing resources such as grammar texts.

3 Data and metrics

We extract a lexicon of Inuktitut morphemes
and their definitions from the Uqausiit dictionary
(uqausiit.ca) created by Inuit Uqausinginnik
Taiguusiliuqtiit, an Inuit language authority funded
by the Nunavut Legislature. Uqausiit also pro-
vides example phrases with English translations
and hand-annotated partial morphological decom-

positions. We extract all single-word example
phrases with a multi-morphemic partial decomposi-
tion for development and testing of our translation
systems. Tables 1, 2 and 3 show statistics of the
Uqausiit datasets used in this paper.

Whole words Count With seg.
Dev. 50 22
Test 448 219

Table 1: Statistics of the translation data from Uqausiit.

Target morpheme Instances Unique
Root 219 89
Functional 218 130

Table 2: Statistics of the definition prediction data from
Uqausiit.

Morphemes Count
Root 2782
Grammatical 1524
Variable 157
Total 4462

Table 3: Statistics of the Uqausiit morpheme dictionary.

Because our aim is primarily to evaluate the po-
tential of LLMs to operate on dictionary definitions,
rather than to evaluate algorithms for segmentation,
we use a fixed canonical morphological segmenta-
tion for each word in our dataset. These are pro-
vided by a partial oracle which is implementation-
ally simple to create. We run the Uqailaut FST
segmenter (Farley, 2012), which produces a set of
candidate analyses. We then intersect these anal-
yses with the partial decomposition of the phrase
from Uqausiit. If one or more analyses match,
we select the first one and return it. If Uqailaut
cannot analyze the word, or produces no analyses
matching the partial decomposition, we do not use
the word. (Many of these errors result from ortho-
graphic or dialectal variation beyond the scope of
Uqailaut’s design, as noted by Mallon (2000).)

For instance, sikujuittuq “an area of the ocean
where ice does not form” has the Uqausiit par-
tial segmentation siku-juit, without the final tuq.
Uqailaut produces 6 candidate segmentations,
which vary as to the analysis of the medial juitt se-
quence; of these, we select siku-juit-juq since this
matches the provided partial segmentation. (The re-
sulting segmentation may still contain an incorrect
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element which is not part of the partial decompo-
sition; we have no way to measure how often this
occurs, but did not find cases in development.)

We also create datasets for creating dictionary
definitions, for both root and functional mor-
phemes. In each case, we use a whole word with its
translation as the prompt, and query the definition
of one of the component morphemes. We assume
the root morpheme is the first one in the word; for
functional morphemes, we select a later one at ran-
dom. We create instances for all 219 segmentable
words in the test set.1 Some of these instances ask
for a definition of the same query morpheme (but
with different whole-word prompts); there are 89
unique root types and 130 unique functional types
in the dataset. Where a query morpheme has mul-
tiple possible definitions, we refer to Uqausiit and
the whole-word definition to select the correct one
as a reference.

We evaluate translations against the English ref-
erences using Sacrebleu (Post, 2018) and BLEURT
(Sellam et al., 2020)2. In some cases, we ask the
system to produce multiple candidate translations.
We anticipate a human user of the dictionary con-
sidering the context in which they encountered the
phrase they are looking up and picking the best
one; this may be especially helpful in cases where
the phrase is actually ambiguous in its translation,
since otherwise there is no way to pick between can-
didate meanings. For these, we evaluate BLEURT
in two ways: the average performance is the ex-
pected score of each response against the reference,
and reflects the user’s experience if they are looking
up a word for which they have no useful context.
The oracle score is the best score of any response,
and reflects the user’s experience if they can al-
ways pick the correct translation given the context
in which they heard the target word.

Because Sacrebleu produces a global precision
score over the whole corpus, we evaluate the ex-
pected Sacrebleu in multiple-translation cases by
sampling one translation from the set of propos-
als for each word; we average across five samples.
We produce an oracle Sacrebleu score by collat-
ing the translations of each word with the highest
BLEURT score and evaluating them as a group.

1One functional item had no listed definition and was dis-
carded.

2Using the recommended BLEURT-20 checkpoint.

The Inuktitut word saviggirunnaqtutit is made up of the fol-
lowing parts:
savik: (1) metal; steel; iron (2) snow-knife; or, to be fitted
with a metal point (harpoon; spear)
ggiq: to bring someone or something along, as in "Don’t bring
your gun along."
runnaq: to be able to perform a certain action, as in "Could
you find that out if he/she arrived"
tutit: you, as in "you sleep"
In English, saviggirunnaqtutit means roughly:

Figure 1: An example prompt for the defini-
tion+example case.

4 Single-word translation

All our experiments use the OpenAI API to access
the GPT-3 model TEXT-DAVINCI-003, which was
the largest GPT-3 available until the release of GPT-
3.5-TURBO in March 2023. We do not experiment
with models tuned for chat using reinforcement
learning, nor with smaller but more efficient LLMs
such as T5. Because the goal of this work is to
generate translations, rather than to measure the
acceptability of pre-existing translations, we sam-
ple strings from the model rather than measuring
their probability (Hu and Levy, 2023); we use the
standard text completion API with temperature .7
and 128 maximum tokens.

To translate an Inuktitut word into an English
phrase, we look up every morph in the canonical
segmentation and obtain their dictionary definitions.
We then produce one or more prompts for the GPT-
3 system. Figure 1 shows a sample prompt for
the Definition+example method; examples of the
other prompts are given in Appendix A.

Concatenate: As a trivial baseline, we sim-
ply concatenate the morpheme definitions in order,
without using the LLM. This provides a point of
comparison for evaluating the improvements due
to text-to-text generation.

-Dictionary: GPT-3 has the capacity to translate
many languages in a few-shot setting, and might
have been exposed to definitions of Inuktitut words
from the same web resources we are using. We
use a prompt modeled on French-to-English few-
shot translation (without dictionary definitions of
morphemes, but with definitions of our few-shot
words) to test whether this setting also works for
Inuktitut.

Our next two methods evaluate the usefulness of
specific parts of the dictionary entries. In the defini-
tion only condition, we provide textual definitions
of each morpheme; if a morpheme matches multi-
ple dictionary entries, we concatenate them with “;

4



or, ” as the separator. In the definition+example
condition, we also provide the English translation
of an example word in which the morpheme is used
(if the dictionary contains one).

We evaluate two more sophisticated methods
for dealing with morphemes with multiple possi-
ble meanings. First, we ask GPT-3 textually to
list all possible meanings for the word, rather than
producing only a single one; we call this setting
multianswer. Second, we enumerate all combina-
tions of morpheme meanings which could make
up the word, and create a separate prompt for each
one. (This method requires much more computing
time than simply prompting for more than one an-
swer.) We call this setting multiprompt. In each
case, the separate answers are aggregated in two
different ways—average and oracle performance—
as described in Section 3.

We consider two methods for injecting grammat-
ical information into GPT-3’s processing. First, we
preface the morpheme decomposition with a short
hand-written grammar description. Our gram-
matical description is intended to focus GPT-3 on
some common issues we noticed in development.
It explains that Inuktitut words begin with a root
morpheme which usually determines the syntac-
tic type of the word. Verbs must be translated as
English sentences whose subject and object are
given by agreement markers at the end of the word,
while nouns must be translated as noun phrases or
prepositional phrases. We also explain that inter-
mediate morphemes can change the part of speech
and contribute other elements to the meaning.

We also experiment with a chain-of-thought
method in which the system is instructed to explic-
itly identify the syntactic category of the root, the
category of the target translation, the subject and
object (if any) from agreement morphology, and
the function of any intermediate morphemes before
translating.

We evaluate all the prompts, except the chain-
of-thought and multiprompt methods, in both zero-
shot and few-shot settings. The chain-of-thought
method is used only in few-shot mode, since this
allows us to model what the intermediate rea-
soning steps should look like. The multiprompt
method is used only in zero-shot mode as, since a
prompt is generated for each combination of defini-
tions, it is extremely expensive to run with longer
prompts. Our few-shot prompts are always filled
in with a pre-selected list of the same five words,

with definitions and grammatical decompositions
from an Inuktitut pedagogy site, tusaalanga.ca.
Three of these are translated as sentences, one as a
noun phrase and one as a locative prepositional
phrase. Two of the sentences have intransitive
subject agreement markers and one has transitive
subject-object agreement. We fill out the possi-
ble answers in the multi-answer condition and the
chain of thought reasoning steps manually based
on Tusaalanga.

4.1 Results

Table 4 shows the results. Overall, metric scores
are low. Confidence intervals3 are also very wide
given the small size of the test set.

Existing NMT systems for Inuktitut can score
around 30%, although these use more data and are
not tested on exclusively multimorphemic words.
BLEU scores in the 30s reflect generally intelligi-
ble though sometimes errorful translations; scores
in the 20s are considered potentially useful under
some circumstances, while not entirely accurate nor
fluent. BLEURT scores, meanwhile, range between
0 and 1. Garcia et al. (2023) provides BLEURT
scores for a variety of few-shot translation models.
Scores for high-resourced German and Chinese
are roughly 0.63-0.77; for less-resourced Icelandic
they are 0.60-0.76.

Despite these caveats, some trends in the scores
are evident. First, the scores of the -Dictionary
condition compared to the rest show that GPT-3
has no useful prior knowledge of Inuktitut. The
trivial Concatenative system scores higher, pro-
ducing output which has some resemblance to the
references, but is outperformed by the LLM sys-
tems, since it cannot rearrange content from the
definitions into fluent translations.

Examining the non-trivial systems, we see that
it is helpful to gather examples of morphemes in
use, as well as definitions, from dictionary entries;
these improve scores in both zero-shot and few-
shot settings. Comparing the multianswer and
multiprompt settings, we find that it is not very
helpful to create multiple prompts to deal with pol-
ysemous morphemes; GPT-3 can handle polysemy
naturally if asked to create multiple definitions. Fi-
nally, we find that the grammar lesson is unhelpful;

3Because BLEU scores represent global precision across
the entire test set, we do not compute confidence intervals.
We compute BLEURT confidence intervals using the SCIPY
bootstrap method applied to the scores of each individual
sentence.
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Sys BLEU BLEURT (95% conf.)
Concat 6.19 0.43 (0.41 - 0.44)
-Dict 0.44 0.13 (0.12 - 0.14)
Def 9.63 0.48 (0.45 - 0.51)
Def+ex 13.29 0.51 (0.48 - 0.54)
Multians-avg 11.31 0.46 (0.44 - 0.48)
Multians-orac 19.83 0.62 (0.59 - 0.64)
Multipr-avg 17.42 0.50 (0.47 - 0.53)
Multipr-orac 23.30 0.59 (0.56 - 0.62)
Grammar 12.46 0.48 (0.45 - 0.51)

Few-shot
Def 13.48 0.49 (0.46 - 0.52)
Def+ex 16.65 0.52 (0.48 - 0.55)
Multians-avg 18.47 0.51 (0.48 - 0.54)
Multians-orac 20.18 0.54 (0.51 - 0.57)
Grammar 17.30 0.53 (0.49 - 0.56)
Chain 13.91 0.43 (0.40 - 0.47)

Table 4: Metric scores for single-word translation.
BLEURT scores are followed by bootstrapped 95% con-
fidence intervals.

it is comparable to definitions and examples only in
both zero-shot and few-shot settings. The chain-of-
thought method, meanwhile, is actively unhelpful.

To gain more insight into the results, we show
some translations of selected words in Table 5;
the table contains two long verbs, one noun and
one locative. The -Dictionary translations bear no
resemblance to the references; although GPT-3 pro-
duces plausible and confident-seeming output, the
meanings are completely confabulated. We do not
observe wholesale hallucination in the definitions
using the dictionary, although some grammatical
features can be added incorrectly. For instance, the
definition only system interprets the first word as
a question despite the absence of any interrogative
marker.

The chain-of-thought system has a tendency to
lose information due to incomplete deductions. In
example #2 (tuktuliaqsimajut), it identifies tuktu
“caribou” correctly as a noun, but then fails to iden-
tify the verbalizing morpheme liaq “hunt”; because
of this, it then states that there is no subject or ob-
ject because the translation must be nominal and
fails to translate the subject marker jut “they (3+).”

The other prompting strategies yield translations
which are more similar to one another. In many
cases, deviations from the reference reflect legiti-
mate information from the definitions: in Example
#1, savik can mean both “metal; steel” or “snow-

kisarvik is an Inuktitut word which means "a place to anchor
a boat". It is made up of the following parts:
kisaq: (currently unknown)
vik: place where the action of the verb takes place, as in
"hospital; nursing station"; or, finality: ‘for good’; ‘forever’,
as in "He/she is leaving for good."; or, marks something that
is immense or impressive in size, as in "ocean"
kisaq means:

Figure 2: An example prompt for definition elicitation.

knife”. In #3, sana is defined as “to work at some-
thing; to fabricate, make something”. In many
cases, the translations obtained seem potentially
useful for practical purposes.

On the other hand, morphemes with multiple
meanings can lead to mistranslations. Uqausiit
defines unga as “(root) to long or yearn for a person
or a living thing”; “(root) the far side, the beyond
of something”; “(locative) to (a place/location)”.
In the context of #4 uvunga, the locative meaning
is applicable, since unga appears as a suffix, but
this is apparently not sufficiently explained by our
prompts. In addition, some of the systems appear
to conflate information from multiple definitions of
the morpheme.

5 Definition creation

We experiment with a single prompt for eliciting
definitions. This prompt (Figure 2) provides the
definition of all but a single morpheme, and the
translation of the phrase as a whole, then asks for
the definition of the missing item. GPT-3 is some-
what less likely to restrict itself to the prompted
format in this case. We cut off elicited definitions
at the first newline. For 20 of the roots, and 3
functional morphemes, GPT-3 repeats the prompt
phrase “currently unknown.”

Table 6 shows the results, which are much poorer
than those for translation. This is partly due to the
wide stylistic range of the definitions— reference
definitions may contain more or fewer alternative
synonyms, so that it is difficult to predict the correct
length. However, the results of the task are also
genuinely less reliable.

Inspection of the definitions (Table 7) echoes
the numerical results, revealing some potential but
also problematic tendencies. The system produces
a correct definition of aullaq “leave” in Example
#1, and arguably of ijaq “be cold” in #2. Such defi-
nitions could provide a starting point for a native
speaker to rapidly expand a dictionary with new
entries.
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Inuktitut #1 saviggirunnaqtutit #2 tuktuliaqsimajut #3 sanaji #4 uvunga
Reference You can bring your

knife.
They are out caribou
hunting.

a worker to this spot here

-Dict We are thankful (0.17) We are learning (0.11) I understand (0.04) Peace (0.08)
Def only are you able to bring a

snow-knife? (0.52)
they have gone caribou
hunting (0.74)

worker (0.36) longing for (0.06)

Def+ex you are able to bring a
snow-knife (0.48)

they have gone caribou
hunting (0.74)

a worker; a maker
(0.61)

longing for (0.06)

Multianswer You are able to bring
metal along (0.39)

They (3+) have gone
caribou hunting (0.62)
They (3+) are away
caribou hunting (0.62)

worker (0.36)
maker (0.05)
fabricator (0.03)

longing for something
near here (0.55)
yearning for something
far away (0.14)

Grammar you are able to bring a
snow-knife (0.48)

they have gone hunting
caribou (0.74)

a worker; someone
who works (0.65)

longing/yearning for a
place (0.39)

Chain you can make it (0.23) hunted caribou (0.31) worker (0.36) long for here (0.38)

Table 5: Examples of translations by -Dict and few-shot systems. Parenthesized numbers are BLEURT scores.

Data BLEU BLEURT (95% conf.)
Roots 2.88 0.33 (0.30 - 0.36)
Func. 2.97 0.27 (0.24 - 0.29)

Table 6: Metric scores for definition induction.
BLEURT scores are followed by bootstrapped 95% con-
fidence intervals.

On the other hand, the definitions of qingaq
“nose” in #2 and kisaq “to anchor” in #3 are moti-
vated by the provided examples, but too specific.
kisarvik (#3), for instance, is made up of the tar-
get morpheme kisaq and vik, which creates a place
nominal from a verb. The system therefore should
infer that the target morpheme is a verb and does
not contribute the meaning element “place”. In-
stead, it proposes the nominal meaning “an anchor-
age or place to tie up a boat.”

The system also hallucinates some entirely un-
motivated definitions, such as “bay, inlet or cove”
for vik. This definition is likely taken from the sys-
tem’s knowledge of a different language such as
Norwegian or Swedish, in which vik has this mean-
ing. The extra work of filtering out these mislead-
ing definitions detracts from any benefit of using
the system for dictionary expansion, since more
time may be wasted than gained. These proposed
definitions are also not suitable for presentation to
a language learner, who may be misled by their
seeming plausibility.

6 Conclusion

Our results clearly establish that GPT-3’s capacity
for monolingual text understanding and generation
are sophisticated enough to allow it to translate
some complex words with the aid of a dictionary
alone. Investigation of various prompt tuning tech-

niques leads to a few tentative conclusions. Usage
examples from the dictionary are helpful in combi-
nation with definitions. So are few-shot examples
(even when only 5 are available). We investigated
asking GPT-3 to generate multiple translations, and
found some evidence that it might be helpful, par-
ticularly when the user already has some idea of
how the word might be disambiguated based on
the context in which it was encountered. Experi-
ments on better-resourced agglutinative languages,
such as Finnish and Hungarian, would be useful in
better differentiating the performance of different
prompting techniques.

On the other hand, we were not able to show
much benefit from adding information on grammar
to the prompts. There are two possible reasons:
Perhaps we engineered the prompts poorly and
could have obtained better results with more care-
ful decisions about what information to include.
Or perhaps the GPT-3 system is not yet sophisti-
cated enough to relate relatively abstract grammar
information to the concrete task of translation.

We believe both of these explanations are valid to
some extent. Evidence that our prompt engineering
is at fault comes from examining the failures of the
chain-of-thought system in more detail (Appendix
B). As stated above, the system sometimes misses
nominalizers and verbalizers; although the prompt
states that these exist, we could have included more
detailed information on how to recognize them.

On the other hand, the system also sometimes
creates complex chains of thought in which it loses
track of content morphemes. This is why it predicts
the meaning “you can make it” for #1 in Table 5
rather than “you can bring your knife”, forgetting
the initial element savik. Similar problems apply
to some words expressing emotion— tautugusunn-
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Example #1 aullarli “Let him/her
depart!”

#2 qingaijaqtunga “I
have a cold nose.”

#3 kisarvik “a place to
anchor a boat”

#4 kanunga “to that
spot down there”

Content (root) morphemes
Inuktitut aullaq qingaq kisaq kan
Reference to leave; to depart; to

go away
nose to anchor something a place/spot down

here/there
System to go away; to leave; to

depart; to move away;
to go out. (0.74)

to be cold, shivering,
chilly or having a cold
nose (0.31)

an anchorage or place
to tie up a boat (0.37)

that (0.02)

Functional morphemes
Inuktitut li ijaq vik unga
Reference let him/her/it...! (com-

mand)
(1) to remove; to have
something removed (2)
to experience coldness
of body parts

place where the action
of the verb takes place

to (a place/location)

System him/her (0.28) to be cold (0.35) bay, inlet, or cove
(0.26)

to go, as in “to go down
there” (0.33)

Table 7: Examples of definitions induced by a one-shot system morphemes, with BLEURT scores.

gittara “I don’t feel like watching it” is translated
as “I love him/her/it” because the system expands
gusuk “feel an emotion” into “love”, replacing the
legitimate main verb “watch”.

While better prompting could potentially rem-
edy some of these issues, we believe more sophis-
ticated instruction-following models may perform
even better given the same resources. Moreover,
models with very long context windows might be
able to read in large sections of pedagogical mate-
rial from sites like Tusaalanga directly, reducing
the necessity to create abbreviated grammar lessons
specifically for use in prompting LLMs. We are
also interested to see to what extent more sophisti-
cated LLMs can improve at suggesting dictionary
definitions, especially to the extent that hallucina-
tions can be controlled. On the other hand, it would
be potentially interesting to see whether these re-
sults can be replicated with smaller, more cost and
computation-effective LLMs such as T5.

While this work emphasizes how much is possi-
ble without an NMT system, we also believe that
it can contribute to NMT development in the very
low-resource case. Curriculum learning for trans-
lation (e.g. Platanios et al., 2019) uses translations
of shorter or simpler constructions earlier in pre-
training, but suitable “easy” instances may be rare
in corpus data, or their distribution may be skewed
towards formulaic language. Few-shot dictionary-
based translation could be used to bootstrap to-
wards a larger NMT system by providing candidate
definitions for single words from the corpus.

Although the scope of the present work is lim-
ited to an exploratory demonstration, we are eager
to see the many ways in which it can be expanded

upon. One particular direction is to explore the ex-
tent to which an LLM can exploit linguistic context
to disambiguate between various potential transla-
tions, hopefully leading to a narrowing of the gap
between average and oracle performances. More
closely integrating segmentation into the prompt-
ing system, either by having the LLM produce its
own segmentations or rank multiple segmentations
based on the plausibility of their meanings, would
reduce dependence on an accurate canonical seg-
mentation system.

We are (to our knowledge) the first to evaluate
dictionary-based translation in the absence of a
base NMT system, and the first to deploy it on
a polysynthetic language. While our results are
not yet competitive with fully trained translation,
we believe our results represent good news for
communities in which limited resources must be
distributed among efforts to develop community-
facing resources or parallel corpora. A community
that focuses its effort on developing dictionaries for
human learners can nonetheless enjoy some of the
benefits of MT without developing a conventional
NMT system, helping to bring language revitaliza-
tion and language technologies closer together.

Limitations

The results of this work may be limited in reliability
and replicability due to some hard-to-avoid aspects
of the low-resource setting.

Our numerical results have low statistical power,
as illustrated by the wide BLEURT confidence in-
tervals in Tables 4 and 6. Without a large test set,
most differences are not statistically significant at
the accepted level. They should be treated as trends
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which can motivate further investigation rather than
solid conclusions. The significant findings are that
the no dictionary system is worse than the concate-
native baseline, which is in turn worse than the
LLM systems; multianswer and multiprompt ora-
cles surpass the definition-only system in zero and
few-shot settings.

Human evaluations would also improve the reli-
ability of our evaluations, which are currently en-
tirely automated. However, we do not have access
to Inuktitut native speakers. Human evaluations
could also be used to improve the automated met-
rics by fine-tuning BLEURT.

Reproducibility of our experiments is limited by
potential changes to the OpenAI models we use;
OpenAI might withdraw or update them at any time.
We estimate that the project incurred total costs
under $70 in payments for the GPT-3 API. The
multiprompt experiment (which generates a prompt
for each combination of morpheme definitions, and
did not meaningfully improve over asking GPT-3
to provide multiple answers) was responsible for
much of this cost. Few-shot prompts are also more
expensive than zero-shot due to their length. We
believe that only a few dollars would be necessary
to reproduce the most successful system here and
run it on hundreds of examples.

Finally, our method assumes access to a canoni-
cal segmentation system, which potentially limits
its applicability to very low-resourced languages
where such a system may be unavailable. By filter-
ing out incorrectly segmented examples, we do not
assess the potential impact of segmentation errors
on translation.

Ethics Statement

We reached out to the Inuit Uqausinginnik Taigu-
usiliuqtiit with regard to their stance on extracting
datasets from Uqausiit but have not received any re-
ply. We therefore do not plan to make the datasets
available to the community for download.

If a system for word translation based on this
paper were deployed, it should be in the context
of clear labeling. It would be important to indicate
the morpheme analysis and morpheme definitions
for the word being analyzed, and clearly separate
the automatically generated proposed translation,
which should be designated as the product of a sys-
tem which lacks native-speaker expertise. Because
most systems in this task did not hallucinate def-
initions, we believe that a clearly labeled system

of this type might do more good than harm in the
context of a revitalization effort.

If a system for definition induction based on this
paper were deployed, it would be extremely im-
portant that only native speakers were allowed to
use computer-authored definitions as sources for
dictionary entries, and that they be told clearly that
the system was provided only as a labor-saving de-
vice, rather than as a source of native-like expertise.
Scots Wikipedia is one widely cited case where a
naive user added a large amount of misleading data
to an online resource under the impression that they
were being helpful (Brooks and Hern, 2020). Our
definition induction system has the potential for
this kind of misuse.
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2020. Tackling the low-resource challenge for
canonical segmentation. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 5237–5250,
Online. Association for Computational Linguistics.

Manuel Mager, Ximena Gutierrez-Vasques, Gerardo
Sierra, and Ivan Meza-Ruiz. 2018a. Challenges
of language technologies for the indigenous lan-
guages of the Americas. In Proceedings of the
27th International Conference on Computational
Linguistics, pages 55–69, Santa Fe, New Mexico,
USA. Association for Computational Linguistics.

Manuel Mager, Elisabeth Mager, Alfonso Medina-
Urrea, Ivan Vladimir Meza Ruiz, and Katharina
Kann. 2018b. Lost in translation: Analysis of
information loss during machine translation be-
tween polysynthetic and fusional languages. In
Proceedings of the Workshop on Computational
Modeling of Polysynthetic Languages, pages 73–83,
Santa Fe, New Mexico, USA. Association for Com-
putational Linguistics.

Mick Mallon. 2000. Inuktitut linguistics for tech-
nocrats.

Jeffrey Micher. 2017. Improving coverage of an Inuk-
titut morphological analyzer using a segmental re-
current neural network. In Proceedings of the 2nd
Workshop on the Use of Computational Methods in
the Study of Endangered Languages, pages 101–106,
Honolulu. Association for Computational Linguis-
tics.

Simon Mille, Anya Belz, Bernd Bohnet, Thiago Cas-
tro Ferreira, Yvette Graham, and Leo Wanner. 2020.
The third multilingual surface realisation shared
task (SR’20): Overview and evaluation results. In
Proceedings of the Third Workshop on Multilingual
Surface Realisation, pages 1–20, Barcelona, Spain
(Online). Association for Computational Linguistics.

Sarah Moeller and Mans Hulden. 2021. Integrating
automated segmentation and glossing into documen-
tary and descriptive linguistics. In Proceedings of the
4th Workshop on the Use of Computational Methods

10

https://doi.org/10.18653/v1/2021.eacl-main.181
https://doi.org/10.18653/v1/2021.eacl-main.181
https://doi.org/10.18653/v1/2021.eacl-main.181
https://www.inuktitutcomputing.ca/Uqailaut/
https://www.inuktitutcomputing.ca/Uqailaut/
http://arxiv.org/abs/2302.01398
http://arxiv.org/abs/2302.01398
http://arxiv.org/abs/2302.01398
https://aclanthology.org/I08-1053
https://aclanthology.org/I08-1053
https://aclanthology.org/I08-1053
http://arxiv.org/abs/2302.07856
http://arxiv.org/abs/2302.07856
https://doi.org/10.18653/v1/W17-3531
https://doi.org/10.18653/v1/W17-3531
https://doi.org/lingbuzz/007313
https://doi.org/lingbuzz/007313
https://doi.org/lingbuzz/007313
https://aclanthology.org/2020.lrec-1.312
https://aclanthology.org/2020.lrec-1.312
https://aclanthology.org/2020.lrec-1.312
https://doi.org/10.18653/v1/2021.findings-emnlp.310
https://doi.org/10.18653/v1/2021.findings-emnlp.310
https://doi.org/10.18653/v1/2021.americasnlp-1.10
https://doi.org/10.3115/v1/P15-1002
https://doi.org/10.3115/v1/P15-1002
https://doi.org/10.18653/v1/2020.emnlp-main.423
https://doi.org/10.18653/v1/2020.emnlp-main.423
https://aclanthology.org/C18-1006
https://aclanthology.org/C18-1006
https://aclanthology.org/C18-1006
https://aclanthology.org/W18-4808
https://aclanthology.org/W18-4808
https://aclanthology.org/W18-4808
https://www.inuktitutcomputing.ca/Technocrats/info.php?lang=en
https://www.inuktitutcomputing.ca/Technocrats/info.php?lang=en
https://doi.org/10.18653/v1/W17-0114
https://doi.org/10.18653/v1/W17-0114
https://doi.org/10.18653/v1/W17-0114
https://aclanthology.org/2020.msr-1.1
https://aclanthology.org/2020.msr-1.1
https://aclanthology.org/2021.computel-1.11
https://aclanthology.org/2021.computel-1.11
https://aclanthology.org/2021.computel-1.11


in the Study of Endangered Languages Volume 1
(Papers), pages 86–95, Online. Association for Com-
putational Linguistics.

Tan Ngoc Le and Fatiha Sadat. 2020. Revitalization
of indigenous languages through pre-processing and
neural machine translation: The case of Inuktitut.
In Proceedings of the 28th International Conference
on Computational Linguistics, pages 4661–4666,
Barcelona, Spain (Online). International Committee
on Computational Linguistics.

Jan Niehues. 2021. Continuous learning in neu-
ral machine translation using bilingual dictionar-
ies. In Proceedings of the 16th Conference
of the European Chapter of the Association for
Computational Linguistics: Main Volume, pages
830–840, Online. Association for Computational Lin-
guistics.

Hyunji Hayley Park, Katherine J. Zhang, Coleman Ha-
ley, Kenneth Steimel, Han Liu, and Lane Schwartz.
2021. Morphology matters: A multilingual language
modeling analysis. Transactions of the Association
for Computational Linguistics, 9:261–276.

Ngoc-Quan Pham, Jan Niehues, and Alexander Waibel.
2018. Towards one-shot learning for rare-word trans-
lation with external experts. In Proceedings of the
2nd Workshop on Neural Machine Translation and
Generation, pages 100–109, Melbourne, Australia.
Association for Computational Linguistics.

Emmanouil Antonios Platanios, Otilia Stretcu, Graham
Neubig, Barnabas Poczos, and Tom Mitchell. 2019.
Competence-based curriculum learning for neural
machine translation. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 1162–1172, Minneapolis, Minnesota.
Association for Computational Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Christian Roest, Lukas Edman, Gosse Minnema, Kevin
Kelly, Jennifer Spenader, and Antonio Toral. 2020.
Machine translation for English–Inuktitut with seg-
mentation, data acquisition and pre-training. In
Proceedings of the Fifth Conference on Machine
Translation, pages 274–281, Online. Association for
Computational Linguistics.

Thibault Sellam, Dipanjan Das, and Ankur Parikh. 2020.
BLEURT: Learning robust metrics for text genera-
tion. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics,
pages 7881–7892, Online. Association for Computa-
tional Linguistics.

Zewei Sun, Qingnan Jiang, Shujian Huang, Jun Cao,
Shanbo Cheng, and Mingxuan Wang. 2022. Zero-
shot domain adaptation for neural machine transla-
tion with retrieved phrase-level prompts.

Adam Wiemerslage, Miikka Silfverberg, Changbing
Yang, Arya McCarthy, Garrett Nicolai, Eliana Col-
unga, and Katharina Kann. 2022. Morphological
processing of low-resource languages: Where we are
and what’s next. In Findings of the Association for
Computational Linguistics: ACL 2022, pages 988–
1007, Dublin, Ireland. Association for Computational
Linguistics.

Tong Zhang, Long Zhang, Wei Ye, Bo Li, Jinan
Sun, Xiaoyu Zhu, Wen Zhao, and Shikun Zhang.
2021. Point, disambiguate and copy: Incorporat-
ing bilingual dictionaries for neural machine transla-
tion. In Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics and
the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers),
pages 3970–3979, Online. Association for Computa-
tional Linguistics.

Xuan Zhang and Kevin Duh. 2021. Approaching sign
language gloss translation as a low-resource ma-
chine translation task. In Proceedings of the 1st
International Workshop on Automatic Translation
for Signed and Spoken Languages (AT4SSL), pages
60–70, Virtual. Association for Machine Translation
in the Americas.

Yuhao Zhang, Ziyang Wang, Runzhe Cao, Binghao Wei,
Weiqiao Shan, Shuhan Zhou, Abudurexiti Reheman,
Tao Zhou, Xin Zeng, Laohu Wang, Yongyu Mu, Jing-
nan Zhang, Xiaoqian Liu, Xuanjun Zhou, Yinqiao
Li, Bei Li, Tong Xiao, and Jingbo Zhu. 2020. The
NiuTrans machine translation systems for WMT20.
In Proceedings of the Fifth Conference on Machine
Translation, pages 338–345, Online. Association for
Computational Linguistics.

A Example prompts

We show the complete zero-shot prompt of each
type for Example #1 of Table 5, saviggirunnaqtutit
“You can bring your knife.” The outputs are shown
in the table.

No dictionary:

Translate Inuktitut to English:

saviggirunnaqtutit =>

Definition only:
The Inuktitut word saviggirunnaqtutit is made up of the

following parts:

savik: (1) metal; steel; iron (2) snow-knife; or, to be fitted

with a metal point (harpoon; spear)

ggiq: to bring someone or something along
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runnaq: to be able to perform a certain action

tutit: you

In English, saviggirunnaqtutit means roughly:

Definition+example:

The Inuktitut word saviggirunnaqtutit is made up of the

following parts:

savik: (1) metal; steel; iron (2) snow-knife; or, to be fitted

with a metal point (harpoon; spear)

ggiq: to bring someone or something along, as in "Don’t

bring your gun along."

runnaq: to be able to perform a certain action, as in "Could

you find that out if he/she arrived"

tutit: you, as in "you sleep"

In English, saviggirunnaqtutit means roughly:

Multianswer:
The Inuktitut word saviggirunnaqtutit is made up of the

following parts:

savik: (1) metal; steel; iron (2) snow-knife; or, to be fitted

with a metal point (harpoon; spear)

ggiq: to bring someone or something along, as in "Don’t

bring your gun along."

runnaq: to be able to perform a certain action, as in "Could

you find that out if he/she arrived"

tutit: you, as in "you sleep"

Give all possible translations of saviggirunnaqtutit:

Grammar lesson:
An Inuktitut word is made up of a root and some optional
modifiers; for verbs, this will be followed by a verb ending
which acts as an agreement marker.

If the root is a verb, the whole word will usually be trans-
lated as a sentence. If the root is a noun, the whole word will
be translated as a noun phrase or a prepositional phrase. If the
word ends with a locative modifier (like "in" or "on"), translate
it as a prepositional phrase.

Some words contain a nominalizer which turns a verb into
a noun, like "someone who does the action" or "location where
the action takes place". These should be translated as noun
phrases even though the root is a verb.

If the translation is a sentence, its subject (and object if
there is one) will be given by a verb ending.

Other modifiers within the sentence can introduce auxiliary
verbs, adverbs or discourse particles.

The material above is repeated only once in the few-shot
setting; the material below is copied for each few-shot word.

The Inuktitut word saviggirunnaqtutit is made up of the

following parts:

savik: (1) metal; steel; iron (2) snow-knife; or, to be fitted

with a metal point (harpoon; spear)

ggiq: to bring someone or something along, as in "Don’t

bring your gun along."

runnaq: to be able to perform a certain action, as in "Could

you find that out if he/she arrived"

tutit: you, as in "you sleep"

In English, saviggirunnaqtutit means roughly:

Chain-of-thought:
Since we use chain-of-thought prompting only in few-shot

mode, we show a few-shot prompt.
An Inuktitut word is made up of a root and some optional
modifiers; for verbs, this will be followed by a verb ending
which acts as an agreement marker.

To translate an Inuktitut word, first, identify the part of
speech of the root.

If the root is a verb, the whole word will usually be trans-
lated as a sentence.

If the root is a noun, the whole word will be translated
as a noun phrase or a prepositional phrase. If the word ends
with a locative modifier (like "in" or "on"), translate it as a
prepositional phrase.

Some words contain a nominalizer which turns a verb into
a noun, like "someone who does the action" or "location where
the action takes place". These should be translated as noun
phrases even though the root is a verb.

State the syntactic category of the translation.
If the translation is a sentence, its subject (and object if

there is one) will be given by a verb ending. Using this ending,
state the subject and object.

Other modifiers within the sentence can introduce auxiliary
verbs, adverbs or discourse particles. State the meaning of
each modifier.

Finally, translate the word into English.
The Inuktitut word aquttunnaqtuq is made up of the

following parts:
aqut: to steer or drive a vehicle or boat, as in "Who is going to
drive?"
junnaq: to be able to perform a certain action, as in "He/she
can hear."
juq: he/she/it, as in "he/she/it sees"
The root aqut is a verb.
The translation will be a sentence.
The subject is he/she/it and there is no object.
junnaq means ’can’, creating the meaning "can drive"
The translation is => he/she/it can drive

The Inuktitut word quviasuppit is made up of the following
parts:
quviak: to be happy, joyful, as in "they were happy while they
did something"
suk: added to verb roots that normally are transitive (double)
to make them intransitive (single), as in "He/she is afraid."
vit: the...of your..., as in "the window of your (1) house"; or,
Are you...?; Do you...?, as in "Are you eating?"
The root quviak is a verb.
The translation will be a sentence.
The subject is you and there is no object.
suk makes the verb intransitive, creating the meaning "be
happy"
The translation is => are you happy?

The Inuktitut word maligaliurvik is made up of the
following parts:
malik: (1) to follow someone or something) (2) to obey
someone or something, as in "Kiviuq followed a person into
the tent."
gaq: changes a verb to a noun with a passive meaning:
’something that one...’, as in "a drink of something; a soft
drink"
liq: an action that is underway or starting; also marks a
change from one state to another, as in "He/she is going out
right now."
uq: marks a continuous, prolonged or repeated action, as in
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"He pulled in the long rope."
vik: place where the action of the verb takes place, as in
"hospital; nursing station"; or, finality: ’for good’; ’forever’,
as in "He/she is leaving for good."; or, marks something that
is immense or impressive in size, as in "ocean"
The root malik is a verb.
The translation will be a noun phrase because of the
nominalizer vik.
There is no subject or object because it is a noun phrase.
gaq makes the verb passive, creating the meaning "be obeyed"
liq and uq together indicate association with a habit or
profession, creating the meaning "legislation"
vik indicates the place in which legislation happens, creating
the meaning "legislative assembly"
The translation is => Legislative Assembly

The Inuktitut word allavvimmi is made up of the following
parts:
allak: used to tell someone to do something quickly or for
a particular reason, as in "Sleep a little! (before you do
something else)"; or, to write or draw vik: place where the
action of the verb takes place, as in "hospital; nursing station";
or, finality: ’for good’; ’forever’, as in "He/she is leaving for
good."; or, marks something that is immense or impressive in
size, as in "ocean" mi: of his/her own...; or, of their (2)...; or,
also; too, as in "I saw it, too."; or, of his/her own..., as in "the
pole of his/her own tent"; or, in/on/at...(one of something), as
in "He sleeps in the tent"
The root allak is a verb
The translation will be a prepositional phrase because of the
nominalizer vik and the locative marker mi.
There is no subject or object because it is a noun phrase.
vik indicates the place in which writing happens, creating the
meaning "office" The translation is "in/at the office"

The Inuktitut word saviggirunnaqtutit is made up of the

following parts:

savik: (1) metal; steel; iron (2) snow-knife; or, to be fitted

with a metal point (harpoon; spear)

ggiq: to bring someone or something along, as in "Don’t

bring your gun along."

runnaq: to be able to perform a certain action, as in "Could

you find that out if he/she arrived"

tutit: you, as in "you sleep"

The root

B Chain-of-thought output

We show the full model output for the example
words in Table 5; see the previous appendix for the
prompt format.

saviggirunnaqtutit “You can bring your knife”:
savik is a verb.

The translation will be a sentence.

The subject is you and there is no object.

ggiq and runnaq together indicate the ability to make some-

thing, creating the meaning "make"

The translation is => you can make it.

tuktuliaqsimajut “They are out caribou hunting”:
tuktu is a noun.

The translation will be a noun phrase.

There is no subject or object because it is a noun phrase.

liaq indicates hunting and sima indicates the result of the

hunting, creating the meaning "hunted caribou"

The translation is => hunted caribou.

sanaji “a worker”
sana is a verb.

The translation will be a noun phrase because of the nominal-

izer ji.

The subject is one who performs the action and there is no

object.

ji indicates that the verb is turned into a noun, creating the

meaning "worker"

The translation is => worker

uvunga “to this spot here”: Is the font size
change here significant?

unga is a verb.
The translation will be a prepositional phrase because of the
locative marker uv.
There is no subject or object because it is a noun phrase.
unga indicates a sense of longing, creating the meaning "long
for"
The translation is => long for here.
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Abstract

Recent advances in pretrained multilingual
models such as Multilingual T5 (mT5) have
facilitated cross-lingual transfer by learning
shared representations across languages. Lever-
aging pre-trained multilingual models for scal-
ing morphology analyzers to low-resource lan-
guages is a unique opportunity that has been
under-explored so far. We investigate this line
of research in the context of Indian languages,
focusing on two important morphological sub-
tasks: root word extraction and tagging mor-
phosyntactic descriptions (MSD), viz., gender,
number, and person (GNP). We experiment
with six Indian languages from two language
families (Dravidian and Indo-Aryan) to train a
multilingual morphology analyzers for the first
time for Indian languages. We demonstrate
the usability of multilingual models for few-
shot cross-lingual transfer through an average
7% increase in GNP tagging in a cross-lingual
setting as compared to a monolingual setting
through controlled experiments. We provide an
overview of the state of the datasets available re-
lated to our tasks and point-out a few modeling
limitations due to datasets. Lastly, we analyze
the cross-lingual transfer of morphological tags
for verbs and nouns, which provides a proxy for
the quality of representations of word markings
learned by the model.

1 Introduction

Morphology analysis is the first step of process-
ing in the classical NLP pipeline. Even in the
transformer era, wherein the entire NLP pipeline
is replaced with a transformer, the use of morpho-
logical segmentation for tokenization instead of
statistical subword tokenization has been shown to
produce better embeddings, especially for morpho-
logically rich languages (Nzeyimana and Rubungo,
2022). The statistical subword tokenization used
in tokenizers such as wordpiece cannot capture

*Work done while at IIT Bombay

morphological alternations (e.g. wordpiece doesn’t
treat contextual allomorphs as related) and non-
concatenative morphology (Klein and Tsarfaty,
2020).

One of the tasks that we analyze in our work
is root word extraction, which forms an integral
component of morphologically informed segmen-
tation. A morphology analyzer can also help speed
up language documentation efforts for endangered
languages, Moeller et al. (2020) leveraged inter-
linear glossed text to generate unseen forms of in-
flectional paradigm using a morphology analyzer.
Availability of morphological information can also
benefit various downstream tasks such as parsing
(Seeker and Çetinoğlu, 2015), machine translation
(Tamchyna et al., 2017), language modeling (Park
et al., 2021), etc. Our scope of this work is in-
flectional and concatenative morphology. We also
envision our work to be used in bias-aware machine
translation, especially from morphologically poor
languages to morphologically richer languages. For
example, if we want to translate the sentence "My
friend was a doctor" to Hindi, we would ideally
prefer to have both masculine and feminine transla-
tions "Mera dost doctor tha" (masculine) and "Meri
dost doctor thi"(feminine), as English sentence has
no mention of gender and for Hindi, the gender
markers are present on verbs (tha\thi) and pronouns
(mera\meri).

Although high-quality morphology analyzers
have been built for some Indian languages, they are
either rule-based such as Agarwal et al. (2014), or
are neural models trained on annotated data which
is available in sufficient quantities only for high
resource languages (Jha et al., 2018). Building
morphology analyzers for low-resource languages
remains a challenging task. For low-resource lan-
guages, morphological resources are sparse or
virtually nonexistent. Multilingual models have
shown promising results for cross-lingual transfer
from high-resource to low-resource languages (Wu
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Percentage of data points with a particular feature marking is present
Gender Number Person Tense Aspect Case Modality Others

60.4 94.8 82.1 58.5 35.5 11.0 11.0 27.5

Table 1: Combined statistics of annotated data (across languages) available for various tags. We work with gender,
number, and person as they have the highest proportion as compared to other features and are common to noun and
verb morphology. We don’t use tense as it is not relevant to nouns. More details in section 3

and Dredze, 2019; Lauscher et al., 2020). The main
goal of our work is to increase NLP inclusivity. The
primary obstacle one encounters while expanding
the coverage of NLP models is the lack of usable
(annotated) data for most languages; collecting (an-
notated) data is a painstaking task, especially for en-
dangered languages. When data is sparse, we turn
to linguistics to help exploit universalities across
languages.

In this work, we study the multilingual capability
of mT5 (Xue et al., 2021) to carry out cross-lingual
transfer of morphological features and extract the
root words given the surface forms. We also test
the multilinguality hypothesis that, in the presence
of annotated examples of source languages, the re-
quired number of annotated examples of the target
language to get identical results reduces. We carry
out this analysis of cross-lingual transfer within lan-
guage families and across (language) families and
provide pointers to effective usage of multilingual
data. The languages we carry out morphological
analysis are of the Dravidian family (Tamil, Telugu,
and Kannada) and the Indo-Aryan family (Bengali,
Hindi, and Marathi). We also give a brief account
of the state of datasets available for morphological
analysis and their challenges. We finetune mT5
for gender, number, and person tagging for verbs
and nouns in six Indian languages: Marathi, Hindi,
Bengali, Tamil, Telugu, and Kannada. The features:
gender, number, and person (GNP) are hereby re-
ferred to as morphosyntactic description (MSD)
tags. The current state of the datasets and incon-
sistency of annotation across languages limits our
analysis to GNP tags of verbs and nouns.
Our contributions are as follows:

• We test the multilinguality hypothesis that the
availability of annotated data of source lan-
guages reduces the number of examples of
target language required to outperform the
monolingual baseline.

• We study inter-family and intra-family trans-
fer in the context of GNP tagging and root
word extraction for languages from Dravidian
and Indo-Aryan families.

• We analyze how multilingualism helps in the
morphological analysis of verbs and nouns,
root word extraction, and test the model’s abil-
ity to generalize to unseen suffixes.

2 Related Work
Morphological analysis: For morphological anal-
ysis, SIGMORPHON (Nicolai et al., 2021) has
been one of the venues organizing shared tasks
and workshops related to computational morphol-
ogy and multilingual morphological analysis, es-
pecially in the low resource scenarios. Shared
tasks such as Cotterell et al. (2016, 2017, 2018),
etc. looked at morphological reinflection with an
increasing number of languages each year. For
morphological reinflection, the output is the sur-
face form, and the inputs are: a root word (or any
other form of the root word) and desired features
in the surface form (the output). Task 2 in Cotterell
et al. (2018) as well as McCarthy et al. (2019) ex-
plored morphological analysis and reinfection in
context. Jin et al. (2020) and Wiemerslage et al.
(2021) were aimed at unsupervised clustering of
paradigms, wherein given a lemma list, the goal is
to output all the possible forms of a lemma. Mor-
phosyntactic lexicon generation is one task closely
related to morphological analysis; Faruqui et al.
(2016) used graph-based semi-supervised learning
for label propagation. Hulden et al. (2014) used
a semi-supervised approach for lexicon construc-
tion from concrete inflection tables by generalizing
the inflection paradigms from the tables provided.
For morphology resources, apart from UniMorph
(Batsuren et al., 2022; McCarthy et al., 2020), the
MorphyNet database (Batsuren et al., 2021) is a
large dataset of methodologically annotated sur-
face forms spanning 15 languages and is extracted
from Wiktionary. There have also been efforts to
create task-specific models for various components
of cross-lingual morphological tagging (Cotterell
and Heigold, 2017a; Malaviya et al., 2018)
Indian language morphology: Regarding re-
sources for Indian languages, Arora et al. (2022)
points out resource scatteredness (rather than
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scarcity) as the primary obstacle to developing
South Asian language technology and proposes
the study of language history and contact as one of
the potential solutions. Workshops like Dravidian-
LangTech (Chakravarthi et al., 2021) and WILDRE
(Jha et al., 2020) are dedicated specifically to the de-
velopment of technologies and resources for Indian
languages. The UniMorph database (McCarthy
et al., 2020) has been one of the recent efforts to ex-
tend the coverage of computational morphological
resources. Cotterell and Heigold (2017b) trained
bidirectional character-based LSTM-based mod-
els to demonstrate the effectiveness of the cross-
lingual transfer. They have trained bilingual mod-
els for languages from Romance, Slavic Germanic,
and Uralic families. Gupta et al. (2020) trained
various sequence labelling models for Sanskrit.
Nguyen et al. (2021) trained transformer-based
models for various NLP tasks such as PoS tag-
ging, Morphological feature tagging, and depen-
dency parsing for over 100 languages. Nair et al.
(2021) carried out a comparative study of exist-
ing morphological analyzers for Indian languages
to conclude that although morphological analyz-
ers exist for Indian languages like Sanskrit and
Malayalam, they are not accurate as compared to
the high resource baselines. Elsner (2021) probed
an analogical memory-based framework for one-
shot morphological transfer to study the abstract
representational concepts learned by the transfer
networks.

3 Dataset Challenges

Creating a multilingual morphology analyzer
would require a union of the sets of features across
all the languages and all the parts of speech. The
morphological features are modeled as categorical
variables in fixed output space. The modeling diffi-
culties arise primarily due to the following: (1) ab-
sence of feature annotations for Indian languages,
(2) lack of data for all the parts of speech (PoS)
except verbs and nouns and (3) variance of mark-
ings across PoS and languages. The dataset only
contains data for verbs and nouns, which restricts
our analysis to those PoS. For these PoS, the fea-
ture data is primarily available for Gender, number,
and person compared to other features, so we carry
out transfer analysis for only those features. We
provide a summary of annotated data available in
Table 1. Gender, number, and person also happen
to be morphological features that are common to
nouns and verbs. We provide detailed statistics of

the UniMorph dataset in appendix A.
We have used various data sources to demon-

strate the scalability of the morphology analyzer to
6 Indian languages. For languages Hindi, Telugu,
Kannada, and Bengali, we have used the UniMorph
3.0 (McCarthy et al., 2020) dataset. The number
of examples varies across languages. For Bengali,
the number of examples available is 4443; for Kan-
nada, it is around 6400; for Hindi, there are about
54K examples, while Telugu has about 1500 exam-
ples. All the examples in the UniMorph dataset are
either verbs or nouns. For Tamil, morphologically
annotated data from the Tamil dependency treebank
(Ramasamy and Žabokrtský, 2014) was used. The
number of annotated words (verbs+nouns) in the
tree bank is 9521, all of which were used. For
Marathi, we used the dataset from Bapat et al.
(2010). The dataset consists of around 21k an-
notated words, out of which we used 15k words,
nouns, or verbs, to have consistency with other
datasets. Although there are other sources of data,
such as Bhat et al. (2017), we stick to the Uni-
Morph dataset wherever possible to ensure higher
annotation accuracy. The scope of our work lim-
its demonstrating the usefulness of cross-lingual
transfer for morphological analysis, so dataset se-
lection and optimizing the number of examples for
creating the best morphology analyzer remains a
challenge for future research.

4 Modelling Details

4.1 Morphological analysis as text to text
problem

The Multilingual T5 (Xue et al., 2021) is a mas-
sively multilingual pre-trained text-to-text trans-
former model released by Google in 2020. It is
pre-trained on the Common Crawl-based dataset
and covers 101 languages. It is an encoder-decoder
sequence generation model, unlike mBERT, which
is an encoder-only multilingual model. Our task of
root word extraction requires the generation of text
sequences, so we use an encoder-decoder model to
avoid training a decoder separately for the given
languages. We use the mT5 base model with 580
million parameters for our experiments.

As mT5 is a text-to-text sequence generation
model, the tags are generated as a sequence of text,
one after the other. The input to the model is the
surface form of the words, and the model generates
the gender, number, and person tags as a text se-
quence. Not all the words in the dataset would be
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Modeling Strategy Accuracies For Marathi
Monolingual Multilingual

Root Word MSD Tagging Root Word MSD Tagging
Joint model 42.2 79.7 53.2 84.6
Multitask model 26.2 86.5 52.2 88.2
Independent Model 78.2 81.2 86.4 95.2

Table 2: Comparing three modeling strategies for root word extraction and MSD tagging. Training a separate
multilingual model for both tasks is the best-performing strategy. We provide details in section 4.2

morphologically marked for GNP; for example, in
the case of person marking for nouns, the markings
are only present on the pronouns (and the surface
form changes according to the person). In contrast,
the surface form remains the same for common and
proper nouns, irrespective of the person. In such
cases, where the marking is either trivial or mark-
ing is not present on the word or where the marking
cannot be inferred from the surface form itself, the
model’s expected output is the tag ‘unknown’. The
datasets we use contain morphological tags with-
out context; we, therefore, predict the tags solely
based on the markings present on the words rather
than the context and assign the tag ‘unknown’ to
the words for which tags cannot be predicted with-
out context. For all the experiments, unless and
otherwise stated: we use the following evaluation
strategy: We firstly remove the 20% data (randomly
sampled) for each language (which is used for eval-
uation) and use the remaining 80% data for experi-
ments. We ensure that the randomly sampled data
contains unseen paradigms; no surface form of the
lemma is present in the training dataset. Across
the monolingual and multilingual experiments, the
evaluation data remains the same. To avoid the
error variation due to bias in sampling (wherein the
test set contains all the paradigms available in the
training set), we use k-fold cross-validation (with
k=5) and report average numbers. The epochs used
were 7-15 based on performance on validation data.
As far as metrics for measuring model performance
are concerned, we report per-tag accuracy for each
of the GNP tags, and overall accuracy. The over-
all accuracy denotes the percentage of instances
for which all three tags are predicted correctly by
the model. For root word extraction, we consider
exact-string match based accuracy.

4.2 Three modelling strategies

We consider three modelling strategies for MSD
tagging and root word extraction.

• Joint model: We first use the mT5 as a se-
quence prediction model wherein the input
is the surface form, and the outputs are the
root words and MSD tags. The root word and
MSD tags are generated as a sequence, with
the root word being generated first, followed
by MSD tags: gender, number, and person (in
that order).

• Multitask model: In the second setting, we
use mT5 as multitask model, with MSD tag-
ging and root word extraction being treated
as two separate tasks. We prepend a prefix
(string) to the input to specify which task
should be performed.

• Independent model: In the third setting, we
train separate models for root word extraction
and MSD tagging, with MSD tags being pre-
dicted as a sequence of letters and the input
being the surface form.

The input to the model for the second task is the
surface form, along with a prefix specifying the
task. It should be noted that the choice of prefixes
is arbitrary, as long as they are different for each
task. While fine-tuning, we add explicit language
flags with the respective surface words.

We compare the training strategies in Table 2.
The joint sequential prediction leads to the least
accuracy in both tasks. Although the multitask
framework has higher accuracy than the joint pre-
diction for MSD tagging, it has the lowest accuracy
for root word prediction. The multitask framework
is expected to have high accuracies because both
tasks (MSD tagging and root word extraction) are
closely related to each other in the following way:
The suffix determines the MSD tags of the surface
form, and thus identifying the suffix is an impor-
tant part of MSD tagging while stripping away the
suffix is one of the aspects of root word extraction.
The joint multitask training leads to the mixing of
outputs (the outputs of both the tasks are in differ-
ent languages: The MSD tags are in English while
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Language
Monolingual

accuracies
Multilingual
accuracies

Gender Number Person Overall Gender Number Person Overall
Tamil 80.1 87.9 86.3 79.3 86.3 91.7 89.7 85.4
Telugu 78.9 97.7 87.4 76.2 78.6 98.3 87.6 76.5
Kannada 84.0 88.1 82.6 70.1 87.3 95.7 86.8 81.7
Marathi 88.2 87.2 89.3 90.2 96.7 95.9 97.7 95.6
Hindi 92.1 85.1 56.9 53.5 99.0 89.1 58.3 52.6
Bengali 99.3 94.3 85.0 85.8 99.2 98.3 90.8 90.4

Table 3: Demonstrating the benefit of multilingual models over monolingual models for all three tags. The per-tag
accuracies and overall accuracies show an increase for all languages except Hindi and Telugu, which show a slight
decrease in overall accuracy (but the per-tag accuracy increases for all languages). We provide details of the
experiments in section 4.1

the root words are in the same language as the sur-
face form), as observed during the performance
on the test set. Training a separate model for both
tasks yields the highest performance, and we use
the strategy for all our subsequent experiments.

5 Low Resource Morphological Analysis
Experiments

5.1 Multilinguality hypothesis

We test the multilinguality hypothesis by compar-
ing monolingual models with multilingual models.
As seen in Table 3, which shows per-tag accuracy
for each gender, number, person tag, along with
overall accuracy, multilingual models outperform
the monolingual models for most of the languages
except for Hindi and Telugu. One of the reasons
for worse performance of multilingual model for
Hindi is that the Hindi data containers phrases and
post-positions with GNP markings, which are not
present in other languages. Thus, adding multi-
lingual data leads to drop in model performance
due to confusion between word-based markers and
post-position based markers. For Dravidian lan-
guages, the overall increase in the accuracy of the
multilingual model is negligible in the case of Tel-
ugu (as compared to the monolingual baseline), the
other two languages, Tamil and Kannada, show
around 7.8% increase in overall accuracy. Multilin-
gual models also show better scores in the case of
per-tag accuracies for all the Dravidian languages,
with gender tag having the highest average increase
of 4.03% (averaged over languages).

As also seen in column 2 of Table 2, there is an
increase in the accuracy of root word extraction
and MSD tagging for Marathi. We show more ev-
idence of the multilinguality hypothesis for MSD

tagging through controlled experiments on Bengali
and Kannada. We chose these two languages to
study the transfer because (1) Kannada shows the
highest increase in overall accuracy among the Dra-
vidian languages, and (2) the number of annotated
examples of Bengali is the least among the Indo-
Aryan languages. Choosing these two languages
helps us clearly observe the effect of cross-lingual
transfer and the low resource scenario. Tables 4
and 5 show that the multilingual models outper-
form the monolingual models irrespective of the
source languages, with the increase in accuracy be-
ing the highest (around 54% for Bengali and 33%
for Kannada) in sparse data scenario, where the
number of examples of the target language is 1000.
Tables 6 and 7 show evidence of the multilinguality
hypothesis for root word extraction.

5.2 Inter-family and intra-family transfer
To study cross-family and intra-family transfer, we
use Bengali and Kannada. Bengali has the least
number of examples in the Indo-Aryan family and
shows the highest increase in accuracy with the
addition of multilingual data. Kannada shows the
highest increase in overall accuracy when going
from a monolingual to a multilingual setting. We
do this by varying the number of examples of Ben-
gali in the train set to simulate the low-resource
scenario. We also add various sets of languages
as a source to check inter-family and intra-family
transfer. Note that the last row in all the tables
named ‘All Languages’ implies that the data of all
six languages were used for training. We study the
effectiveness of (family-based) multilingual data
by analyzing inter-family and intra-family transfer.
In the case of Bengali, we observe that intra-family
transfer from languages of the Indo-Aryan family,
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viz., Marathi and Hindi, lead to, on average, 2.82%
more accuracy as compared to transfer from the
Dravidian family for MSD tagging (Table 4). For
Kannada, the increase in accuracy from monolin-
gual baselines is more from the languages of the
Dravidian family as compared to the Indo-Aryan
family when the number of examples of Kannada
in the training data is 1000 (Table 5). In all other
cases, the increase in accuracy with Dravidian lan-
guages is either less or similar to that with Indo-
Aryan languages as a source. When languages
from both families are used as source languages,
we observe a sharp increase in accuracy for the
root word extraction in Bengali and Kannada. For
both the languages, Bengali and Kannada, there is
a decrease in accuracy when all the languages are
used as source languages, compared to the setting
where languages from a particular family are used
as source languages.

6 Analysis
In this section, we provide further analysis of the
cross-lingual transfer of MSD tags for verbs and
nouns and root word extraction.

6.1 GNP tagging for verbs and nouns

In Table 3, we note that the increase in overall
accuracy in the case of the multilingual model is
the highest for Kannada in the Dravidian family
as compared to the monolingual model. Bengali
has the least number of annotated examples and
shows the highest increase in accuracy from mono-
lingual baseline in the Indo-Aryan family. We dive
further into the accuracies of Kannada and Bengali.
To investigate the sources of multilingual signals,
we conduct experiments separately for nouns and
verbs.
Nouns: For nouns, the person feature is trivially

Source
Languages

Number of Bengali
training examples

1000 2000 3000
Monolingual 30.8 82.2 85.8
Marathi, Hindi 85.5 89.4 90.4
Tamil, Telugu,
Kannada

83.1 87.6 86.1

All languages 73.8 88.9 89.8

Table 4: Bengali MSD tagging accuracies demonstrat-
ing effectiveness of intrafamily transfer and multilin-
guality over monolingual model for low resource setting.
More details in section 5.2

third (except for pronouns), and the number fea-
ture can be inferred from the suffix, but the gender
assignment is arbitrary, and we may require a dic-
tionary to get the gender of the nouns. So, if the
nouns (present in the test set) have not been seen
during training by the model, one of the potential
sources of signal regarding gender is the multilin-
gual data. Another source of signals for gender is
also the context that the model has seen during the
pretraining (for example, the gender of the nouns
is marked on verbs). It is hoped that the gender sig-
nals will be captured in the representations learned
during the multilingual pretraining. The shared la-
tent space, learned by the multilingual models, is
assumed to cluster the words of the same meaning
in different languages close to each other.

To test the hypothesis regarding the gender of
nouns, we test the accuracy of Kannada and Ben-
gali nouns with various training data from multiple
languages. As the gender signal can be dictionary-
based, we see that the accuracy increases irrespec-
tive of the source languages, as shown in Table
9 and Table 12 in appendix B. For both the lan-
guages, Bengali and Kannada, we note that the gen-
der accuracy is higher when the source languages
are Marathi and Hindi. The higher accuracy is be-
cause the number of training examples of Hindi and
Marathi combined is around 70k, while the number
of examples of all Dravidian languages combined
is about 17K, so more the number of nouns in the
training set, more would be the hope of getting
dictionary signals. As additional evidence, we also
carry out zero-shot transfer for nouns of each lan-
guage. The training data consists of nouns from all
the available languages, and the test data contains
nouns from the target language, as shown in Table
13 in the appendix B. The zero-shot gender predic-

Source
Languages

Number of Kannada
training examples

1000 2000 3000 4000
Monolingual 33.2 52.8 65.1 81.7
Marathi, Hindi,
Bengali

63.9 77.2 81.4 84.9

Tamil, Telugu, 69.4 74.8 82.8 85.4
All languages 69.8 76.3 78.3 82.2

Table 5: Kannada MSD tagging accuracies demonstrat-
ing effectiveness of intra-family transfer and multilin-
guality over monolingual model for low resource setting.
More details in section 5.2
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Source
Languages

Number of Kannada
training examples

1000 2000 3000 4000
Monolingual 23.2 31.2 40.9 51.2
Marathi, Hindi,
Bengali

67.2 70.8 76.7 80.2

Tamil, Telugu, 69.1 71.5 72.9 77.5
All languages 70.4 72.6 78.8 83.2

Table 6: Kannada root word extraction accuracies
demonstrating multilinguality hypothesis. More details
in section 5.1

tion accuracy is non-trivially high for all languages
except Tamil (as compared to the case where only
verbs are used as source data, wherein we get trivial
test accuracies). Tamil has less accuracy for gender
as compared to other languages because the num-
ber of genders in the Tamil dataset is five, and in a
zero-shot setting, the model has no way of knowing
the presence of five genders.
Verbs: In the case of verbs, all the features: gender,
number, and person can be inferred from the suffix.
Our hypothesis here is that increase in the accuracy
of verbs in the multilingual setting depends on the
source language data available for training. As seen
in Table 8, the highest increase in the accuracy of
Bengali verbs is seen when the source languages
are from the same family. The gender accuracy is
almost the same for all the languages as Bengali is
a gender-less language, and there are no markings
of gender on verbs. In the case of Kannada, as
shown in Table 11, the highest increase is observed
when the source language is Tamil and Marathi.
A Significant increase in accuracy when source
data from Marathi is used provides evidence of
historical contact between these two languages, as
has been discussed in Sengupta and Saha (2015).

Source
Languages

Number of Bengali
training examples

1000 2000 3000
Monolingual 32.2 51.2 74.8
Marathi, Hindi 85.2 92.3 95.2
Tamil, Telugu,
Kannada

84.6 91.2 93.3

All languages 90.1 92.8 96.9

Table 7: Bengali root word extraction accuracies demon-
strating positive transfer from various subsets of source
languages. More details in section 5.1

Source
language

Accuracy for
Bengali Verbs

Gen Num Per Overall
Monolingual 99.3 94.2 84.6 76.2
Marathi 99.2 92.6 89.4 88.9
Hindi 99.2 93.2 90.7 90.0
Tamil 99.6 92.6 86.8 86.8
Telugu 99.1 91.6 84.2 83.9
Kannada 99.2 91.3 88.2 87.3
Hindi,
Marathi

99.8 93.4 90.5 84.1

Tamil,
Telugu,
Kannada

99.8 91.6 89.8 85.8

Table 8: Analysis of Bengali Verbs demonstrating trans-
fer from various families and languages. More discus-
sions in section 11

Training
languages

Accuracy on Kannada Nouns

Gender Number Overall
Monolingual 96.0 90.4 82.9
Tamil, Telugu 94.0 94.9 89.4
Marathi, Hindi 96.9 97.3 94.4
All Languages 96.0 97.7 95.7

Table 9: Testing cross-lingual transfer for Gender and
Number tags in the case of Kannada Nouns

The historical contact also shows the reason behind
the highest increase in overall accuracy when the
source languages are Marathi and Hindi (Table 9).

Generalization: We also test the model’s gener-
alization ability to unseen patterns. For example,
the suffix ‘raha hei’ in Hindi represents masculine,
third person, and singular. We remove all instances
of the suffix from the train set, add them to the
test set, and check the accuracy of the model on
it in multilingual and monolingual settings. In the
case of monolingual and multilingual settings, the
model’s overall accuracy is 50% for GNP tagging;
the tags gender and number are correctly predicted
for all the test instances, while the person tag is cor-
rectly predicted for 50% of all the instances. The
number and gender can be inferred from the suf-
fix itself; however, the person tag depends on the
verb as well as the context, thus leading to confu-
sion for the model (as we are not using the context
currently.)
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Number of
training examples

Bengali Kannada

(1) Input same
as outputs

(2) Surface forms
and roots

(1) Input same
as outputs

(2) Surface forms
and roots

zero-shot 12.2 18.2 8.6 12.1
1000 90.3 90.1 72.2 70.4
2000 94.8 92.2 71.2 72.6
3000 97.9 96.9 73.9 78.8
4000 - - 74.4 83.2

Table 10: Role of copy bias in root word extraction. Adding inputs same as outputs for source languages has results
comparable to the case when inputs are surface form and outputs are root words. (Note: Number of available
training examples of Bengali is 3000) More details in section 6.2

Source
language

Accuracy for
Kannada Verbs

Gen Num Per Overall
Monolingual 83.0 95.8 82.7 73.1
Marathi 87.6 96.3 83.3 76.0
Hindi 85.6 95.5 90.3 81.9
Tamil 88.0 96.7 92.3 84.1
Telugu 80.6 94.6 74.1 66.1
Bengali 84.6 97.4 91.8 81.8
Hindi,
Marathi,
Bengali

81.4 94.4 83.9 76.0

Tamil,
Telugu

87.7 97.2 91.6 83.5

Table 11: Analysis of Kannada Verbs demonstrating
transfer from related families and languages. More
discussions in section

6.2 Root word extraction

To test cross-lingual transfer in the case of root
word extraction, we test the copy bias learned by
the model. The copy bias is an essential part of
the learning process for root word extraction, as
the output contains most of the characters present
in the input except for a suffix. As can be seen in
Tables 7 and 6, the root word extraction accuracy
increases to a similar extent, irrespective of the
source language. We test the copy bias by adding
training examples from source languages such that
the input and output are the same. The compar-
ison of the effect of copy bias with our standard
setup where the source inputs are surface form and
source outputs are root words is shown in Table 10.
The table highlights that copy bias plays a role in
root word extraction and cross-lingual transfer of
morphological knowledge (such as the similarity

between morphemes) across the shared embedding
space is limited.

7 Conclusions
In this paper, we tested the multilinguality hypoth-
esis for root word extraction and morphosyntactic
descriptors (MSD) tagging. We trained multilin-
gual models for MSD tagging and root word ex-
traction using data of six Indian languages span-
ning two families of the Indian subcontinent. We
demonstrated the effectiveness of data from lan-
guages of the same and different families and how
it can be leveraged to train morphological analysis
models for low resource languages. We also ana-
lyzed how cross-lingual transfer of morphological
knowledge happens for nouns and verbs along with
the copy bias, which forms a significant compo-
nent of the root word extraction. Our framework
can be extended to multiple tags as well as more
low resources languages as annotated data becomes
available. We see our work as an important step in
the direction of bias-aware machine translation to
morphologically rich languages.

8 Limitations

One of the limitations of our work is the unavail-
ability of context data and unavailability of phrase-
based annotations for all languages except Hindi.
The unavailability of phrase-based annotations pre-
vents the usage of universal tags because mark-
ings that are present on a single word in highly
agglutinative languages like Marathi or Tamil get
expressed on 2–3 words in isolating or fusional lan-
guages like Hindi or Bengali (where markings are
present on post-positions). The benefits of using
phrase level morphology over token level morphol-
ogy have been discussed in Goldman and Tsarfaty
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(2021). For example, the word ‘sochega’ in Hindi
will have MSD tags: future tense and male gender,
while in English, it would take two words, ‘he will
think’ to express the same amount of morpholog-
ical information. The presence of contextual data
can also help to disambiguate MSD tags. The other
limitation of our work is the mismatch between
the languages for which pretrained models (espe-
cially encoder-decoder models) are available and
the languages for which we have the annotated data.
For example, UniMorph dataset contains annotated
examples for Assamese and Sanskrit, but we do
not have multilingual pretrained encoder-decoder
models for these languages.

9 Ethics Considerations\Broader Impact

Our work is on morphological analysis of low re-
source languages. We aim to increase the coverage
of NLP tools through our work. It is inline with
making language technologies accessible for wider
range of audiences who do-not have commonly
researched high resource languages like English,
French as their native language. Our work is also a
step towards automating the process of documenta-
tion of endangered languages.
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Brian Leonard, Garrett Nicolai, Kyle Gorman, Yusti-
nus Ghanggo Ate, Maria Ryskina, Sabrina Mielke,
Elena Budianskaya, Charbel El-Khaissi, Tiago Pi-
mentel, Michael Gasser, William Abbott Lane,
Mohit Raj, Matt Coler, Jaime Rafael Montoya
Samame, Delio Siticonatzi Camaiteri, Esaú Zu-
maeta Rojas, Didier López Francis, Arturo Once-
vay, Juan López Bautista, Gema Celeste Silva Vil-
legas, Lucas Torroba Hennigen, Adam Ek, David
Guriel, Peter Dirix, Jean-Philippe Bernardy, An-
drey Scherbakov, Aziyana Bayyr-ool, Antonios
Anastasopoulos, Roberto Zariquiey, Karina Sheifer,
Sofya Ganieva, Hilaria Cruz, Ritván Karahóǧa,
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A Appendix: Satistics of UniMorph
Dataset

The UnimOrph dataset’s statistics are shown in ta-
ble 14. A total of 26 features are available in the
meta-data of the UniMorph dataset. They include
Aktionsart, Animacy, Argument marking, Aspect,
Case, Comparison, Definiteness, Deixis, Eviden-
tiality, Finiteness, Gender, Information Structure,
Interrogativity, Language Specific features, Mood,
Number, Other, Part of speech, Person, Polarity,
Politeness, Possession, Switch reference, Tense,
Valency, Voice. For most Indic languages, the anno-
tations are present for not more than eight features
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per language. The set of features for which annota-
tions are current varies across languages. We give
the proportion of words in the dataset for which fea-
ture annotations are present. We provide statistics
for Gender, Number, Person, Tense, Aspect, and
Modality, characteristic features of verbal morphol-
ogy. We also provide statistics for case, number,
number, and person for nouns. The ‘others’ section
represents the features with the highest proportion
of tags, from gender, number, person, tense, aspect,
modality, and case. Also, one thing that must be
noted is that the amount of data available for verbs
is almost 5 times the data available for nouns for
most of the languages, so the number in the ‘total’
row is dominated by statistics of verb. For Hindi,
the nouns data is completely absent.

B Appendix: Cross-Lingual transfer
Nouns—Additional Tables

Training
languages

Accuracy on Bengali Nouns

Gen Num Overall
Monolingual 96.81 79.62 76.85
Tamil, Telugu,
Kannada

95.18 91.66 85.18

Marathi, Hindi 98.21 92.23 87.37
All 98.45 92.7 90.7

Table 12: Testing cross-lingual transfer for Gender and
Number tags in the case of Bengali Nouns

Target
language

Zero Shot Test
accuracy for nouns

Gender Number Overall
Marathi 68.2 76.4 66.4
Telugu 69.6 59.7 48.1
Bengali 55.1 65.5 50.2
Kannada 56.2 61.2 47.3
Tamil 15.1 67.1 13.2

Table 13: Zero-shot accuracies for gender and number
tagging of nouns showing the help of multilingual sig-
nals for gender. More details in section 6.1
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Lang
POS for
which data is available

Percentage of data points with a particular feature marking is present

Gen Num Per Ten Aspect Case Modality Others

Hindi
Verbs 94.7 99.0 95.2 34.1 89.1 0 27.0 35.2
Nouns - - - - - - - -
Total 94.7 99.0 95.2 34.1 89.1 0 27.0 35.2

Bengali
Verbs - 100 86.9 86.9 60.8 - 2.1 52.1
Nouns 66.6 - - - - 80.8 - 19.8
Total 8.0 88.9 75.6 75.6 52.9 10.5 1.8 45.3

Kannada
Verbs 46.6 100 89.2 46.2 - - 19.6 20.7
Nouns - 100 - - - 100 - -
Total 36.6 91.4 70.5 37.1 0 20.9 15.5 16.8

Telugu
Verbs 50.0 100 100 100 - - - 13.7
Nouns - 100 - - - 100 - -
Total 43.7 100 87.2 87.2 0 12.7 0 11.3

Combined
Verbs 47.8 99.7 92.8 77.5 37.4 - 12.1 30.4
Nouns 16.6 50 - - - 70.2 - 4.9

Table 14: Statistics of UniMorph dataset
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Abstract

Due to the lack of data resources, rule-based
or transfer learning is mainly used in the mor-
phological tagging of low-resource languages.
However, these methods require expert knowl-
edge, ignore contextual features, and have error
propagation. Therefore, we propose a joint
morphological tagger for low-resource agglu-
tinative languages to alleviate the above chal-
lenges. First, we represent the contextual in-
put with multi-dimensional features of agglu-
tinative words. Second, joint training reduces
the direct impact of part-of-speech errors on
morphological features and increases the in-
direct influence between the two types of la-
bels through a fusion mechanism. Finally, our
model separately predicts part-of-speech and
morphological features. Part-of-speech tagging
is regarded as sequence tagging. When pre-
dicting morphological features, two-label ad-
jacency graphs are dynamically reconstructed
by integrating multilingual global features and
monolingual local features. Then, a graph con-
volution network is used to learn the higher-
order intersection of labels. A series of exper-
iments show that the proposed model in this
paper is superior to other comparative models.

1 Introduction

Morphological tagging describes the lexical infor-
mation of a word in a sentence from the part-of-
speech (PoS) and morphological features (MFs;
case, person, mood, tense, etc.) (Özateş and
Çetinoğlu, 2021) and is an essential task in ag-
glutinative language information processing. Mor-
phological tagging can analyze semantics (Kli-
maszewski and Wróblewska, 2021), so some mor-
phological knowledge will be added to many down-
stream tasks, such as dependency parsing (Kli-
maszewski and Wróblewska, 2021), named entity
recognition (Kim and Kim, 2020), language mod-
els (Park et al., 2021), and machine translation (Jon

∗*:Corresponding author

et al., 2021), to assist the model in learning seman-
tics and improve interpretability. An example is
given in Table 1. The first line shows a sentence,
the second line shows its lemma, and the third line
shows the morphosyntactic description (MSD) la-
bels.

The cats are sleeping .
the cat be sleep .

DET N;PL V;PRS;3;PL V;V.PTCP;PRS PUNT

Table 1: An example of morphological analysis in En-
glish

In recent years, there have been many achieve-
ments in morphological tagging, among which SIG-
MORPHON 2019 shared task 2 is a significant
milestone (McCarthy et al., 2019), and many cross-
lingual morphological tagging models have been
proposed. High-resource languages usually use
deep learning models and regard morphological tag-
ging as a sequence labeling (Özateş and Çetinoğlu,
2021) or sequence generation task (Oh et al., 2019).
The study of English and Chinese morphological
tasks began relatively early. Supported by large-
scale labeled datasets and large language models,
the morphological tagging technology of these lan-
guages has reached a mature level. However, the
morphological tagging of low-resource languages
remains to be further researched. Finite-state trans-
ducer (FST) and transfer learning are the primary
strategies for constructing morphological tagger in
low-resource languages (Wiemerslage et al., 2022;
Ibrahim et al., 2018; Rueter et al., 2021; Cotterell
and Heigold, 2017). The FST model represents
orthographic rules as state transition conditions
and can be understood as the transfer of surface
relations. Graph convolution networks (GCN) can
also explore label relationships (Ma et al., 2021;
Zhou et al., 2023). Morphological tagging based
on FST focuses on lexical rules of words, which
require many linguistic rules. In addition, there are
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problems such as poor semantic ability, ambiguity,
rule conflicts, and the inability to express deep lex-
ical rules. In transfer learning, high-resource lan-
guage knowledge is transferred to a low-resource
language, and a tagging model is built by deep
learning models. If a sequence labeling or gener-
ation model based on deep learning is used with
low resources languages, error prediction at the
previous time cause error propagation.

In agglutinative languages, a word is formed
with a lemma and several suffixes. In the Uyghur
word, "almidi" (translation: he/she/they did not
pick up), "al" is lemma, "mi(a)", "d" and "i" are suf-
fixes, its MSD label: ‘V;SG/PL;3;NEG;PST’. The
lemma represents the word’s meaning, and the suf-
fix represents the grammatical category (Pan et al.,
2020). Each suffix represents grammatical informa-
tion and corresponds to a morphosyntactic descrip-
tion label (Seker and Tsarfaty, 2020). Morphologi-
cal taggers in low-resource agglutinative language
mainly focus on rule-based and statistical models
(Ibrahim et al., 2018; WUSIMAN et al., 2019; Tole-
gen et al.), while relatively few studies are based
on transfer learning or deep learning (Toleu et al.,
2017; Liu et al., 2021; Toleu et al., 2022). Con-
ventional methods rely on human-designed rules,
which are limited to surface rules in the dataset and
cannot capture hidden rules and learn or represent
deep grammar rules.

In this paper, we investigate (1) which features
in agglutinative language are related to MSD la-
bels, (2) how to reduce the direct impact of error
propagation, and (3) whether it is possible to ac-
curately predict more complete MSD labels using
label relationships and word representation in low-
resource languages. Therefore, to overcome these
issues, we first represent the input word by con-
textual and word-formation features. Second, to
reduce error propagation caused by PoS, morpho-
logical tagging is divided into PoS tagging and MF
tagging. Through literature research and experi-
ments, it has been found that PoS can alleviate
ambiguity, and PoS affects the prediction of mor-
phological feature labels. Inspired by the work of
(Li et al., 2021), a fusion mechanism is adopted for
the middle layer of the two tasks. Finally, the out-
put of the fusion mechanism is input into the condi-
tional random field (CRF) layer to predict the PoS
of each word. We pretrain labels in the MF tagging
model and calculate relevant label co-occurrence
statistics for the high-resource agglutinative lan-

guage to learn the relationship between labels. The
co-occurrence of irrelevant labels is calculated for
the Uyghur (Ug), Kazakh (Kz), Tatar (Tt), and
Yakut (Yk) datasets. A dynamic adjacency graph
is reconstructed by using the above relationships
and a GCN to learn the label relationship again to
find the hidden relationships between labels. Then,
the MF labels of each word are predicted by us-
ing the word feature and label relationship. We
evaluate our model on four low-resource agglutina-
tive languages, Uyghur, Kazakh, Tatar, and Yakut,
in universal dependencies (UD), and experiments
show that the performance of the model proposed
in this paper is superior to that of other comparable
models. The model’s average accuracy in four lan-
guages reaches 85.29%, and the average F1 score
reaches 92.61%.

Our contributions are highlighted as follows:

• This paper proposes a joint morphological tag-
ging model that divides morphological tag-
ging into PoS and MF tagging. Furthermore,
the middle layer is fused to transform direct
influence into indirect influence.

• To further explore the subtle and hidden rela-
tionships between MF labels of low-resource
agglutinative languages, this paper describes
the universal relationship of agglutinative lan-
guages and the characteristic relationship of a
monolingual language. The final relationship
representation of the monolingual MF labels
is dynamically constructed through a GCN.

• We conduct experiments on the Uy, Kz, Tt,
and Yk datasets, and the experimental results
prove the effectiveness of the model proposed
in this paper. This paper also fills the gap
in the research on fine-grained morphologi-
cal tagging of low-resource agglutinative lan-
guage based on deep learning.

2 Related Work

Morphological processing is the primary task of
natural language processing. Relevant tasks in-
clude but are not limited to the following: mor-
phological tagging (Özateş and Çetinoğlu, 2021),
morphological segmentation (Batsuren et al., 2022),
lemmatization (Zalmout and Habash, 2020), and
morphological analysis (Wiemerslage et al., 2022).
There is also a close connection between these sub-
tasks. For example, morphological analysis can be
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split into lemmatization and morphological tagging.
Similar to other tasks, morphological tagging tasks
can also be summarized as rule learning (Forbes
et al., 2021; Kuznetsova and Tyers, 2021), statisti-
cal learning (Çöltekin and Barnes, 2019; Mueller
et al., 2013), and deep learning(Seker and Tsarfaty,
2020; Li and Girrbach, 2022), according to differ-
ent research methods. Recurrent neural networks
or pretrained language models have been widely
used in morphological tagging for high-resource
languages. Nine cross-lingual models were submit-
ted for SIGMORPHON 2019 shared task 2, signifi-
cantly promoting the development of morphologi-
cal analysis (McCarthy et al., 2019). The winning
model, UDify, was proposed by Kondratyuk (2019)
and combines a multilingual pretrained language
model and several fine-tuning strategies. They
trained multilingually over all treebanks in the first
stage and then monolingually used saved multilin-
gual weights in the second stage. Finally, the model
predicts each grammatical category. Klimaszewski
and Wróblewska (2021) proposed a fully neural nat-
ural tagging model, COMBO, for accurate PoS tag-
ging, morphological analysis, lemmatization, and
(enhanced) dependency parsing. It is a BERT-based
end-to-end multilingual model. Li and Girrbach
(2022) studied word segmentation and morphologi-
cal analysis of Sanskrit and proposed three models:
word segmentation, morphological analysis, and
combined segmentation and analysis models. The
combined segmentation and analysis model is an
end-to-end pipeline model. Nicolai et al. (2020)
proposed a morphological analysis and generation
model for more than one thousand languages. They
leveraged a parallel corpus to project from English
to other low-resource languages and exploited a
morphological annotation tool. Two separate se-
quence transduction models, one neural and one
nonneural network model, were trained, and each
model produced an N-best list. The tagging model
achieved better performance in high resources. Cot-
terell and Heigold (2017) trained character-level
recurrent neural taggers through language transfer
to predict the morphological tagger of high and
low resource languages. Learning joint character
representations among multiple related languages
successfully enables knowledge transfer from the
high-resource languages to the low-resource, im-
proving accuracy by up to 30%.

It is difficult to achieve high accuracy using
a deep learning or cross-lingual transfer learning

model for low-resource languages. Because neither
FST nor CRF requires a large dataset, it is com-
mon to achieve morphological tagging by using
these two models for low-resource languages. In
the FST method (Tolegen et al.; Kuznetsova and
Tyers, 2021), researchers construct language re-
sources, such as morphological and orthographic
rules, and then design a morphological analyzer.
WUSIMAN et al. (2019) proposed a character-level
morphological collaborative analysis model based
on the CRF. Morphological segmentation, annota-
tions, and phonetic changes were combined into
a composite label for each character. Toleu et al.
(2022) proposed a sequence-to-sequence model of
morphological disambiguation. It was hypothe-
sized that the vector representation of the correct
analysis should be closer to that of the context vec-
tor, and the model predicts the correct MSD label
by calculating the similarity. FST and statistical
methods require many morphological rules or high-
quality annotated data, leading to expensive labor
costs. Furthermore, the model cannot be combined
with contextual features very well, which can eas-
ily cause ambiguity problems. In addition, some
problems, such as lexical rule conflicts and long
running times, may occur.

Therefore, to avoid ambiguity and improve the
model performance of predicting more complete
MSD labels, the proposed model uses a pretrained
model to represent words via contextual features.
By jointly training PoS and MF tags, the direct im-
pact of PoS tags on MF tags is reduced. The related
morphological tag relations of the agglutinative lan-
guage in the treebank are learned and transferred to
low-resource languages, and introducing irrelevant
tag relations between the low-resource languages
and dynamically reconstructing the relations be-
tween tags, thus alleviating the problem of data
resource scarcity.

3 Joint Learning Model for
Morphological Tagging

3.1 Task definition

Morphological tagging is a word-level task, and la-
bels are analyzed in terms of context (Wiemerslage
et al., 2022). The definition of the morphological
tagging task is as follows: a sentence S consists of n
words, S = {w1, w2, . . . , wn}. The morphological
label of the word wi is Ti, Ti = {t1, t2, . . . , tm},
where t1 is the PoS label, and the following la-
bel is the MF label. Therefore, when the input of
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the model is sentence S, the output is each word’s
morphological label, namely, {T1, T2, . . . , Tn}.

3.2 Model framework

The overall structure of the joint morphological
tagging model is shown in Figure 1. We divide the
morphological tagging task into two subtasks, PoS
tagging and MF tagging. The input sentence is S =
{E1,E2, . . . ,En}, where Ei ∈ Rde is the vector
of the word wi, and de is the dimension of the
vector. First, we input the vector into the BiLSTM
layer for each task and encode the sentence through
the BiLSTM layer to obtain the hidden state of the
context vector, H = [h1,h2, ...,hn], where hi ∈
R2d. Second, to achieve mutual influence between
the two labels, we fuse the output of the BiLSTM
layer. Finally, the fused results are input into the
inference layer of the model.

BiLSTM_POS

Fusion Machanism

BiLSTM_MA

…

CRF

MFRN

Sigmoid

…

…

Figure 1: The overall model architecture

The CRF model in the inference layer predicts
the PoS label of the word. The morphological
feature relation network (MFRN) in the inference
layer is dot multiplied by the fused output. We
deploy a sigmoid activation function to acquire the
probability of each tag, and a tag with a probabil-
ity value higher than 0.5 is output. The total loss
function of the model is:

L = (1− λ)LPoS + λLMT (1)

where LPoS is the loss function of the CRF layer,
LMT is the loss function of the MFRN network,
λ is the manually set weight value, and λ ∈
[0, 1]. Through experiments, it is found that when
λ = 0.6, the model performance is the best. The
loss function of the PoS tagger is a negative log-
likelihood function, as shown in Equation 2. Given
N training data, xi represents the ith input se-
quence, yi represents the real tag sequence of the
ith sequence, and

(
yi | xi

)
is the probability of the

real tag sequence. The MF tagging loss function is

the binary cross-entropy loss function, as shown in
Equation 3. Similarly, given N training data, each
input sequence has M words, z represents the real
label, and z̄ represents the label predicted by the
model. zijk indicates whether the k − th label is
in the jth word of the ith input sequence.

LPoS = −
N∑

i=1

log p
(
yi | xi

)
(2)

LMT =−
N∑

i=1

M∑

j=1

|LMT |∑

k=1

zijk log z̄ijk+

(
1− zijk

)
log
(

1− z̄ijk
)

(3)

3.2.1 Input embedding layer
The input embedding Ei consists of three parts:
word embedding Wi, morphological embedding
Mi and local context embedding Ci. The dimen-
sion of each embedding is de. The embeddings
of words and local context are generated by the
pretrained language model. We use the Chinese
minority pretrained language model1 (CINO) for
Uyghur and the pretrained cross-lingual language
model2 (XLM)-RoBERTa for Kazakh, Tatar and
Yakut. Since the pretrained models break the mor-
phological rules by splitting words into different
subwords, we use a BiLSTM layer to generate Ug
and Kz morphological embeddings (Abuduwaili
et al., 2022; Makhambetov et al., 2015) (Tt and
Yk have no available morphological segmentation
tools, and no morphological embeddings are added,
only char-based embeddings are used). The final
input is generated by concatenating the word, lo-
cal context and morphological embeddings. The
structure of the input layer is shown in Figure 2.

PLM

…… …

BiLSTM_Mor

Concat

…

Concat

Figure 2: Input layer structure

1https://huggingface.co/hfl/cino-base-v2
2https://huggingface.co/xlm-roberta-base
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3.2.2 Fusion mechanism
We design a fusion mechanism to effec-
tively exchange information between the
BiLSTMPoS and BiLSTMMF layers. The
output results of the BiLSTMPoS layer,
where HPoS = [hPoS

1 ,hPoS
2 , ...,hPoS

n ],
and BiLSTMMF layer, where
HMF = [hMF

1 ,hMF
2 , ...,hMF

n ], are nonlin-
early transformed to generate Hnew

PoS and Hnew
MF ,

and σ (·) denotes the softmax activation function,
as follows:

Hnew
MF = σ

(
(WMFHMF )×HT

PoS

)
×HPoS

(4)

Hnew
PoS = σ

(
(WPoSHPoS)×HT

MF

)
×HMF

(5)

3.2.3 Morphological feature relation network
The input of this module consists of three parts: the
relevant label adjacency (RLA) matrix, irrelevant
label adjacency (ILA) matrix, and label embedding
(LE). A detailed description of the label relation
is provided in the Appendix A. In this paper, we
construct an MF label dataset using agglutinative
languages for UD datasets. We utilize the label’s
co-occurrence to obtain the label embedding in this
dataset. Given the label set L = {l1, l2, ..., ln},
the label embedding after training is El ∈ R|n|×dl ,
where n is the number of label types and dl is the
embedding dimension. Each label embedding is:

eil = El(li) (6)

The initial label input of the MFRN is the pre-
trained label embedding, which is finetuned during
the training. The structure of the MFRN is shown
in Figure 3.

The two adjacency matrices represent the rela-
tionships between relevant and irrelevant labels.
Due to the lack of morphological tagging datasets
in both languages, we construct a label adjacency
matrix to explore the universal relationship be-
tween labels more thoroughly using the above la-
beled datasets. Each language has characteristic
features that affect the relationships between re-
lated labels. Therefore, four irrelevant label adja-
cency matrices are constructed for the Ug, Kz, Tt
and Yk datasets. The relevant label adjacency ma-
trix is constructed on all languages, which has uni-
versal features, while the irrelevant label adjacency
matrices have unique features for each language.
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…
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…

…

…

…

…GCN

RELU

GCN

RELU

GCN

RELU

GCN

RELU

Conv_layer Conv_layer

Sigmoid

… … …

…

…

…

…

GCN

RELU

GCN

RELU

FC

LE

RLA ILA

DA

Figure 3: The MFRN structure

Then, we utilize a GCN (Kipf and Welling, 2016)
to learn the different relationships between labels
guided by the label adjacency matrices. Therefore,
labels are treated as nodes and label relationships
as edges, and morphological relationships are pro-
jected into undirected graphs. An undirected graph
g with n nodes is represented by an adjacency ma-
trix, RLA ∈ Rn×n. Similarly, ILA ∈ Rn×n.
Each element Aij in the matrix indicates the rela-
tionship between the ith and the jth nodes. Specif-
ically, ILAij = 1 if the ith node is connected to
the jth node, and ILAij = 0 otherwise. After that,
the two matrices are normalized as follows:

R̃LA = D
− 1

2
RLARLAD

− 1
2

RLA (7)

ĨLA = D
− 1

2
ILAILAD

− 1
2

ILA (8)

where DRLA and DILA are diagonal degree ma-
trices with entries DRLAij =

∑
j RLAij , and

DILAij =
∑

j ILAij , respectively. We add a self-
loop for each node in the GCN. ILA = ILA+ IN
and RLA = RLA+ IN , where IN is the identity
matrix. The multilayer GCN learns the relationship
between labels. The output of layer Hl is:

Hl = σ
(
ĀHl−1Wl−1

)
(9)

where σ (·) denotes the leaky rectified linear unit ac-
tivation function, Ā represents the normalized ad-
jacency matrix (RLA and ILA), Hl−1 represents
the output of the previous layer, and W ∈ Rdl×d′
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represents the parameter to be learned. H0 is the
initial label embedding. The final outputs of the
two multilayer GCNs are concatenated to represent
the new label embedding, as follows:

LE = H2
RL ⊕H2

IL (10)

where H2
RL and H2

IL represent the output of the
relevant label and irrelevant label fed into the mul-
tilayer GCN, respectively, and the new label em-
bedding LE ∈ R|n|×2d′ . It is difficult to find the
hidden relationship between labels only by the sta-
tistical rules of labels in the training data, and there
will also be noise. Therefore, we utilize the GCN
to extract the features from H2

RL and H2
IL, and

multiply the two results to dynamically reconstruct
the adjacency graph DA:

DA = σ
((

WaH
2
RL

)
×
(
−WbH

2
IL

)T) (11)

where Wa and Wb are 1×1 convolution layers, and
σ (·) denotes the sigmoid activation function. We
normalize the reconstruction adjacency matrix and
obtain a new dynamic reconstruction adjacency ma-
trix D̃A. The newly generated label embedding
and adjacency matrix are input into another multi-
layer GCN, and the output result of the dynamic
reconstruction network H4 is obtained. Finally, we
combine the output of each GCN layer through a
fully connected layer to output the final label rep-
resentation HS, where HF ∈ R|n|×3d′ , as follows:

HF = H4 ⊕H2
RL ⊕H2

IL (12)

HS = WcH
F (13)

4 Experiments

4.1 Data
We evaluate the proposed model with low-resource
agglutinative languages in the UD treebank (ver-
sion 2.10), such as the Uyghur, Kazakh, Tatar, and
Yakut (UKTY) datasets3. The UD treebank is a
sentence-level dataset that includes many types of
PoS labels. Since the annotation type in UD is in
the CoNLL-U format, to ensure the integrity of
morphological labels and the comparability of ex-
perimental results, we use a tool (McCarthy et al.,
2018) to convert the data in CoNLL-U format into
the UniMorph format and split all datasets into
training, testing, and validation sets in an 8:1:1 pro-
portion. The statistics of the dataset are shown in
Table 2.

3https://universaldependencies.org/#download

4.2 Experimental results and analysis

4.2.1 Overall performance

We seek to compare our model to recurrent cross-
lingual models with the best performance in this
experiment. The experimental results are shown in
Table 3. A detailed description of implementation
details is provided in Appendix B.

Neural tagger (McCarthy et al., 2019): This is
the baseline model of SIGMORPHON 2019 shared
task 2. It generates the morphological tag sequence
of each word through a multilayer BiLSTM model.
Multi-Team: Üstün et al. (2019) proposed a multi-
team (multi-attention and multi-decoder) morpho-
logical analysis model. The model’s performance
is improved by introducing pretrained word em-
beddings to initialize the input. Morpheus (Yildiz
and Tantuğ, 2019): This model generates word
embedding and context-aware word embedding us-
ing LSTM and BiLSTM and then inputs the two
kinds of word embedding into a decoder to generate
morphological labels. UDify: Kondratyuk (2019)
proposed a morphological tagging model based on
multilingual bidirectional encoder representations
from transformers (BERT). This model was the
winner of SIGMORPHON 2019 shared task 2. UD-
Pipe: This model proposed by Straka and Straková
(2020) adds pretrained contextualized embeddings
(generated by BERT) to the input and uses individ-
ual morphological features for regularization. UD-
Pipe placed second in SIGMORPHON 2019 shared
task 2. COMO: Klimaszewski and Wróblewska
(2021) proposed a fully neural NLP tagging sys-
tem of PoS, morphological analysis, lemmatization,
and dependency parsing. It achieved better predic-
tion quality than that of SOTA methods at the time.

Table 3 shows the experimental results of sev-
eral SOTA models and our model for the UKTY
datasets. We measure the performance of models
in terms of precision (P), recall (R), F1 score, and
accuracy (ACC). The model proposed in this paper
achieves a high F1 score and accuracy. Because
UDify, UDPipe, and COMBO models are based
on BERT, we also conducted comparative experi-
ments on BERT. The experimental results of these
models show that except in the Tt, the accuracy and
F1 score are not significantly different, and the F1
score is slightly lower. This is because MSD is a set
of labels, and the accuracy evaluates the integrity of
the predicted MSD label, while the F1 score (P and
R) evaluates whether the prediction results for each
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Dataset
UD_Uyghur-UDT UD_Kazakh-KTB UD_Tatar-NMCTT UD_Yakut-YKTDT

Train Valid Test Label Train Valid Test Label Train Valid Test Label Train Valid Test Label
#Sentences 2764 346 346

45
862 108 108

57
118 15 15

50
231 29 29

36
#Words 32174 3538 4615 8483 1085 1121 1776 222 282 1144 131 128

Table 2: Dataset statistics.

Lang Ug Kz Tt Yk Avg.
P R F1 ACC. P R F1 ACC. P R F1 ACC. P R F1 ACC. F1 ACC.

Neural tagger 85.90 87.30 86.60 79.40 87.39 86.86 87.12 78.31 84.77 83.22 83.99 75.80 88.31 85.80 87.04 84.38 86.19 79.47
Multi-Team 89.56 89.86 89.71 82.54 88.91 88.71 88.81 80.38 79.16 79.72 79.44 65.25 84.38 82.09 83.22 77.42 85.30 76.40
Morpheus 90.38 89.09 89.73 83.90 88.39 86.82 87.60 78.50 59.27 54.93 57.02 39.01 70.07 67.19 68.60 62.50 75.74 65.98

UDify 88.42 88.16 88.29 83.73 92.79 92.52 92.66 86.98 83.38 82.50 82.94 75.53 85.53 84.94 85.25 78.91 87.29 81.29
UDPipe* 88.15 89.43 88.79 81.13 - - - - - - - - - - - - 88.79 81.13

COMBO** 86.48 86.07 86.27 77.14 - - - - - - - - - - - - 86.27 77.14
Our model-BERT 90.87 87.05 88.92 81.05 95.24 95.16 95.20 88.40 85.27 83.38 84.31 65.38 87.58 86.95 87.26 77.31 88.86 76.73

Our model-XLM/CINO 94.87 96.18 95.52 91.60 96.92 97.32 97.12 92.82 89.18 87.20 88.18 76.40 90.03 89.23 89.63 80.34 92.61 85.29
* The UDPipe web service can be accessed directly via API. And only the Uyghur model is available, so only Uyghur

is tested in the test set.
** The COMBO model is only available on Uyghur, and the trained model is loaded in the test.

Table 3: Experimental results of morphological tagging.

label in the MSD label are correct. In languages
with extremely low resources (Yk and Tt), neural
tagger is superior to other baseline models. UDify
demonstrated stable performance in four languages.
For the Ug dataset, compared with the results of
Morpheus, our CINO-based model increases the
F1 score and accuracy by 5.79% and 7.70%, re-
spectively. For the Kz dataset, compared with the
results of UDify, our XLM-based model increases
the F1 score and accuracy by 4.46% and 5.84%,
respectively. For the Tt dataset, compared with
the results of neural tagger, our XLM-based model
increases the F1 score and accuracy by 4.19% and
0.60%, respectively. For the Yk dataset, compared
with the results of neural tagger, our XLM-based
model increases the F1 score by 2.59% and de-
creases the accuracy by 4.04%.

4.2.2 Analysis and discussion

To further verify the impact of each module on the
model performance, we perform a series of experi-
ments. The experiments mainly explore the influ-
ence of the input, fusion mechanism, and different
label relationships on the model performance.

Different inputs. Morphology and context will
influence the morphological labels of words. There-
fore, to explore the impact of different input fea-
tures on the model performance, a group of ablation
experiments is conducted around words, morphol-
ogy, and local context, and the experimental results
are shown in Table 4.

From the experimental results in Table 4, it is
found that local context and morphology can affect
morphological tagging. Adding local context in
low-resource agglutinative language can increase

Lang. w w+3g w+5g w+7g w+m w+m+3g
Ug 86.64 89.32 90.31 90.45 88.95 91.60
Kz 86.79 91.17 90.56 91.08 90.24 92.82
Tt 75.80 76.40 76.80 79.12 - -
Yk 75.31 80.34 74.53 62.34 - -

Table 4: The impact of different inputs on model accu-
racy (%). ‘w’ represents word, ‘g’ represents gram, and
‘m’ represents morphology.

the model’s accuracy, but sentence length can affect
the growth rate. Because the sentence is shorter, the
model learns less critical contextual information
and more noise. Based on Table 2, it is found
that the average sentence level of the Yk dataset
is less than 5 (the average length of sentence is
4.41), so when the window size is 5-7, the model’s
accuracy starts to drop. Therefore, considering the
dataset and practical application, this model uses
the local context feature with a window size of 3
in the model. Words are composed of lemma and
suffixes (morpheme) in agglutinative languages.
The suffixes deeply affect morphological labels. In
Table 4, adding morphological features to the Ug
and Kz languages can also significantly improve
the accuracy of the model.

Fusion mechanism. We jointly train the PoS
and MF tagging models to reduce the impact of
error propagation. However, the impact of the two
labels on each other cannot be ignored in morpho-
logical tagging. Table 5 shows the experimental
results without a fusion mechanism:

Compared to the four datasets, the fusion mech-
anism performs more significantly on datasets with
smaller datasets (Tt and Yk). From the experimen-
tal results, it was found that the average F1 score
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Lang. F1 ACC.
Ug 94.05 (↓1.47) 89.64(↓1.96)
Kz 96.11(↓1.01) 91.10(↓1.72)
Tt 80.07(↓8.11) 73.67(↓2.73)
Yk 78.46(↓11.17) 63.91(↓16.43)

Avg. ↓∆5.44 ↓∆5.71

Table 5: The influence of the fusion mechanism on the
model.

and average accuracy of the model with the fusion
mechanism increased by 5.44% and 5.71%, respec-
tively. It also proves that the two labels have an
interactive relationship, and the fusion mechanism
also plays an indirect constraint role.

Different label relationships. We conduct abla-
tion experiments for adding initial label (INL) rela-
tionships, irrelevant label (IRL) relationships, pre-
trained label (PL) relationships and reconstructed
label (RL) relationships in the model. The experi-
mental results are shown in Table 6.

Relation Ug Kz Tt Yk
baseline 86.75 88.01 70.53 72.66

baseline + INL 85.61 70.05 39.33 42.72
baseline+INL+IRL 88.62 88.91 73.97 75.44
baseline+PL+IRL 89.97 91.01 75.67 78.99

baseline+PL+IRL+RL 91.60 92.82 76.40 80.34

Table 6: The influence of different label relationships.
We report accuracy (%) of MSD label for all tokens.

In Table 6, the baseline represents the model
without any relationship learning. The baseline
learns and represents the relationship between the
surface and the inside of the label by adding differ-
ent label relationships and finally outputs the MF
label of the word in combination with the input
content. In the experiment, when adding the ini-
tial label relationship (statistical relationship), the
accuracy of the model in Tt and Yk significantly de-
creases. After adding irrelevant label relationships,
the accuracy rate shows an upward trend. Although
prior knowledge was added to the model, it was
difficult to fully learn the relationships between la-
bels due to the small dataset with various labels.
After adding prior knowledge of irrelevant labels,
it can constrain the relationships between labels.
We believe that there are similarities between lan-
guages of the same language family. After adding
pretrained label embedding, the model learns the
universal relationship of the agglutinative MF la-
bels. Adding the reconstruction relationship en-
ables the model to capture more label relationships

in dynamic learning. These methods can learn the
hidden relationship between labels, thus improving
the robustness of the model.

Error analysis. This paper selects Kazakh,
which has the more types of morphological labels
(57) and has the longest morphological labels (8)
in the dataset, as an example to further analyze
the model’s performance in predicting long labels
compared to other models. The model proposed
in this paper can effectively predict short- or long-
label problems through label relationships. The
experimental results are shown in Table 7.

Label length 1-3 4 5 6 7 8
Overlap 53.82 23.53 20.00 56.00 54.35 57.14

Neural tagger 20.21 29.41 60.00 28.00 32.61 21.43
Multi-Team 17.99 27.45 60.00 26.00 30.43 28.57
Morpheus 18.74 35.29 80.00 30.00 39.13 50.00

UDify 9.84 37.25 60.00 30.00 26.09 21.43
Our model 5.82 13.73 40.00 18.00 13.04 7.14

Table 7: The impact of label length and both (word and
lemma) overlaps (%) on model error rate (%). Both
overlap means the word and lemma occur in the training
and test set.

From Table 7, it is found that in addition to the
impact of data size on model performance, the
length of labels and the overlap can also affect
model performance. The label length is short (1-3),
and the overlap is high, so the model’s error rate
is also relatively low. When the label length is 5,
the overlap is the lowest, and the model’s error rate
is the highest. When the overlap is approximately
similar (length=1-3 and length=7, ∆=0.53%), the
label length is longer, and the model’s error rate is
higher. Compared with a label length of 6 and 8, al-
though the overlap is slightly different (∆=1.14%),
the neural tagger, UDify, and our model have lower
errors when the label length is 8. This is the result
of overlap influencing the model. Compared to
other models, our model is less affected by label
length and overlap.

5 Conclusion

This paper proposes a joint morphological tagging
model based on a neural network for low-resource
agglutinative languages. First, to effectively cap-
ture the multi-dimensional information of the input
words, the model uses the morphological, word and
local context features to represent the input words.
Second, to reduce the impact of the PoS label on the
MF label, the two models are jointly trained, and a
fusion mechanism is used to complete the interac-
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tion between the two middle layers. Finally, PoS
tagging is regarded as sequence labeling, and the
CRF model predicts the PoS tag. MF tagging is re-
garded as a classification task, and a new adjacency
graph is dynamically reconstructed by using the
two relationships between labels and GCNs. GCNs
are used to express the higher-order relationship
between labels. This model combines the universal
features of agglutinative languages and the char-
acteristic features of UKTY languages, learns the
relationship between labels, and effectively allevi-
ates the problems caused by data scarcity. The ex-
periments conducted with UD treebanks show that
the proposed morphological tagging model outper-
forms other models. We explore the morphological
tagging model based on a neural network under
low resources as an example. In future research,
we will continue to optimize the model’s relation-
ship representation and threshold selection abilities,
and further improving the model’s performance.

Limitations

The method proposed in this paper has some limi-
tations:

(1) This model learns not only the features of
words, word formation, and context but also the
relationships between labels. When there is too
much noise, it can disturb the relationship between
labels.

(2) The model needs more training time than
other models to learn pretrained label relationships.
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A Label Relationship

We divide label relationships into two categories:
relevant and irrelevant relationships. As shown in
the label adjacency matrix in Table 8, if there are
nonzero data in the relative position of two labels,
they are relevant; otherwise, they are irrelevant. For
example, labels A and B are relevant, and labels A
and D are irrelevant.

A B C D
A 0 5 10 0
B 5 0 4 0
C 10 4 0 0
D 0 0 0 0

Table 8: Label adjacency matrix

B Implementation Details

The experimental environment is based on Python
3.8 4 and the PyTorch 1.9.0 deep learning frame-
work 5. The word vector dimension is 768, the mor-
phological embedding dimension is 300, the num-
ber of BiLSTMmor hidden units is 768, and the lo-
cal context vector dimension is 768. BiLSTMPoS

and BiLSTMMT each have 768 hidden units, and
the label embedding dimension is 300. The Adam
optimizer is used for training, and a dropout rate of
0.5 is enforced during training. We train each con-
figuration using a batch size of 64, a learning rate
of 0.01, and the leaky rectified linear unit activation
function in the GCN.

4https://www.python.org/downloads/
5https://pytorch.org/
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Abstract

UniMorph–the Universal Morphology project
is a collaborative initiative to create and main
tain morphological data and organize numer
ous related tasks for various language process
ing communities. The morphological data is
provided by linguists for over 160 languages
in the latest version of UniMorph 4.0. This pa
per sheds light on the Central Kurdish data on
UniMorph 4.0 by analyzing the existing data,
its fallacies, and systematic morphological er
rors. It also presents an approach to creating
more reliable morphological data by consider
ing various specific phenomena in Central Kur
dish that have not been addressed previously,
such as Izafe and several enclitics.

1 Introduction

Computational morphology, the study of word for
mation using computational methods, is one of
the important tasks in natural language process
ing (NLP) and computational linguistics. This
field has been one of the prevailing and longstand
ing tasks with many applications in syntactic pars
ing, lemmatization andmachine translation (Roark
and Sproat, 2007). There have been remarkable
advances and paradigm shifts in approaches to
analyze and generate morphology: starting from
adhoc approaches in the earlier systems, then
rule formalisms and finitestate models since the
1980s (Karttunen and Beesley, 2005) with the no
table example of KIMMO twolevel morpholog
ical analyzer (Karttunen et al., 1983), followed
by statistical and classical machine learning since
the 1990s as in (Goldsmith, 2001; Schone and
Jurafsky, 2001), and more recently, approaches
relying on neural network models since 2000s.
Lastly, more robust techniques are proposed us
ing monolingual data hallucination (Anastasopou
los and Neubig, 2019), transfer learning (Kann
et al., 2017) and pretrainedmodels (Hofmann et al.,
2020).

Unlike the progress in approaches, the depen
dence of systems on clean and reliable data, re
gardless of the size, for accurate morphological
analysis and generation has not changed much.
In order to bring together various linguistic com
munities to create datasets and incentivize fur
ther studies in the field, the UniMorph1 (Batsuren
et al., 2022) project has been a leading initia
tive in this vein. In UniMorph 4.0, the latest
version of the project, there are 168 languages
from various language families for which mor
phological data is provided according to the Uni
Morph schema (SylakGlassman, 2016). Addition
ally, the ACL Special Interest Group on Compu
tational Morphology and Phonology (SIGMOR
PHON)2 has played an important role to organize
workshops and shared tasks using the UniMorph
data. Some of the previous shared tasks focus on
crosslinguality and context in morphology (Mc
Carthy et al., 2019), unsupervised morphological
paradigm clustering (Wiemerslage et al., 2021)
and morphological inflection generation, segmen
tation, and interlinear glossing in this year’s task.
One of the languages that is of interest in this

paper and is also included in UniMorph is Central
Kurdish, also known as Sorani (ckb). Central Kur
dish, as a variant of the IndoEuropean language
Kurdish, has a fusional morphology with several
distinctive features due to its splitergativity, er
ratic patterns in morphotactics and, several endo
clitics used in verbal forms. These characteristics
seem to be known to the UniMorph community, as
described in Pimentel et al. (2021, p. 8). However,
the current data available for Central Kurdish con
tains systematic errors and lacks coverage in mor
phological forms. The data is also provided in a
script that is not used by Kurdish speakers, thus
of no utility to downstream tasks in reality. Con
sequently, these result in poor performance of sys

1https://UniMorph.github.io
2https://sigmorphon.github.io
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Bound morphemes:





Clitics

{
Enclitics : =im,=î,=ît,=e,=în,=in
Endoclitics: =im, =it, =î, =man, =tan, =yan, =îş

Affixes





Inflectional





Noun:êk, an, gel, ha, at, eke, ekan, e, ane,
gele, î (OBL), ê, îne, {î, e} (IZ)

Verb:in, de, e, bi,we, ne, na,me
Adjective:tir, tirîn
Adverb:ane

Derivational:a, and, ard, d, îşt, ird, t, û, y, ên, êr,
dira, ra, ewe, ber, da, der, heł, ser, řa, řo,wer

Figure 1: A classification of Central Kurdish bound morphemes in the Latinbased script of Kurdish. Allomorphs
and zero morphemes (∅) are not included.

tems that rely on the data in real scenarios.

Contributions This paper summarizes some of
the salient features in Central Kurdish morphology.
It also aims to discuss the main issues of Central
Kurdish data on UniMorph 4.0. Moreover, the pa
per provides a new dataset of quality with consid
erable coverage and carries out experiments on the
newly annotated data.

2 Central Kurdish Morphology

Kurdish is an IndoEuropean language spoken by
over 25 million speakers in the Kurdish regions in
Turkey, Iran, Iraq and Syria, and also by the Kur
dish diaspora around the world (McCarus, 2007).
Central Kurdish, also known as Sorani is the Kur
dish variant that is mostly spoken by the Kurds
within the Iranian and Iraqi regions of Kurdistan.
Central Kurdish is a nullsubject language and has
a subjectobjectverb (SOV) order and can be dis
tinguished from other IndoIranian languages by
its ergativeabsolutive alignment which appears in
past tenses of transitive verbs (Ahmadi and Ma
soud, 2020). In this section, we provide a brief de
scription of Central Kurdish morphology by focus
ing on morphemes and morphological processes.

2.1 Bound Morphemes

Morphemes are classified into free and bound.
While free morphemes are meaningful as they are,
bound morphemes only carry meaning when af
fixed with other words. Bound morphemes are
classified into two categories of affixes and cli
tics. Affixes and clitics are similar in the way
that they cannot constitute a word and they lean

on a prosodic host, i.e. a word for stress assign
ment. Clitics can appear with hosts of various syn
tactic categories while affixes only combine with
syntacticallyrelated stems (Haspelmath and Sims,
2013, p. 198). The clitics and affixes in Central
Kurdish have been widely studied previously and
have been shown to be challenging considering the
general theory of clitics (W. Smith, 2014; Gharib
and Pye, 2018). This problem is particularly ob
servedwith respect to the direct and oblique person
markers which can appear in different positions
within a wordform depending on the functional
ity. In this section, the clitics and affixes in Central
Kurdish are described. Figure 1 provides the most
frequent clitics and affixes in Central Kurdish.

2.1.1 Clitics

Clitics are categorized based on their position with
respect to the host. A clitic is called proclitic and
enclitic, if it appears before and after the host, re
spectively. There are two other forms of clitics
which are nonperipherical and exist only among a
few natural languages. If a clitic appears between
the host and another affix, it is called a mesoclitic.
A different type of nonperipheral clitic is endo
clitic which appears within the host itself and is
unique to a few languages around the world, such
as Udi (W. Smith, 2014), Degema (Kari, 2002) and
also Central Kurdish.
Central Kurdish has two types of endoclitics:

pronominal makers, also introduced as mobile per
son markers by Walther (2012), and the emphasis
endocliticیش =îş which can be translated as ‘also’
or ‘too’ (Ahmadi et al., 2023). The pronominal
endoclitics function as agent markers for transitive
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0 girt past stem of GIRTIN (to take, to get)
1 girt im I got.
2 girt im in I got them.
3 girt im in e I got them to/with.
4 girt im in e ewe I got them to/with again.
5 girt îş im in e ewe I got them also to/with again.
6 ne îş im girt in e ewe I did not get them also to/with again.
7 ne îş im de girt in e ewe I was not getting them also to/with again.
8 da îş im ne de girt in e ewe I was not taking down them also to/with again.

Table 1: The placement of the endoclitic =îş (in green boxes) and agent marker =im (in blue boxes) with respect
to the base and each other in a verb form. Note that Central Kurdish is a nullsubject language.

verbs in the past tenses or endoclitics as a patient
marker for transitive verbs in the present tenses.
This is due to the split ergativity feature of Central
Kurdish where the agent and patient markers are
specified differently. The following examples
show the alignment in present and past tenses
of کەوتن (KEWTIN, ‘to fall’) and گرتن (GIRTIN,
‘to get’). The agent marker ن in in intransitive
present tenses (examples 1 & 3) serves as a patient
marker in transitive past tenses (examples 2 &
4) due to ergativity while another morpheme یان
=yan appears as the agent marker in the transitive
verb (example 4).

(1) dekewin
dekewin

دەکەون
fall.PRS.PROG.INTR.3PL
‘(they) are falling.’

(2) degirin
degirin

دەگرن
get.PRS.PROG.TR.3PL
‘(they) are getting.’

(3) kewtin
kewtin

کەوتن
fall.PST.PROG.INTR.3PL
‘(they) fell.’

(4) girtyanin
girt=yanin

گرتیانن
get.PST.PROG.TR.ERG.3PL.3PL
‘(they) got (them).’

Furthermore, the two endoclitic categories of
Central Kurdish appear in an erratic pattern within
a word form or a phrase. If a prefix appears be
fore the stem of a transitive verb in the past tense,
the agent marker postpends to the leftmost mor
pheme; in other cases, the agent marker appears

after the verb stem following a varying morphotac
tic rule depending on the tense, mood, aspect and
transitivity of the verb. Table 1 presents an exam
ple where the 1SG marker م (=im) and the empha
sis endoclitic =îş appear after and before the host,
i.e. گرت (girt), depending on the presence of other
bound morphemes such as negation prefix نە (ne)
or the verbal particle دا (da). It is worth mention
ing that this pattern may vary based on the Central
Kurdish subdialects.
Moreover, the present form of the copula in Cen

tral Kurdish are also used as clitics with nouns and
adjectives. Table 1 shows these as enclitics.

2.1.2 Affixes
In comparison to clitics, a higher number of bound
morphemes in Central Kurdish belong to affixes.
Affixes can be categorized into inflectional and
derivational based on their ability to create new
lexemes. The most frequent affixes in Central Kur
dish appear as prefixes and suffixes. Some of the
inflectional affixes of Central Kurdish belonging
to openclass parts of speech, namely nouns, verbs,
adjectives and adverbs, are shown in Table 2. In ad
dition, Izafe particle î and its allomorph e which
appear between a head and its dependents in a noun
phrase are frequently used to create possessive con
structions, as in من ناوی (nawî min ‘my name’).
In addition to compoundwords, Central Kurdish

relies on derivationalmorphemes to create new lex
emes, particularly new verbal lexemes. To this end,
verbal suffix ەوە (ewe) and verbal particles such
as دا (da) and هەڵ (heł) are used. It is worth not
ing that the passive form of verbs is derived from
the verb stem by using را/رێ (ra/rê) or their allo
morphs درا/درێ (dira/dirê) suffixes, unlike Kur
manji Kurdish which relies on periphrastic forms
with HATIN (to come) (Ahmadi, 2021b).

In the following, we summarize some of the dis
tinct features of affixes in Central Kurdish.
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Nouns Verbs Adjectives Adverbs
number (SG, PL) number (SG, PL) number (SG, PL) degree (COMP, SUPL)
person (1, 2, 3) person (1, 2, 3) degree (COMP, SUPL)
determiners (DEF, IND,
DEM)

mood (IND, SBJV, IMP,
COND)

determiners (DEF, IND,
DEM)

case (OBL, LOC, VOC) aspect (PRF, IMP, PROG)
gender (M, F) tense (PST, PRS)

Table 2: Inflectional features and values of Central Kurdish. It should be noted that the function of cases and
genders vary among Sorani subdialects.

Discontinuous Morphemes A morpheme
that gets interrupted by the insertion of another
morphological unit is known as a discontinuous
morpheme. Two categories of discontinuous
morphemes exist in Central Kurdish: a) demon
stratives “em ...e” ‘this.DEM’ and ‘‘ew ...e”
‘that.DEM’ and, b) circumpositions such as
“be ...da”, “le ...da” and “bo ...ewe”, respec
tively meaning ‘through’, ‘in’ and ‘toward’
where “...” refers to the position of another mor
phological unit between the two discontinuous
morphemes. While the Latinbased orthography
of Kurdish suggests writing such morphemes
detached from the preceding word, they are
usually concatenated in the PersoArabicbased
script.

Postverbal Complement e and Pronominal Ad
verb ê In Central Kurdish, a verb that has the
valency of a prepositional phrase with prepositions
be ‘to’ or bo ‘for’ can take the postverbal comple
ment e to replace the preposition. In this case,
it is compulsory for a noun phrase to come af
ter the verb (Edmonds, 1961, p. 236). Further
more, the pronominal adverb ê can replace the
antecedent prepositional object, and the postverbal
complement e, oblique pronoun, accusative nouns
or locative adverb. This is particularly used with
two verbs of DAN ‘to give’ and GEYIŞTIN ‘to arrive’.
A more detailed description of Central Kurdish

morphology, including adpositions and pronouns
as freemorphemes, is provided in (Ahmadi, 2021a)
and (Naserzade et al., 2023).

3 Central Kurdish on UniMorph 4.0

In this section, we analyze the existing morpholog
ical data for Central Kurdish on UniMorph 4.0 and
describe some of the current fallacies.
The UniMorph project provides a dataset for

Central Kurdish that contains 24,316wordforms.3

3Available at https://github.com/UniMorph/ckb

This dataset was initially created within the Alex
ina Framework (Sagot, 2010) by Walther and
Sagot (2010) and focuses on inflectional morphol
ogy by providing a set of forms of the paradigms of
252 lemmas with noun or verb partofspeech tags.
Overall, 33 morphological features based on Uni
Morph are used in the dataset, including LGSPEC1
and LGSPEC2 which are respectively used for Izafe
morpheme î and its allomorph e. The number
of features combined together is 226 features for
all the word forms. In other terms, 0.98% of the
word forms are assigned a unique combination of
features. Analogous to the notion of ‘leakage’ in
syntactic parsing (Krasner et al., 2022) that reveals
the overlap of the train and test sets, such a repeti
tive usage of the features can cause an erroneously
high performance of analysis models. As such, we
believe that the dataset has very limited coverage
of word forms and lacks diversity.
In the following, we categorize some of the

major issues of the Central Kurdish data on Uni
Morph. Table 3 provides a few examples based on
the dataset and categorizes their issues as well.

3.1 Unconventional Writing
Unlike Northern Kurdish which is mostly written
in a Latinbased Kurdified script known as Be
dirxan’s orthography, Central Kurdish is more con
ventionally written in a PersoArabic script. The
Kurdish data on UniMorph is written in an un
conventional Latinbased orthography that is not
used in practice. Furthermore, the character <i>
for phoneme /I/ is not represented in the selected
script, even though it is frequently used in many
morphemes and undergoes various morphophono
logical alternations. This phoneme, also known
as Bizroke (Ahmadi, 2019), is represented by <i>
in the Latinbased script of Kurdish while is miss
ing in the PersoArabic script. We transliterate
the original forms in the dataset in the Latinbased
script of Kurdish in Table 3.
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Lemma Feature Form in UniMorph 4.0 (Incorrect) Correct form Issue
Original Transliterated

aw
‘WATER’

N;FOC ´awš awş awîş
ئاویش

morphophonology

bûrîn
‘FORGIVE’

V;PROG;IND;SG;3;PRS;PASS debwwrrěět debûrrêêt debûrêt
دەبوورێت

morphophonology

kirdin
‘DO’

V;PROG;IND;SG;3;PRS dekeě dekeê deka
دەکا

morphophonology

bezandin
‘DEFEAT (TR)’

V;PRF;SBJV;SG;1;NEG;PST nembezandbwwayě nembezandbuwayê nembezandibuwaye
نەمبەزاندبووایە

unknown morpheme yê

bestin
‘CLOSE (TR)’

V;PFV;SBJV;SG;1;PST bbestmbayě bibestimbayê bimbestibaye
بمبەستبایە

morphotactics

kirdin
‘DO’

V;PROG;IND;PL;2;NEG;PRS;PASS nakerěn nakerên nakirên
ناکرێن

missing alternation

kokîn
‘COUGH’

V;IMP;SG;NEG mekok mekok mekoke
مەکۆکە

missing morpheme e

Table 3: Some of the categorical issues with the Central Kurdish data on UniMorph 4.0. The forms are transliterated
into the conventional Latinbased script of Kurdish. The lemmata and the forms in the PersoArabicbased script
of Kurdish are removed due to space limitations. The correct forms in both conventional scripts of Kurdish are
reconstructed based on the features.

3.2 Morphotactics

As described in § 2, Central Kurdish has a com
plex morphotactics when it comes to verbs. This
is also reflected in the inflection of verbal forms
of the UniMorph dataset where some verbal word
forms do not conform to themorphology of Central
Kurdish and its dialects. This is particularly ob
served in transitive verbs in which the agent mark
ers should appear before the verb stem and after the
leftmost prefix in past tenses (see §2.1.1). How
ever, this morphotactic rule is not systematically
present in the verb forms. It is worth mentioning
that this phenomenon is not the case in closely
related variants, i.e. Northern Kurdish and South
ern Kurdish, or the closelyrelated language Per
sian. Therefore, we believe that the annotation was
mistakenly and inaccurately carried out under the
influence of such variants and languages.

3.3 Morphophonological Alternations

Many morphemes in Central Kurdish alter based
on morphophonological rules. This is particu
larly the case of bound morphemes starting with a
vowel, such as eke as the singular definite marker
and e as a demonstrative suffix that respectively
appear as ke/yeke and ye depending on the pre
ceding phoneme. In the UniMorph data, such alter
nations are not consistently taken into account. An
eyecatching issue of this type is N;FOC which is as
sociated with nouns that appear with the clitic =îş.
The allomorph =ş of this clitic that appears after
vowels seems to be universally used in the dataset

regardless of the morphophonological rule. There
fore, word forms associated to this tag and other
similar tags like N;LGSPEC2 are potentially wrong.

3.4 Incorrect Morphemes

A less severe problem of incorrect inflections
is due to incorrect morphemes, particularly al
lomorphs. We believe that the unconventional
script may have aggravated such issues. For in
stance, the singular imperative form of verbs, i.e.
v;imp;sg are missing the suffix e as in the in
correct form of bbexš (bibexş) instead of bibexşe
(FORGIVE.IMP.2SG) and the morpheme yě (yê) is
frequently and incorrectly used instead of the mor
pheme ye to indicate the conditional mood of the
verb. Nevertheless, such issues have been dis
cussed, particularly concerning allomorphs, within
the UniMorph community (Gorman et al., 2019).
Taking these issues into account, we estimate

that 25% of the forms of Central Kurdish data on
UniMorph 4.0 are incorrect.

4 Methodology

Given the fallacies of the Central Kurdish dataset
on UniMorph 4.0, we believe that a new dataset
is required for a thorough morphological analysis
of this language. Although we correct the exist
ing dataset on UniMorph 4.0, we also extend it
with new lemmata and more complete paradigms.
This measure was taken to ensure the quality of the
forms based on a corpus and more importantly, in
both conventional scripts of Kurdish, namely the
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PersoArabicbased and the Latinbased scripts. In
this section, we discuss our approach to creating a
new dataset for Central Kurdish.

4.1 Modeling Central Kurdish on UniMorph
During the data preparation process, we noticed
that the UniMorph schema described by Sylak
Glassman (2016) lacks several features that are
commonly used in not only Central Kurdish but
also, most Iranic languages, such as Izafe (Wind
fuhr, 2009). In the schema, the label LGSPEC with
a consistent ID is considered for languagespecific
features. Using this, we also introduce a few fea
tures that are currently unsupported and map these
new features to LGSPEC with an ID to be consistent
with the current schema of UniMorph. Table 4 pro
vides a list of such features.

Type Function Ours UniMorph
Affix Izafe [IZAFE] LGSPEC1
Affix postverb adpositions [E] [EE] LGSPEC2
Affix postverb adverbial /ewe/ [EWE1] LGSPEC3
Affix disc. adpositions [DA],[RA],

[EWE2]
LGSPEC4

Clitic adverbial clitic [ISH] LGSPEC5
Clitic demonstrative [DEM] LGSPEC6
Clitic copula [COP] LGSPEC7
Clitic pronominal markers

(argument/possessive)
on transitive past verbs

[PM] LGSPEC8

Clitic argument markers on
noun/adjectives

[AM] LGSPEC9

Table 4: Our proposed tags for the new Central Kurdish
data in our dataset containingmore customized tags and
LGSPEC tags for the future versions of UniMorph

It is worth noting that in the current Central Kur
dish data on UniMorph 4.0, LGSPEC1 and LGSPEC2
are respectively used for Izafa suffix <î/y> and
its allomorph <e>. Similarly, the endoclitic =îş
is specified as FOC. These are the only language
specific tags that are currently used in this dataset.

4.2 FiniteState Transducers
Relying on Naserzade et al. (2023)’s finite state
transducers, we develop a morphological analyzer
and generator that can handle all possible well
formed inflected forms of a given word in Central
Kurdish. The analyzer takes a word and yields all
possible morphological tags. Similarly, the gener
ator takes as input a lemma and its partofspeech
tag, in addition to the past and present stems and
transitivity for verbs, and inflects the lemma ac
cordingly. The output words are formed according

to Central Kurdish standard orthography and mor
phophonological rules. The number of forms with
unique features is 3,032 for a general noun lemma,
9,096 for a gradable adjective, 3,180 for a transi
tive verb, and 636 for an intransitive verb. Figure 2
illustrates a transducer to generate noun forms.
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    |  
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Figure 2: A finitestate transducer for generating nouns
in Central Kurdish

4.3 Data Generation

Using the finitestate transducers, we generate two
datasets containing a diverse set of word forms and
partofspeech tags as follows:

Goldstandard We first randomly extract 1,000
words from Veisi et al. (2020)’s corpus and then
use the finitestate transducers to analyze them.
Given that the transducers do not take word con
text into account, this step was followed by a man
ual verification to make sure that only the relevant
analysis and tags are selected based on the context.

Silverstandard We also create another dataset
that contains full paradigms for 10 nouns, 5 ad
jectives, 17 intransitive verbs (including three pas
sive and two causative verbs) and 12 transitive
verbs. As this dataset doesn’t rely on context,
we refer to it as silverstandard. These words are
listed in Table A. To cover all morphophonological
changes that occur in the inflectional forms, we se
lect words having stems ending with a consonant,
vowels <a, e, ê, î, o, û>, approximants <y> and
<w/>, and diphthong <wê>. Note that vowels <i>
and <u> do not occur in wordfinal positions.
During the generation processing, we set a few

restrictions in our dataset. In the conjugation of
transitive verbs, it is not possible to have both the
subject and object pronouns in either the first or
second person. This is due to the reflexive con
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Dataset Noun Adjective Verb Proper Noun Other Total

UniMorph 4.0 1,729 141 0 0 22,291 112 0 0 0 0 24,020 253
Goldstandard 442 375 153 133 181 107 143 139 81 65 1,000 819
Silverstandard 30,320 10 45,447 5 35,116 25 0 0 0 0 110,883 40

Table 5: Number of inflected forms and unique lemmata (second column) by partofspeech in Central Kurdish in
the current dataset of UniMorph 4.0, our proposed datasets aggregated over all splits. The goldstandard presents
a more diverse set of forms with partofspeech tags for fewer lemmata while the silverstandard dataset presents
full paradigms of more lemmata.

struction in Central Kurdish that does not com
monly appear in the verb form. For example, *de
m=nas=im ‘*I knowme’ and *detannasît ‘*you
know you’ are illformed. For this purpose, the ad
verb xo ‘self’ is commonly used.

Table 5 summarizes the number of forms in our
datasets in comparison to the current UniMorph
4.0 data. We present our datasets in both con
ventional scripts of Kurdish, the Arabicbased and
Latinbased ones. The latter is more widely used
for Northern Kurdish facilitating crossdialectal
comparisons. Moreover, we provide the corpus
based context of word forms and our customized
tags in Table 4 in a separate dataset.

5 Analysis

5.1 Morphological Reinflection

To evaluate our datasets, we carry out an analy
sis on morphological reinflection introduced as the
nonneural baseline for task 1 of SIGMORPHON
2018 that extracts lemmatoform transformations
heuristically (Cotterell et al., 2018). To do so, we
first shuffled the datasets and created a 70–10–20
train–dev–test split. During the process, we made
sure that identical samples were selected in the two
scripts to make the comparison of performances
valid. We then run the nonneural baseline using

Dataset (script) Accuracy AED
UniMorph 4.0 48.7% 0.97
Goldstandard (L) 63.5% 0.99
Goldstandard (A) 67.5% 0.88
Silverstandard (L) 61.2% 0.98
Silverstandard (A) 65.0% 0.75

Table 6: Experimental results of test sets on morpholog
ical reinflection for the current UniMorph 4.0 in com
parison to our datasets in terms of accuracy (higher is
better) and average edit distance (lower is better). AED
refers to average edit distance.

the train sets of the three datasets and evaluate the
models on the three test sets. Table 6 presents
the accuracy and average edit distance in the three
datasets. Although it would have been interesting
to compare the performance of the baseline system
across test sets, e.g., training and testing on differ
ent datasets, such comparison could only be valid
if the same set of tags has been used which is not
the case in the current UniMorph data. Based on
the results of the systems that participated in the
SIGMORPHON 2021 Shared Task on morpholog
ical reflection (Pimentel et al., 2021), an accuracy
of over 90% can be achieved.

5.2 Error Analysis

In order to better understand the challenges of rein
flection models, we manually checked the wrong
outputs of the models trained and tested on our
data to determine failure points. Since we have
generated all possible inflectional forms of sev
eral lemmas and the data is shuffled before build
ing the model, some complex forms do not oc
cur in the train set. Therefore, the model failed
to cover those forms. Another difficulty of the
baseline model is in tackling the morphophonolog
ical changes. As we have covered stems with dif
ferent final phoneme types, the majority of errors
that have lower edit distance are in handling these
changes. For example, the failure in alternating the
indefinite suffix ‘êk’ to ‘yek’ after a vowel is a
primary source of the errors.
In Kurdish, verbs have different past and present

stems. For many verbs, the present stem is made
by removing the final consonant or vowel of the
past stem; for instance, the past and present stems
of girtin ‘to get’ are girt and gir, respectively.
However, numerous exceptions enforce computa
tional studies to consider the present verb stems as
irregular and look them up from a table, as in the
present stems łê or bêj for gutin ‘to say’ and xo for
xwardin ‘to eat’. Analyzing the reinflectional er
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rors showed that detecting such alternations is an
other major source of error.
Regarding the accuracy based on the scripts, the

accuracy of the baseline on data written in the
Latinbased (L) script is slightly lower than the
Arabicbased script (A). This can be explained by
the missing character Bizroke (i) in the Arabic
based script that plays an important role in Central
Kurdish morphology (see §3.1) while the Latin
based character uses it.

5.3 Inflectional Synthesis Degree

As an additional analysis, we calculate the synthe
sis degree of inflected forms in Central Kurdish by
averaging the number of morphemes per form in
the gold and silver datasets. According to the de
grees reported by Greenberg (1960), Central Kur
dish has a relatively high synthetic degree of 2.22
comparable to Old English (2.12), Yakut (2.17),
and Swahili (2.55). Among the selected partof
speech tags, adjectives exhibit the highest level of
synthesis as they can function with nominal affixes
and clitics and also, a few other distinct ones such
as tir and tirîn as comparative and superlative suf
fixes.
Although prefixing is not used in nouns and ad

jectives of Central Kurdish, verbs have a higher
synthesis in prefixing, mainly due to the verbal pre
fixes related to negation such as ne, na and me
but also subjunctive bi and progressive markers
e and de. Moreover, transitive verbs show the
highest ratios of synthesis in prefixing in compari
son to intransitive verbs. This is due to the erratic
patterns of pronominal endoclitics that may appear
before or after the stem, while that’s not the case
in intransitive verbs (see §2.1.1).
It should be noted that these results are expected

to be different in derivational morphology.

POS Morpheme per form

prestem poststem average

Noun 0 3.63 3.63
Adjective 0 4.30 4.30

Verb INTR 1.05 2.32 1.68
TR 1.65 2.46 2

Average 1.35 3.1 2.22

Table 7: Degree of synthesis in inflectional morphology
of Central Kurdish based on our datasets

6 Conclusion

In this paper, we discuss some of the fallacies of
the current data of Central Kurdish on UniMorph
4.0. We argue that the dataset is not only lacking
coverage but also misrepresents Kurdish morphol
ogy by incorrect morphemes, unconventional writ
ing and inaccurate morphotactics. Additionally,
we propose a new dataset with a few additional la
bels for some of the features of Central Kurdish,
such as Izafe and various clitics. Our dataset is gen
erated using finitestate transducers with the hu
man in the loop and are transliterated in the Latin
based script of Kurdish in addition to the Perso
Arabicbased ones. The transliteration of the word
forms facilitates comparative studies, particularly
with Northern Kurdish which is mainly written in
a Latinbased script. For each wordform, we also
look it up in a corpus and provide the context in
addition to the morphological features. Moreover,
we create a baseline by training models in various
setups and evaluating them on our dataset and the
current Central Kurdish data on UniMorph 4.0. Fi
nally, we suggest this dataset be added to the future
version of UniMorph.

Limitations One of the limitations of our dataset
is the lower number of wordforms belonging to a
closeclass partofspeech as we chiefly focus on
nouns, verbs (transitive and intransitive) and ad
jectives. On the other hand, we only include in
flectional morphology without paradigms of word
formation. Furthermore, we only address the mor
phology of the standard variety of Central Kurdish,
i.e. that of Sulaymaniyah. We plan to extend our
work to include other varieties of Central Kurdish
along with derivational morphology. Given that
Central Kurdish lacks a treebank, it will be com
pelling to bridge Central Kurdish morphology and
syntax as well.
Another limitation of the current work is due to

the UniMorph schema. Using the LGSPEC tag is
not recommended for features that are found across
languages but for those that are limited to specific
languages (SylakGlassman, 2016, p.30). Given
that some of the features of Central Kurdish, such
as Izafe and pronominal copula, are also found in
other closelyrelated languages, we believe that the
current schema should be extended to use specific
tags for such features or a better schema, akin to
Guriel et al. (2022)’s hierarchical model, is needed
for languages with rich morphology like Kurdish.
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A Appendix

Noun Adjective Verb (present stem)

Intransitive Transitive

dar / دار ‘tree’ lar / لار ‘crooked’ kewtin (kew) / کەوتن ‘fall’ girtin (gir) / گرتن ‘get’
pyaw / پیاو ‘man’ zana / زانا ‘shrewd’ mirdin (mir) / مردن ‘die’ birdin (bir) / بردن ‘take’
mey / مەی ‘wine’ taze / تازە ‘fresh’ çûn (ç) / چوون ‘go’ xwardin (xo) / خواردن ‘eat’
xesû / خەسوو ‘stepmother’ namo / نامۆ ‘weird’ řoyştin (řo) / ڕۆیشتن ‘leave’ biřîn (biř) / بڕین ‘cut’
masî / ماسی ‘fish’ nwê / نوێ ‘new’ nûstin (nû) / نووستن ‘sleep’ pêwan (pêw) / پێوان ‘measure’
ajawe / ئاژاوە ‘chaos’ westan (west) / وەستان ‘stop’ kirdin (ke) / کردن ‘do’
bira / برا ‘brother’ pijmîn (pijm) / پژمین ‘sneeze’ dan (de) / دان ‘give’
diro / درۆ ‘lie’ tirsan (tirs) / ترسان ‘fear.CAUS’ firoştin (firoş) / فرۆشتن ‘sell’
girê / گرێ ‘knot’ birjan (birjê) / برژان ‘grill’ gwastin (gwaz) / گواستن ‘carry’
gwê / گوێ ‘ear’ biřan (biřê) / بڕان ‘cut’ pařan (pařê) / پاڕان ‘beg’

kizan (kizê) / کزان ‘singe’
leran (lerê) / لەران ‘wobble’
geşan (geşê) / گەشان ‘blow’
biran (bir) / بران ‘carry.PASS’
pirsiran (pirsir) / پرسران ‘ask.PASS’
niran (nir) / نران ‘put.PASS’
bezîn (bez) / بەزین ‘defeat.CAUS’

Table A.1: Selected words for which full paradigms are generated and included in our dataset
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Abstract

While the deep learning revolution has led
to significant performance improvements in
speech recognition, accented speech remains
a challenge. Current approaches to this chal-
lenge typically do not seek to understand and
provide explanations for the variations of ac-
cented speech, whether they stem from native
regional variation or non-native error patterns.
This paper seeks to address non-native speaker
variations from both a knowledge-based and a
data-driven perspective. We propose to approx-
imate non-native accented-speech pronuncia-
tion patterns by the means of two approaches:
based on phonetic and phonological knowledge
on the one hand and inferred from a text-to-
speech system on the other. Artificial speech is
then generated with a range of variants which
have been captured in confusion matrices rep-
resenting phoneme similarities. We then show
that non-native accent confusions actually prop-
agate to the transcription from the ASR, thus
suggesting that the inference of accent specific
phoneme confusions is achievable from artifi-
cial speech.

1 Introduction

Automatic speech recognition (ASR) systems,
while achieving high levels of performance on US-
accented English, still struggle to handle accents
for which they have not been trained (Hinsvark
et al., 2021). Thus, accent robustness is an im-
portant challenge for the field of speech recogni-
tion, especially since such systems have become
widespread and are used worldwide.

Various approaches have been tried to build
accent-robust ASR systems. The most straightfor-
ward one, building accent-specific models, is lim-
ited because of the low availability of data for most
accents which are mostly not well sourced. The
lack of sourced data for training and testing makes
the task of recognising accented speech extremely
difficult. This lack of data is mainly due to the wide

diversity of accents (native and non-native) leading
to the complexity of recording enough examples
for each, and the difficulty of accurately labelling
and transcribing speech data.

Some attempts to overcome both lack of data
and accent robustness have been proposed. These
include multi-task training (Ghorbani and Hansen,
2018; Yang et al., 2018; Viglino et al., 2019), fea-
tures adaptation (Gong et al., 2021) or adversarial
training (Sun et al., 2018). However, these meth-
ods do not completely solve the problem of the
lack of data, as data would still be needed for test-
ing. Instead, generating artificial speech data seems
promising, as data augmentation has been proven
to be efficient for improving the recognition of ac-
cented speech (Fukuda et al., 2018), and the use
of artificial data has been around for some time
(Goronzy et al., 2004; Ueno et al., 2021).

This paper investigates the extent to which artifi-
cial speech data can be used to infer accent-related
phoneme confusions. We do this by using an off-
the-shelf speech synthesis system, in this case Mi-
crosoft Azure TTS1, to synthesise artificially ac-
cented speech data and then using the Wav2Vec 2.0
ASR (Baevski et al., 2020), to produce a confusion
matrix for this data. This matrix is then been ex-
amined and compared to other confusion matrices,
in order to evaluate its relevance in representing a
particular accent. In this paper, we focus on non-
native accents, although the same study could have
been applied to native accents.

The remainder of the paper is structured as fol-
lows. Section 2 discusses related work. Section 3
describes the process of generating accent related
phoneme confusions for artificial accented speech.
In sections 4 and 5, we compare the confusions
obtained with alternative methods and discuss the
extent to which text-to-speech systems can capture
accent related phoneme confusions.

1https://microsoft/azure/text-to-speech
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2 Related Work

Recent approaches for automatic speech recog-
nition use end-to-end deep neural networks,(e.g.
CTC-based, transformer-based and attention-based
models) and have been really successful for this
task. Commercial options exhibit extremely high
performance; however, none of them achieve the
same performance on accented speech. Attempts to
improve end-to-end ASR performance on accented
speech have had mixed results, and rely mainly
on the training process. Indeed, the complexity of
these architectures makes the understanding of the
actual learning process difficult, if not impossible,
and leads to an increasing need for explainability.
This challenge has been the focus of a number of
studies. Scharenborg et al. (2019) highlight the
link between linguistic representations of speech
and deep learning representation clusters. English
et al. (2022) look to investigate in more detail the
utility of attention layers, which is used in recent
ASR systems. In the test community, Asyrofi et al.
(2021) have proposed a testing framework for ASR
systems. The work presented in this paper aligns
with the goals of these approaches.

Accents are defined as variation in phoneme real-
isation due to several factors such as geographical
location. In the case of non-native accents, which
is the focus of this paper, the differences in pronun-
ciation compared to the native language (L1) come
mainly from the differences that exist between the
phonetic rules of the native language and those of
the target language (L2) (Flege, 1995). Thus, many
pronunciation difficulties are due to phonological
transfer - which involves applying L1 rules to L2
pronunciation - are linked to the non-existence of
certain L2 characteristics in the L1, and result from
discrepancies between the phonetic systems of the
two languages. These challenges may include dif-
ficulties in producing and perceiving specific seg-
mentals (Olsen, 2012) - like phonemes, consonant
clusters, vowels - or suprasegmentals (Trofimovich
and Baker, 2006) - like stress patterns, rhythm and
intonation patterns - that are present in the L2 but
absent or different in the L1.

Thus, non-native speakers commonly tend to ap-
proximate the pronunciation of phonemes which
do not exist in their native language, by known
ones they perceive as similar, as showed by Ste-
fanich and Cabrelli (2021). For instance, pronounc-
ing the English phoneme [D] - corresponding to
the grapheme sequence “th” as in “those” - as the

French phonemes [z] or [d] is common amongst
French people when speaking English (Capliez,
2011), since [D] is not a phoneme of French (In-
ternational Phonetic Association, 1999). While
this is a very simplified version of the concept of
accent, which does not include phenomena such
as prosodic or phonotactic constraints, we focus
in this paper on that definition of an accent, i.e.
as the replacement of L2-but-not-L1 phonemes by
L1 phonemes. This paradigmatic definition is in-
tended to evolve into a more complete definition
to include the syntagmatic and suprasegmental as-
pects in future work.

In order to understand the way in which non-
native speakers switch from a phoneme of the tar-
get language (L2) to another phoneme of their
native language (L1), we need to characterise
phonemes and define what similarity between
phonemes means. Several phonetic-based feature
systems have been proposed to describe the spe-
cific phonemes of a language. Chomsky and Halle
(1968) proposed a system to analyse the phono-
logical structure of a language from a generative
perspective. They described phonemes through bi-
nary features, organised along major features (that
distinguish vowels from consonants), place of artic-
ulation, manner of articulation and source features
(like voicing). Since then, multiple phonological
feature sets have been proposed and have been used
to capture similarities between phoneme classes.

This description of phonemes with features al-
low us to calculate their similarity using distance
metrics such as Jaccard index (as defined in Equa-
tion 1, the Jaccard index between two sets U and
V ), that can easily be used as a similarity measure
between phonemes, assuming that they are repre-
sented by their binary features. However, while it
is a simple similarity to implement as baseline for
the work presented in this paper, this measure is
not satisfactory in the sense that all features have
the same weight and, therefore, it does not take
into account the difference in distance between the
phonetic realisation of two features. Furthermore,
it is only an a priori knowledge-based similarity,
that does not necessarily follow the real-world real-
isations of phonemes.

Jaccard(U, V ) =
|U ∩ V |
|U ∪ V | (1)

While Bailey and Hahn (2005) argued that
knowledge-based feature based measures are better
at predicting similarity, data driven techniques offer
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new opportunities to identify confusions and simi-
larities. As an example of a data-driven approach,
Kane and Carson-Berndsen (2016) built a confu-
sion matrix over the TIMIT (Garofolo et al., 1992)
dataset, which contains recordings of 8 major US-
English dialects. They created what they call an en-
hanced confusion matrix, by excluding an acoustic
model iteratively, in order to restrict the recogni-
tion process and identify what phonemes are recog-
nised in place of those that are missing from the
model. This process ends up with a lot more con-
fusions for each phoneme, thus retrieving more
similarities. They found that this confusion matrix
corresponds better to theoretical expectations. Fur-
thermore, phoneme embeddings have been used as
the basis of data-driven similarity, in the context
of sound analogies (Silfverberg et al., 2018), for
determining allophonic relationships (Kolachina
and Magyar, 2019) and for capturing distributional
properties (O’Neill and Carson-Berndsen, 2019).

3 Introduction of Non-Native Variations

The overall method presented in this paper for syn-
thesising accented speech consists, broadly, of 1)
transforming texts into phoneme sequences, 2) ap-
plying variations to the phoneme sequence accord-
ing the target accent, and 3) synthesising speech
from the phoneme sequence using a text-to-speech
(TTS) engine. This workflow is illustrated in Fig-
ure 1 and is referred in the remainder of the paper
as "variation method". The core of this accented
speech synthesis lies in the way we choose and
apply variations to the phoneme sequence. This is
done by 1) selecting the phonemes to vary using
a mapping between the phonemes of the different
languages - this mapping is called the phonetic
compatibility matrix, and 2) varying the selected
phonemes by replacing them with their nearest
neighbour phonemes in terms of similarity. This
mimics the way non-native speakers adjust to the
target language pronunciation. These replacements
could be regarded as mispronunciations.

The construction of the phonetic compatibility
matrix is very straightforward. It is built as a
boolean matrix, associating the different languages
with their phonemes, the values being 1 if the
phoneme exists in the target language, and 0 oth-
erwise. Table 1 shows a sample of a compatibility
matrix. For example, it shows that French and
Spanish speakers are likely to approximate the [D]
phoneme, while English speakers will probably ap-

Phone English French Spanish

d 1 1 1
D 1 0 0
θ 1 0 1
z 1 1 0
s 1 1 1
t 1 1 1
K 0 1 0

Table 1: Section of the compatibility matrix

proximate the [K] phoneme when speaking French.
This matrix is based on the IPA handbook (Inter-
national Phonetic Association, 1999) charts for the
different languages.

When applied, the variation method replaces the
incompatible phonemes (i.e. the English phonemes
identified in the phonetic compatibility matrix as
not existing in the target language) with their near-
est neighbour (that is with the higher similarity,
or smallest distance to the original phoneme) in
the similarity matrix, amongst the phonemes that
exist both in English and in the target language.
As we saw in the related work, the similarity be-
tween phonemes can be defined in several ways. In
this paper, we will briefly introduce three different
methods we used for building the similarity matrix,
with a focus on similarity identification using ar-
tificial accented speech data. Thus, the next two
subsections explore these methods for defining a
similarity matrix, which can be separated into two
paradigms: knowledge-based and data-driven.

3.1 Knowledge-Based Similarity

As outlined in Section 2, features have been used
for describing phonemes and for calculating simi-
larity between them. Thus, a similarity matrix can
be constructed based on the Jaccard distance be-
tween the phonemes. This method for building a
similarity matrix and using it for generating arti-
ficially accented speech is referred to as method
KB1 in the remainder of the paper.

However, Jaccard-based similarity does not take
into account the difficulty of switching from one
articulatory position and manner to another. For in-
stance, switching from [p] to [q] is more counter in-
tuitive than switching from [p] to [m] while they are
equally similar along the Jaccard distance (equal to
0.5). Thus, for weighting the features along their
physical distance in the mouth, we have positioned
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Figure 1: Overview of the generation of speech with non-native variations.

the phonemes in a three dimensional space (Figure
2), representing the features positioned along three
axes corresponding to the place of articulation, the
manner of articulation and the voicing; this is used
as a measure of phonetic neighbourhood.

Figure 2: 3D representation of some phonemes

The coordinates of the phonemes in this space
(depicted in Table 2) are used to calculate the Eu-
clidean distance between the phonemes, as a sim-
ilarity measure. For instance, in this space, the
coordinates of [D] are (3,5,1) and the coordinates
of [z] are (4,2,1), which results in a Euclidean dis-
tance of 3.16 in a space where greatest distance
is 13, resulting in a normalised distance of 0.24
(0.76 in similarity). This construction highlights
the positional similarity of phonemes. For instance,
in this space the distance between [p] and [q] (0.69)
is now bigger than that between [p] and [m] (0.11).
These distances are stored in the similarity matrix
corresponding to that method. This 3-dimensional

representation, in addition to its use for building the
corresponding similarity and generating artificial
accented speech, will now be referred as KB2.

The two similarity matrices presented in this
subsection, KB1 and KB2, are entirely knowledge-
based and do not necessarily highlight other con-
straints such as phonotactics, pitch or tone. In this
sense, the data-driven paradigm presented in the
next subsection can be seen as more representative
of what may happen in natural accented speech.

3.2 Data-Driven Similarity

One method that has been used previously for syn-
thesizing artificial accented speech is to rely ex-
clusively on deep learning architectures of TTS
systems to generate accented speech. This method
consists of processing text inputs with a TTS en-
gine, configured with the pronunciation patterns
of the target accent. For instance, for generating
a French accent in English, we input English text,
to be read by the TTS engine as if it was French.
We implemented this using an off-the-shelf text-
to-speech system (Microsoft Azure TTS) for gen-
erating French-accented speech. This method is
referred as DD1 in the remainder of the paper and
is explained in more detail in the next section.

However, the above method implies the use of
a model that has been trained specifically to syn-
thesize the target language, which brings us back
to the problem of lack of data. Besides, the work
conducted by Kane and Carson-Berndsen (2016)
and presented in Section 2 suggests that phone con-
fusions can be derived directly from speech data.
This work motivated the development of our second
data-driven method for generating accented speech.
This method, denoted DD2, consists in running an
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Bilabial ... Glottal

Plosive (0,0,0) | (0,0,1) ... (10,0,0) | (10,0,1)

... (.., ..,0) | (.., ..,1) ... (.., ..,0) | (.., ..,1)

Lateral
Approximant

(0,7,0) | (0,7,1) ... (10,7,0) | (10,7,1)

Table 2: Illustration of the construction of the 3D representation of phonemes

ASR system on accented speech data for retrieving
the non-native confusions. These confusions can
then be used for generating speech with variations
as per the method described at the beginning of this
section. Given the lack of natural French-accented
English data, we decided to look at the recovery of
phonetic confusions from artificial data. Section 4
delves into this method in more detail.

4 Artificial Speech Confusions

As introduced in the previous section, DD2 method
has three stages: 1) generating artificial French-
accented speech by using an off-the-shelf TTS sys-
tem, 2) generating the recognition confusion matrix
using an ASR system, and 3) introducing variations
in speech, as per the variation method (see Figure
1), by using the previously obtained confusion ma-
trix as the so-called similarity matrix for choosing
the phonemes to vary.

The generation of artificial French accented
speech is done by providing text inputs (i.e. textual
sentences from TIMIT dataset) to the Microsoft
Azure TTS, with its two parameters language set
to English and voice set to one of the Azure French
voices: fr-FR-DeniseNeural or fr-FR-HenriNeural.
This configuration allows the TTS to synthesize
the English sentences with a French pronunciation,
that is reading the sentences as if they were written
in French. At the end of this process, we end up
with a set of artificially accented speech audios.

Then, the second step is the generation of the
French confusions. For obtaining that matrix, we
use Wav2Vec 2.0 ASR with a subsequent grapheme
to phoneme mapping and we align the phoneme
sequences with the original ones obtained from
TIMIT. The confusion matrix created from these
alignments is expected to capture the confusions
specifically due to the target French accent.

Lastly, the confusion matrix we just created can
be used as the similarity matrix described in Sec-

tion 3 for getting the replacement phonemes for
the phonemes that do not exist in French. As for
KB1 and KB2, the variation method first selects the
English phonemes that do not exist in French, then
selects their replacements in the similarity matrix
and finally a Phoneme-To-Text engine creates the
varied speech. This aims to mimic the way French
speakers approximate the pronunciation of English.

In the next sections, we evaluate the relevance of
the similarity matrix described in this section - i.e.
based on artificial non-native confusions - in the
context of accented speech generation. This eval-
uation is done by comparing the results obtained
by the ASR on speech generated using the varia-
tion method with the above matrix, referred to as
method DD2 in the remainder of the paper, against
the other ones described in the paper.

5 Experiments

The experiments aim to evaluate the extent to which
it is possible to infer accent-related phonemes con-
fusions from artificially accented speech. For that
purpose, we compare the performance of the ASR
on the data generated as in Section 4, that is the
speech synthesised from artificial confusions, with
respect to the other methods described in Section
3, and with respect to speech without variations
(artificial and natural native US English speech) as
baseline. As a summary, we have the following
methods:

• NV1 is a baseline corresponding to natural
US-English speech data from TIMIT.

• NV2 is a baseline corresponding to artifi-
cial US-English speech obtained using Azure
TTS.

• KB1 corresponds to the representation of
phonemes as sets of features, and their simi-
larity as Jaccard distance.
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• KB2 corresponds to the representation of
phonemes into a 3-dimensional space, and
their similarity as Euclidean distance.

• DD1 corresponds to the use of Azure TTS as
a generator of accented speech, with the so-
called voice parameter set to a French voice.

• DD2 corresponds to the confusion matrix ob-
tained after running an ASR on the audio files
obtained by applying method DD1. This is
the main focus of the paper, and has been de-
scribed in Section 4.

For comparing the different methods, we use
three criteria: word error rate (WER), phoneme er-
ror rate (PER) and visual inspection of hierarchical
similarity clustering in dendogram representations.
Global metrics, i.e. WER and PER, are used to
consider the impact that variations have on recogni-
tion. The hierarchical view of similarity values of
some selected phonemes provides an insight into
the impact of specific variations on the recognition.
That is, it is possible to see if the variation patterns
propagate to the output via the confusions.

For the purpose of this paper, we built four sim-
ilarity matrices, following the methodology de-
scribed in sections 3 and 4. That is, we built the ma-
trices corresponding to knowledge-based methods
KB1 and KB2, as well as the similarity matrices
for data driven methods DD1 and DD2. For creat-
ing these matrices, we selected 1000 sentences out
of the 2366 sentences of TIMIT corpus as a text
corpus. The ASR system used for conducting these
experiments is Wav2Vec 2.0. The target accent is
French, and the reference language is US English.

6 Results and Discussion

6.1 WER and PER

Figures 3 and 4 depict WER and PER values respec-
tively with ASR on the six different methods. As
expected, artificial speech with variations obtained
higher WER scores ≈+0.57 than speech without
variation, thus confirming that Wav2Vec 2.0 per-
forms better on speech without variation. We thus
obtained a drop of more than 50% between ac-
cented and non-accented speech recognition accu-
racy, which corresponds to the drop reported in
the literature. Unsurprisingly, the PER follows the
same tendencies as the WER. This indicates to an
extent that the confusions we obtained are due to

Figure 3: WER scores for DD2 vs other methods.

Figure 4: PER scores for DD2 vs other methods.

the difficulties for Wav2Vec2.0 in handling the mis-
pronunciations we introduced in our varied speech
at the phonemic level.

These results confirm the interest of our varia-
tion method for challenging ASR systems, and they
are also encouraging for the identification of non-
native speech learning patterns. Indeed, we can ex-
pect that the drop in accuracy between knowledge-
based variation methods and data-driven variation
methods is caused by the addition of new vari-
ations patterns. While the knowledge-based ap-
proaches only apply phoneme substitutions, many
more other phenomena are represented by the data-
driven approaches, such as phonotactics, coarticula-
tion or prosodic transfer. The low value of the drop,
however, could indicate that phoneme substitutions
are the main source of errors for ASR systems, but
this needs to be investigated further.

6.2 Phoneme Similarities

In order to look at the similarities which emerge
from the ASR, we used hierarchical clustering of
the output confusions matrices. Dendrograms visu-
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Figure 5: Hierarchical view of the confusions obtained with KB1 method.

Figure 6: Hierarchical view of the confusions obtained with DD1 method.

Figure 7: Hierarchical view of the confusions obtained with DD2 method.

alising this clustering can be found in Figures 5, 6
and 7 for KB1, DD1 and DD2 methods respectively
2. The dendograms highlight some overall interest-
ing patterns in the confusions. KB1 exhibits place-
of-articulation clusters (e.g [t], [d], [r] alveolars
for instance), which was expected knowing that its
similarity matrix was constructed around phonetic
features. However, we are looking to investigate
whether the variants propagate through the ASR
and provide insights into how variants cluster and
emerge in a deep learning model. While the dif-

2Note that ARPABET rather than the IPA is used in these
figures

ferences between the dendograms require further
detailed analysis examining the contexts in which
the errors occur, it can be seen, for instance, that
the [D] has moved closer to the [s] and [z] in DD2
in Figure 7, and to [d] and [t] in DD1 in Figure
6. These two confusions correspond to typical L1-
French pronunciation of the th English grapheme.
Furthermore, r in French is pronounced differently
and it can also be seen in DD2 that [r] and [g]
now cluster together; this is an indication that these
sounds are both articulated further back.

This analysis of phoneme confusions highlighted
that Wav2Vec2.0 was not able to correct the vari-
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ations we introduced in the input, and that these
variations propagated through the ASR to the tran-
scriptions. Indeed, confusions for KB1 and KB2
relate precisely to the variations we applied. This
opens up perspectives for further analysis of the
notion of similarity for ASR systems, including for
artificial speech.

7 Conclusions

In this paper, we used artificially accented speech
for retrieving non-native similarity patterns. We
generated accented speech TTS with French voices
and were able to use that output for calculating the
corresponding confusion matrix. By using this ma-
trix as a representation of similarity for introducing
variations in speech, we found that these corre-
spond to actual non-native variations. In the near
future, we plan to enhance our knowledge-based
methods with other types of variation, in particular
phonotactic constraints. In the longer term, there
are two motivations for the approach presented in
this paper. The first is to investigate and model
non-native speech variants as they are captured in
deep learning models and the second is to provide
a methodology for challenging ASR systems to de-
termine how far a variant can be from the expected
phoneme and still be recognised correctly.

Limitations

The speech recognition used was the Wav2Vec 2.0
model. Some of the errors may have been influ-
enced by the fine tuning of the final layers; this
could lead to errors being corrected by the language
model. Furthermore, Wav2Vec 2.0 produces char-
acter output which we transformed to phonemes
using a grapheme-to-phoneme tool; this will lead
to some loss in the variation. These limitations can
be overcome to some extent by using a Wav2Vec
2.0 phoneme model which we plan for our next
experiments. We have only worked on French to
date, even though we believe that the method is
applicable to other languages. Finally, the exper-
iments were done only on TIMIT. While this is a
balanced dataset, use of other datasets will likely
lead to better insights.

Ethics Statement

We have used existing speech datasets and off-the-
shelf tools for speech recognition and synthesis.
The use of the existing voices of the native speaker
of one language, in this case French, to synthesise

artificial non-native English speech is taken as rep-
resentative of an L2 learner speaking English for
the first time. There is much to be learned about
speech variation from such artificially generated
speech but is should not be regarded as mocking
non-native speaker endeavours to learn a language.
Indeed the variants learned from such data can pro-
vide useful insights for speaker accommodation.
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Abstract

We introduce a YAML notation for multi-line
interlinear glossed text (IGT) that represents
non-concatentative processes such as infixa-
tion, reduplication, mutation, truncation, and
tonal overwriting in a consistent, formally rig-
orous way, on par with affixation, using an
Item-and-Process (IP) framework. Our new
notation—Generalized Glossing Guidelines
(GGG)—is human- and machine-readable and
easy to edit with general purpose tools. A
GGG representation has four fields: (1) A Sur-
face Representation (sr) with curly brackets
to show where non-concatenative morpholog-
ical processes have applied. (2) A Lexical
Representation (lx) that explicitly shows non-
concatenative processes as insertions, dele-
tions, and substitutions as they apply to the ba-
sic form of morphemes. (3) A gloss field (gl)
that associates glosses with morphemes and
morphological processes in the sr and lx lines.
(4) A metalanguage translation. We demon-
strate the linguistic adequacy of GGG and com-
pare it to two other IGT annotation schemes.

1 Introduction

As part of the ongoing wav2gloss project, we are
generating Interlinear Glossed Text (IGT) from
speech using an end-to-end system. In produc-
ing IGT for various languages of the Americas,
we encountered a challenge: traditional interlinear
glossing schemes are well-suited for the represen-
tation of concatenative morphology (Comrie et al.,
2008) where morphological properties are real-
ized by spans of phonological material (Goodman
et al., 2015; Maeda and Bird, 2000; Bird and Liber-
man, 1999; Bird et al., 2000; Ide and Suderman,
2007). However, the languages that we are work-
ing with—Mixtec, Nahuatl, and Totonac—are per-
meated by morphological operations such as trun-

∗Denotes equal contribution.

cation, tonal overwriting, reduplication, apophony,
and segmental overwriting, that cannot be ade-
quately expressed as the concatenation (or even in-
terleaving) of strings. The shortcoming of most
IGT notations is that they represent the alignment
of affixes with glosses, but they do not explicitly
show how non-concatenative processes align to
glosses.

The contrast between concatenative and non-
concatenative “models of grammatical descrip-
tion” goes back at least to a seminal article by
Charles Hockett (1954) in which he observed that
morphology can be viewed as the concatenation of
morphemes (item-and-arrangement or IA) or as the
application of processes to morphemes (item-and-
process or IP). Whatever their ontological nature
may be, some morphological operations—for ex-
ample, apophony and truncation—are more easily
expressed as processes than morphemes. In order
to gloss these operations (and give them the same
status as affixation), we needed to develop an an-
notation scheme more general than those currently
available. Therefore, we propose Generalized
Glossing Guidelines (or GGG), that build upon ex-
isting conventions such as the Leipzig Glossing
Rules (Comrie et al., 2008) but make the frame-
work formally explicit and add consistent and com-
prehensive support for non-concatenative morpho-
logical alternations such as infixation, reduplica-
tion, transfixation, apophony, tonal overwriting,
and truncation.

Figure 1 gives an example of GGG fromYoloxó-
chitl Mixtec. It shows metadata as well as the
four fields, sr (Surface Representation), lx (Lex-
ical Representation), gl (gloss), and tr (transla-
tion). It shows tonal overwriting in curly brackets,
with cliticization shown by =.
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2 Background

A large number of glossing conventions, from the
very formal (e.g., Xigt; Goodman et al. 2015) to
the relatively informal (e.g., the Leipzig Glossing
Rules or LGR; Comrie et al. 2008) have been pro-
posed and employed in computational applications.
For example, a recent SIGMORPHON shared task
on glossing used representations based on LGR.1

These conventions play two roles: (1) They al-
low linguists and language workers to communi-
cate with one another with clarity and minimal am-
biguity; (2) They allow humans and computers to
communicate with one another with respect to the
morphosyntax of human languages. In our use-
case, they allow neural models to communicate
the details of their morphosyntactic analyses to lan-
guage workers. As such, these annotation conven-
tions need to be both human readable (whether di-
rectly or through some kind of user interface) and
expressive, without sacrificing explicitness.
Although LGR largely satisfies these critera

when only concatenative morphology occurs, non-
concatenative operations are only supported in a
limited and sometimes inexplicit way in this con-
vention. The following example shows the LGR
notation for apophony (umlaut) in German:

(1) Ich
1.SG

habe
have.1.SG

vier
four

Brüder
brother\PL

‘I have four brothers.’

The sequence “\PL” indicates that plural is marked
by a non-concatenative process (in this case,
apophony), but it does not index themorphological
property to a specific formal change. In the Gen-
eralized Glossing Guidelines described here, the
same example would be the following:2

(2) Ich
1.SG

habe
have.1.SG

vier
four

Br{u>ü}der
brother{PL}

‘I have four brothers.’

LGR also has conventions for annotating redupli-
cation and infixation, but each of these notations is
different. Compare these examples from Motu:

(3) a. ma~mahuta
PL sleep
‘to sleep’

1https://github.com/sigmorphon/2023GlossingST
2We show only lx here, structuring fields as in a conven-

tional glossed example, and omit sr for the sake of compari-
son to LGR.

b. {>ma}mahuta
sleep{PL}
‘to sleep’

In LGR (3a), reduplicants are delimitedwith a tilde.
In the GGG version (3b), again showing only lx,
reduplication is notated with the same arrow nota-
tion as all other non-concatenative processes.
Compare the following well-known example of

infixation in Tagalog:

(4) a. s<um>ulat
<COMPL>write
‘write’

b. s{>um}ulat
write{COMPL}
‘write’

In LGR (4a), infixes are surrounded by angle
brackets. In the GGG version (4b), infixes are indi-
cated with the same notation as reduplication and
all other processes. Maximal empirical coverage
is achieved with minimal formal equipment.
Another important framework for representing

IGT (and morphosyntactic annotations, generally)
is Xigt (Goodman et al., 2015), an XML-based for-
mat that associates annotations with spans. It, too,
is highly general, machine-readable, and formally
rigorous, but its opaque structure makes it difficult
to read and write without special software tools.
We propose GGG to take the best of the both

frameworks. It has the following properties:
• General and adaptable
• Human readable
• Machine readable and unambiguous
• Editable with general-purpose tools
• Consistent and formally-rigorous in its repre-
sentation of non-concatenative processes

2.1 Lexical Representations
The core of the GGG format is the lexical or lx
representation. To understand lx, one must distin-
guish morphological processes from phonological
processes and imagine a pipeline in which morpho-
logical processes precede phonological processes.
Morphological processes are associated with

meaning or grammatical features. For example,
the Mixtec tone changes shown in Figure 1 mark
the habitual aspect. Phonological processes, in
contrast, are not associated with meanings. They
are processes that apply when phonological condi-
tions are met. For example, tone sandhi in many
languages is purely phonological (does not realize
any morphosyntactic properties).
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In Item-and-Process Morphology, there are two
kinds of constructs associated with meaning: mor-
phemes (items) and processes. The pipeline as-
sumed by GGG is one in which morphemes are
first assembled via concatenation (a MORPHEMIC
REPRESENTATION). At this level, each instance of
the same morpheme has the same form (except
in cases of suppletion). Then, processes apply to
these strings. Together, the items and processes
form the lexical representation (lx) in GGG. This
representation is the output of the morphology and
the input to the phonology.3

Phonological rules may apply to the lx repre-
sentation, yielding phonologically conditioned al-
lomorphy. Some cases of nasalization shown in
the sr field in Figure 1 are phonological. Since
nasalization is not associated with any meaning, it
does not correspond to labels in the gloss (gl).
In GGG, the lx represents the application of pro-

cesses to morphemes—mapping between a MOR-
PHEMIC REPRESENTATION and an UNDERLYING REP-
RESENTATION. The bracket-and-arrow notation
shown in (3b) and (4b) above describes rewrites
between the morphemic form and the underlying
form. That is to say, the morphemic representation
is everything outside of the brackets interspersed
with everything to the left of the arrows (>) and
the underlying representation is everything outside
of the brackets interspersed with everything to the
right of the arrows. The surface representation, in
contrast, is the output of the phonology.

2.2 GGG is purely descriptive
The goal of GGG is not to provide a deep theoreti-
cal account of morphology but rather to be purely
descriptive. Thus—for example—even when we
believe that a morphological process is best ex-
plained by autosegmental tones being “bumped”
from one mora to the following mora, GGG repre-
sents this process as the deletion of a tone from one
mora of the morphemic representation and the si-
multaneous insertion of an identical tone on the fol-
lowingmora in the underlying representation (with
some loss of generality). This is done to explicitly
state the formal relationship between a morphemic
form and underlying form while making a mini-

3Note that this approach assumes a non-trivial and con-
troversial assumption about the phonology-morphology inter-
face. It excludes interleaving between morphological and
phonological alternations. This is done to make the glossing
format tractable and is characteristic of glossing formats gen-
erally. However, when cyclic phonology results in a two-step
change, GGG allows this to be represented.

mum of theory-internal assumptions. For example,
in Yoloxóchitl Mixtec, the habitual is formed by
overwriting a /4/ (high) tone to the first mora. Two
examples are given in (5):

(5) a. chio’{1>4}o{>1}4
cook_boiling{HAB;1,2}
habitually cook by boiling’

b. sa{3>4}ta{>3}4
sa{3>4}ta{>2}4
buy{HAB;1,2}
‘habitually buy’

Note that these changes are morphologically
(not phonologically) conditioned. In (5a), GGG
represents the tonal morphology as /1/ being re-
placed by /4/ and (the second) /4/ being preceded
by an inserted /1/, focusing on the superficial (in-
sertion of /1/ in the second mora) rather than the
deep relationship (reassingment of the same /1/ to
the second mora) between the morphemic repre-
sentation and the underlying representation (the in-
put to the phonological rules).

3 The Guidelines

GGG attempts to represent IGT examples like
those in the preceding section in a YAML format,
4 preserving to the degree possible the conventions
that are present when linguists typeset linguistic
data for the consumption of other linguists. This
allies it with the SIL Shoebox format and differen-
tiates it fromXigt (Goodman et al., 2015) and other
highly explicit IGT formats. This also makes it rel-
atively easy to edit GGG text using off-the-shelf
tools (e.g., text editors and transcription tools).

3.1 General Data Structure
An illustration of a YAML file for GGG is pre-
sented in Figure 1. The top level object is a map,
consisting of metadata fields (obj_lang for “ob-
ject language” and meta_lang for “meta language”
are required), and segs, which is an array of “dis-
course segments” (roughly, sentences). The field
obj_lang consists of a single ISO 639-3 code (as a
string). The field meta_lang is an array of ISO 639-
3 codes. Each discourse segment is a map with the
following fields:
src The audio or video document from which the

segment derives.
start The start time of the interval in the source

file from which the segment derives (in sec-
onds since the beginning of the recording).

4https://yaml.org
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obj_lang: xty
meta_lang: eng
segs:
-
src: xty0002.wav
start: 256
end: 265
speaker: 3
lx: ”ja'{3>4}nda2 =nã1 =e1 ka4 nda{3>4}sa3 ba'1a3 =na2 yu'3u4 =run4”
sr: ”ja'{4}nda2 =nã1 =e1 kã4 nda{4}sa3 ba'1a3 =nã2 yu'3u4 =run4”
gl: ”cut{HAB} =3.PL =3.INAM there convert{HAB} good =3.PL mouth =wood”
tr: ”...they cut it and convert it into a bifurcated stick.”

Figure 1: Sample of GGG from Yoloxoćhit Mixtec showing the use of bracket-and-arrow notation to indicate tonal
overwriting and differences between lexical and surface forms produced by phonological rules. The numerals after
vowels represent tones (/4/ is high; /1/ is low) associated with the preceding mora (for our purposes, vowel).

end The end time of the interval in the source file
from which the segment derives (in seconds
since the beginning of the recording).

speaker ID for speaker in this discourse segment.
lx The lexical representation of the discourse

segment—the mapping between a MOR-
PHEMIC representation in which all mor-
phemes are represented in their canonical
form (to which all processes have applied)
and the underlying form that is the input
to the phonology; consists of tokens (cor-
responding to morphemes) delimited by
spaces.

sr The surface representation of the discourse
segment—the output of the phonology, con-
sisting of tokens delimited by spaces.

gl The glosses of each of the tokens in the lx and
sr strings, delimited by spaces.

tr An idiomatic translation of the discourse seg-
ment (as a string).

Crucially, when split on white space, the lx, sr,
and gl fields must consist of exactly the same num-
ber of strings. An alternative and equivalent repre-
sentation would be to have these fields be arrays of
objects, each corresponding to a word. This would
enforce the alignment between words and glosses
directly. However, it is much less readable than
the proposed format and would be harder to edit
with off-the-shelf tools.
Each of the tokens in the lx and sr strings con-

sists of either a root, affix, or clitic and one or more
processes that have been applied to it, as described
in §3.2. Each of the tokens in the gloss string
also consist of roots, affixes, clitics, and processes.

Each word must have the same number of each of
these categories of items. Except for processes,
these must occur in the same order in forms and
glosses. The roots, affixes, and clitics that make up
the words are “morpheme-like units” (or tokens)
and are delimited by spaces. Each process is asso-
ciated with a single morpheme-like unit.5

3.2 Space-Delimited Form Tokens

Form tokens are sequences with components of the
types shown in Table 1.

TYPE CONN. PREC.
BASE?

EXAMPLE GLOSS

root n/a n/a Kind child
prefix - Y un- likely NEG- likely
suffix - N Kind -er child -PL
proclitic = Y j’= aime 1.SG= like
enclitic = N child =’s child =POSS

Table 1: Types of tokens.

When lexical glosses consist of multiple words,
they are joined with the underscore, as in Hmong
lug ‘come_back’. In this case, an optional rule
from LGR is made mandatory. The use of a pe-
riod to compose complex glosses is not to be used
for this purpose. Instead, it is used strictly in cases
of cumulative exponence (that is, where a single
morpheme realizes and is glossed with more than
one property) as in English -s ‘-3.SG.PRS’.

5In a few cases, this has proven problematic and has re-
sulted in redundancy, but in the general case, it has worked
well.
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Form tokens may contain annotations for MOR-
PHOLOGICAL PROCESSES such as the following:

• Reduplication
• Infixation
• Transfixation
• Apophony
• Tonal overwriting
• Segmental overwriting

These are indicated with bracketed expressions. In
lexical forms (lx), these consist of {A>B} where A
and B can be any string including the empty string.
These indicate a process in which A has been re-
placed by B. Examples include English t{u>i}θ
‘tooth{PL}.’ In srs, these consist of {A}, where
A can be any string (including the empty string).
These indicate substrings that are the result of the
application of a process. Take, for example, En-
glish t{i}θ ‘tooth{PL}‘. For a complete example,
see Figure 1. In some cases, there may be a hi-
erarchical relationship between processes, where
one process “feeds” another. This is indicated by
providing additional steps using the bracket-and-
arrow notation, e.g., {3>1>4} as in the following
examples from Yoloxóchitl Mixtec. In (6a) and
(6b) the irrealis transitive ta’3bi4 and instransitive
ta’1bi4 are changed to the habitual, with tone /4/ on
the first mora. We analyze the shift of /3/>/1/ as a
detransitivising process and thus in example (6b)
both DTR and HAB are represented by {3>1>4}.
The low tone /1/ is then reassigned to the second
mora (shown in GGG as the “insertion” of /1/ on
/i/). In many cases this “push” of first mora’s origi-
nal tone (/1/ or /3/) onto the second mora occurs,
forming a contour tones (e.g., /14/ and underly-
ing /34/ (surface /24/ by phonological rule after the
mora-initial tone 4 of the habitual).

(6) a. ta’{3>4}bi4
break{HAB}
‘habitually break (transitive)’

b. ta’{3>1>4}bi{>1}4
break{DTR.HAB;1,2}
‘habitually break (intransitive)’

3.3 Covert elements
When the absence of an affix is significant, it can
be represented as 0- or -0 (standing in for ∅ or 𝜖).

3.4 Distinguishing Morphology from
Phonology

The process notations are not meant to represent
purely phonological alternations. If an alternation

can be accounted for by a rule that is wholly condi-
tioned by the surrounding phonological segments
or syllable structure and prosodic context, it should
be treated as phonological and not directly repre-
sented in the lx field. The lx field should contain
only information that is derivable from the lexical,
derivational, and inflectional properties of a token
and is not predictable on another basis.

3.5 Space-Delimited Gloss Tokens

Type Example Glosss
Infixation s{>um}ulat write{PFV}
Reduplication {>su}sulat write{PROSP}
Transfixation k{i>u}t{a>u}b book{PL;1,2}
Apophony t{u>i}θ tooth{PL}
Segmental
overwriting

{xi>ku}3xi3 eat{IRR}

Tonal
overwriting

ku{3>14}ni2 want{NEG}

Table 2: Example forms and glosses for a range of mor-
phological processes.

Conventions for associating gloss tokens with
morpheme tokens (see Table 2) are based on the
Leipzig glossing conventions with significant ex-
tensions. When possible, labels for categories
are derived from the Unimorph schema (Sylak-
Glassman, 2016).
Each gloss token consists of a lexical or mor-

pheme gloss followed by a sequence of process
glosses (each enclosed in curly brackets) and zero
or one delimiters {=, -} which may be either pre-
posed or postposed. Process glosses consist of
lexical glosses or morpheme glosses and an op-
tional semicolon followed by a list of numbers sep-
arated by commas. The numbers indicate the in-
dex of spans (starting from 1) in the corresponding
form the gloss applies to. For example, in Arabic
k{i>u}t{aː>u}b ‘book{PL;1,2}’, the PL property
is realized by two changes ({>u} and {>u}) and
this is indicated by the span indices (1,2) after the
semicolon. For ease of annotation, if there is only
one process in a word, the index can be omitted.
Some form tokens have more than one as-

sociated process. The corresponding glosses
are provided in successive bracketed expres-
sions after that lexical or morpheme gloss.
For example, in Arabic k{>a}t{>ː}{>a}b{>a}
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‘write{PST;1,3}{CAUS;2}{3.SG.M;4}’, there are
three processes, indicated by the three properties
in brackets with their respective indices. The use
of indices means the alignment between brack-
eted expressions in forms and glosses is determin-
istic. The orders of the processes (bracketed ex-
pressions) in the gloss can be arbitrary, but—as a
group—they should appear only at the end of the
gloss.
Morpheme glosses are drawn from the Uni-

morph Schema (Sylak-Glassman, 2016) when pos-
sible.6 When glosses for derivational morphology
are present in the Leipzig Rules but not in Uni-
morph, the Leipzig gloss should be used. When
a needed category is not represented in either re-
source, it will be added to the standard.
Super-categories of features are representated as

CATEGORY::. Thus, first-person plural subject is
represented as SUBJ::1.PL.

3.6 Disjunctions

Disjunctions between properties can indicated
with the pipe (|) operator and grouping can
be indicated with square brackets. The | op-
erator binds more closely than the . opera-
tor. Thus, English you may be glossed (out
of context) as 2.SG|PL.NOM|ACC (second person,
singular or plural and nominative or accusative.
Square brackets can be used for grouping. Ger-
man sie can be glossed (out of context) as
3.[SG.FEM]|[PL.NOM|ACC] (third person, either
feminine singular or unspecified for gender and
plural and either nominative or accusative). Dis-
junctions are to be used when the exact analysis of
a wordform, in context, is not clear to an annota-
tor. In general, their use should be minimized as
the quality of the annotations improves.

3.7 Translations

Each discourse segment should be accompanied by
an idiomatic translation into the metalanguage.

3.8 Parsing GGG

Parsing GGG is more complicated than parsing
Xigt because GGG is, effectively, an 𝐴𝑛𝐵𝑛𝐶𝑛 lan-
guage. To validate or parse GGG, one must ensure
that three sequences, lx, sr, and gl, are the same
length (when split into tokens on white space).
This means that context-free parsing for GGG is
not possible. This adds some overhead to writing

6See, also https://unimorph.github.io/schema/

tools for GGG. However, we have written parsing,
generation, and validation tools for GGG without
excessive investments.7

4 Linguistic Adequacy

The adequacy of GGG for annotating concatena-
tive morphology is identical to that of LGR, since
the mechanism is borrowed from LGR directly.
The only modification is that morphemes within a
word are divided by spaces in addition to hyphens
and equal signs. This means that the headedness of
compounds must be stated explicitly (with depen-
dents treated like affixes).
The GGG approach, however, has a distinct ad-

vantage in the treatment of non-concatenative mor-
phology, as it is able to achieve complete adequacy
(though not theoretical correctness or depth of gen-
eralization) through the use of a single annotation
mechanism: {A?>B?(;C)?}. We show that the
convention works well for infixation, reduplica-
tion, truncation, apophony, tonal overwriting, seg-
mental overwriting, transfixation, and other simi-
lar processes.

4.1 Infixation

Infixation involves the inserting of a morpheme
into a morpheme. Take the following examples
from Ulwa, a Misumalpan language of Nicaragua.
Possessives are denoted by affixes such as “ka”
(3.SG) and “ki” (1.SG), which may occur as either
suffixes or infixes depending on the syllable struc-
ture of the word. Therefore, in all of these cases,
we are treating the affixes as morphological pro-
cesses. McCarthy and Prince (1993)

-
lx: ”wahai{>ki}”
sr: ”wahai{ki}”
gl: ”brother{POSS::1.SG}”
tr: ”my brother”

-
lx: ”sû{>ki}lu”
sr: ”sû{ki}lu”
gl: ”dog{POSS::1.SG}”
tr: ”my dog”

Using LGR, the first two URs would be annotated
as wahai<ki> and sû<ki>lu. Consider a similar
example from Latin:

7See https://github.com/cmu-llab/
generalized-glossing-guidelines.
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OPERATION GGG LGR XIGT
prefix un- likely

NEG- likely
un-likely
NEG-likely

3

suffix Kind -er
child -PL

Kind-er
child-PL

3

infix sû{>ki}lu
dog{1.SG}

sû<ki>lu
dog<1.SG>

3

prefixing reduplication {>su}sulat
write{PROSP}

su~sulat
PROSP~write

3

infixing reduplication ma{>m}vit̪
lion{PL}

? 3

suffixing reduplication kuk{>uk}
bark{PROG}

kuk~uk
bark~PROG

3

subtractive morphology nyoo{n>}
lamb{PL}

7 7

apophony c{ea>i}nn
head{PL}

cinn
head\PL

7

tonal overwriting xi{3>4}xi3
eat{HAB}

7 7

segmental overwriting {ki>ka}3{xa>sa}3
do{IRR; 1,2}

7 7

transfixation k{i>u}t{aː>u}b
book{PL;1,2}

7 3

score 11 6.5 7

Table 3: Comparison of the representation of different morphological processes by glossing convention.

-
lx: ”ta{>n}g{>o}”
sr: ”ta{n}g{o}”
gl: ”touch{1.SG.PRS.IND}”
tr: ”I touch.”

Both of these systems are equally adequate for rep-
resenting infixation (at least of this kind). Infixing
reduplication, however, is possibly a different mat-
ter, as shown in §4.2 below.

4.2 Reduplication

Reduplication refers to the realization of a mor-
phological property by repeating material from a
base. In this example from Mangap-Mbula, a VC-
sequence is reduplicated after the base, to mark
progressive aspect: (Bugenhagen, 1995)

-
lx: ”kuk{>uk}”
sr: ”kuk{uk}”

gl: ”bark{PROG}”
tr: ”be barking”

GGG can deal with relatively complex types of
redupulication such as occur in Balsas Nahuatl8,
in which the repeated material can ultimately be
realized as a high tone and/or a lengthened vowel
(which are not necessarily contiguous):

-
lx: ”ti- ne:{>◌́}ch- {>te}te:mowa -0”
sr: ”ti- ne:{◌́}x- {te}te:mowa -0”
gl: ”SUBJ::2SG- OBJ::1SG- \

{RED_H;1,2}look\_for -PRS.IND.SG”
tr: ”You look for me.”

-
lx: ”ni- mi{>:◌́}ts- te:mowa -0”
sr: ”ni- mi{:◌́}s- te:mowa -0”
gl: ”SUBJ::1SG- OBJ::2SG- \
8The acute accent indicates a high tone. Unlike other va-

rieties of Nahuatl, Balsas Nahuatl is tonal (Guion and Amith,
2005; Guion et al., 2010).
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{RED_H;1}look\_for -PRS.IND.SG”
tr: ”I look for you.”

GGG is uniquely able to formalize Balsas Nahu-
atl reduplication with a fixed coda laryngeal
(RDP_H), a reduplicant that can be realized on the
the stem in various ways (first, third, and fourth
examples) or on a prefix (second example). The
commonality of all four cases is established by
the common gloss: (RDP_H). Reduplication may
be prefixing, suffixing, or infixing. The case of
infixing reduplication is particularly problematic
for LGR, since it is not clear which convention—
the tilde convention for reduplication or the angle-
bracket notation for infixation—should take prece-
dence. In GGG, the notation is the same and this
decision is not necessary. Take the following ex-
ample from Pima (Riggle, 2006):

-
lx: ”ma{>m}vit̪”
sr: ”ma{m}vit̪”
gl: ”lion{PL}”
tr: ”lions”

-
lx: ”tʃɨ{>tʃ}mait̪”
sr: ”tʃɨ{tʃ}mait̪”
gl: ”drum{PL}”
tr: ”drums”

A similar pattern of infixing reduplication can
be found in Latin:

-
ur: ”s{>po}pond{>ī}”
sr: ”s{po}pond{ī}”
gl: ”perform{1.SG.PRF.IND;1,2}

4.3 Subtractive morphology
Subtractive morphology involves the deletion of a
segmental material from a base. The Murle lan-
guage in the Surmic family subtracts the last conso-
nant of a noun to change it from singular to plural:
(Arensen, 1982)

lx: ”nyoo{n>0}”
sr: ”nyoo{}”
gl: ”lamb{PL}”
tr: ”lambs”

-
lx: ”wawo{c>0}”
sr: ”wawo{}”
gl: ”white_heron{PL}”
tr: ”white herons”

There appears to be no standard way of notating
this in LGR. In Xigt, we believe that subtractive
morphology could be notated by aligning a gloss
with an empty string, but this would make it indis-
tinguishable from realizing a morphological prop-
erty via no change to the form.

4.4 Apophony
Apophony refers to a process in which a morpho-
logical property is realized through an alternation
in phonemes. Take the following examples from
Irish, in which vowel alternation is used to turn sin-
gular nouns into plural (Fife and King, 2017).

-
lx: ”c{ea>i}nn”
sr: ”c{i}nn”
gl: ”head{PL}”
tr: ”heads”

-
lx: ”m{ui>a}r{>a}”
sr: ”m{a}r{a}”
gl: ”sea{PL;1,2}”
tr: ”seas”

Apophony in Totonac often involves consonants
changes, like changing /ʃ/ to /s/:

-
lx: ”{ʃ>s}kú'ta'”
sr: ”{s}kú'ta'”
gl: ”sour{DIM}”
tr: ”a little sour”

-
lx: ”{ʃ>s}uːni'”
sr: ”{s}uːni'”
gl: ”bitter{DIM}”
tr: ”a little bitter”

LGR allows one to indicate that apophonony af-
fects a morpheme, but does not apply a notation for
specifying its locus. Apparently Xigt has no way
to distinguish apophony from infixation.

4.5 Tonal overwriting
Tonal overwriting refers to the class of morpho-
logical processes in which a tonal “affix” over-
writes the existing tonal melody on a base. Exam-
ples from Yoloxóchitl Mixtec—which uses tonal
overwriting to indicate different verbal inflections,
such as habitual and negative—follow:

-
lx: ”ta'{3>1>4}bi{>1}4”
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sr: ”ta'{4}bi{14}”
gl: ”get-broken{HAB;1,2}”
tr: ”habitually get broken”

In Xigt, there is not a clear way of distinguishing
these changes from infixation. In LGR, these can
be represented with the backslash notation used for
apophony, with the same drawbacks.

4.6 Segmental overwriting

Tonal overwriting is fairly common. The analo-
gous segmental process—in which a string of seg-
ments is overwritten by other segments—is rela-
tively rare, but does exist. The following example
from Yoloxóchitl Mixtec employs segmental over-
writing to inflect a class of verbs as irrealis:

-
lx: ”{xi>ku}3xi3”
sr: ”{ku}3xi3”
gl: ”eat{IRR}”
tr: ”eat”

4.7 Transfixation

Transfixation involves interspersing affixal spans
into a root morpheme. In Semitic languages such
as Arabic and Hebrew, words are mostly associ-
ated with 3-consonant roots. In Arabic, k-t-b is a
root meaning “write” and d-r-s is a root meaning
“study”. These roots are combined with patterns of
vowels to form words.
Transfixation is particularly tricky to represent

using LGR, and it is unclear which convention
should be used to do so (the angle-bracket infix
notation or the backslash non-concatenative nota-
tion). In GGG, all of the patterns inserted into the
root are treated as morphological processes, using
the bracket notation.
Take the following examples from Arabic,

which show how different vowel patterns can dis-
tinguish between singular and plural nouns, as well
as different forms of verbs.

lx: ”q{a>u}l{>uu}b”
sr: ”q{u}l{uu}b”
gl: ”heart{PL;1,2}”
tr: ”hearts”

-
lx: ”d{>a}r{>a}s{>a}”
sr: ”d{a}r{a}s{a}”
gl: ”study{PST;1,2}{3.SG.M;3}”
tr: ”he studied”

Transfixation can be combined with other pro-
cesses as well. For example, gemination on the
2nd consonant of the root is used to turn a Form
I verb into a causative Form II verb (Haspelmath
and Sims, 2010).

-
lx: ”d{>a}r{>ː}{>a}s{>a}”
sr: ”d{a}r{ː}{a}s{a}”
gl: ”study{PST;1,3}{CAUS;2}{3.SG.M;4}”
tr: ”he taught”

A scorecard comparing the adequacy of GGG,
LGR, and Xigt is shown in Table 3.

5 Conclusions

As should be clear from Table 1, most of the at-
tested types of morphological processes can be rep-
resented in all three annotation formats. However,
GGG has clear advantages in some areas. For ex-
ample, if a linguist wants to know how nouns with
a particular singular form are realized in the plu-
ral, without knowing in advance what processes
are involved, they could discover this through rel-
atively simple processing of GGG—because it is
completely explicit. It would be immediately ev-
ident whether the process was a particular kind
of apophony, reduplication, tonal overwriting, etc.
For the other two annotation formats, this kind
of research—if non-concatenative processes are
involved—is considerably more complicated.
One cost, because of its explicitness, is that

GGG annotation cannot be completed until a lin-
guist has a thorough (though fundamental) analy-
sis of a language’s morphology. Our goal is to de-
velop tools to facilitate this analysis: to go from
basic recordings to interlinear annotations with re-
duced human intervention. We hope that GGGwill
be an important part of this ongoing work. But the
benefits are great. We are currently using GGG
with great success in our ongoing research and
hope that other investigators will find it similarly
useful.
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Abstract

We introduce JAMBU, a cognate database of
South Asian languages which unifies dozens of
previous sources in a structured and accessible
format. The database includes 287k lemmata
from 602 lects, grouped together in 23k sets of
cognates. We outline the data wrangling nec-
essary to compile the dataset and train neural
models for reflex prediction on the Indo-Aryan
subset of the data. We hope that JAMBU is an
invaluable resource for all historical linguists
and Indologists, and look towards further im-
provement and expansion of the database.1

1 Introduction

A particular concern of historical linguists is study-
ing relatedness and contact between languages.
Two languages are related if they share words the
arose from a common source, having undergone
(potentially different) regular sound changes.2 For
example, the German words schlafen and Schiff are
cognate to the English words sleep and ship respec-
tively, with the German words having undergone
the sound change /p/ → /f/. Using evidence like
this from all of the Germanic languages, historical
linguists have reconstructed the historical words
that gave rise to these terms: *slāpan and *skipą
(Kroonen, 2013).

Computational historical linguistics is a grow-
ing field that seeks to apply modern computational
methods to studying this kind of change (Jäger,
2019; List, 2023). Massive datasets of multilin-
gual cognates are necessary for much of the current
research in this area, e.g. on multilingual cognate
detection and phoneme-level alignment (List et al.,
2018) and automatic comparative reconstruction

1The entire dataset is available at https://github.com/
moli-mandala/data, and a web interface for browsing it is at
https://neojambu.herokuapp.com/.

2Per the Neogrammarian hypothesis, sound changes are
regular and exceptionless (Osthoff and Brugmann, 1878; Paul,
1880). The reality of sound change is sometimes less ideal.

A

B C

Reconstruction
p(a ∣ b,c)

Reflex prediction
p(c ∣ a), p(b ∣ a)

Cognate prediction
p(b ∣ c), p(c ∣ b)

Figure 1: Three tasks of interest in computational his-
torical linguistics. In this diagram, A is the ancestor
language of B and C.

of historical ancestors of languages (Ciobanu and
Dinu, 2018).

South Asia3 as a region is home to a complex
historical mesh of language contact and change,
especially between the Indo-Aryan and Dravidian
language families (Masica, 1976). Yet, South Asia
is relatively understudied by linguists compared to
the linguistic diversity of the region (Arora et al.,
2022). There is no cross-family lexical dataset
to facilitate computational study on South Asian
historical and contact linguistics. In order to im-
prove this unfortunate state of affairs, we introduce
the JAMBU cognate database for South Asian lan-
guages. JAMBU includes all cognacy information
from the major printed etymological dictionaries
for the Indo-Aryan (Turner, 1962–1966) and Dra-
vidian (Burrow and Emeneau, 1984) languages, as
well as data from several more recent sources. In
this paper, we introduce and analyse our database
and train neural models on the reflex prediction
task. We hope that this resource brings us closer
to the ultimate goal of understanding how the lan-

3When using the term South Asia we refer to the Indian
Subcontinent.
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guages of South Asia have evolved and interacted
over time.

2 Related work

CLDF format. CLDF was proposed by Forkel
et al. (2018) as a standard, yet highly flexible, for-
mat for linguistic data (including cognate databases,
etymological dictionaries with reconstructions, and
even dictionaries). We use this format for the
JAMBU database. Many etymological databases
use CLDF to effectively encode complex relations
(e.g. loaning) and metadata (e.g. references, pho-
netic forms, alignments). Some which informed
our database design were Rankin et al. (2015);
Greenhill et al. (2008).

Cognates. Batsuren et al. (2019) compiled a cog-
nate database covering 338 languages from Wik-
tionary. They noted that the meaning of cognate
varies between research communities—for our pur-
poses as historical linguists, we prefer grouping
terms with shared direct etymological sources,
while much computational work (e.g. Kondrak
et al., 2003) takes a broader definition which in-
cludes loanwords or even all semantic equivalents
as cognates.

As shown in figure 1, computational histori-
cal linguistics has taken on tasks involving cog-
nates such as automatic cognate identification from
wordlists (Rama et al., 2018; List et al., 2018;
Rama, 2016), cognate/reflex prediction, i.e. pre-
dicting the form of a cognate in another language
based on concurrent or historical data (List et al.,
2022; Bodt and List, 2022; Fourrier et al., 2021;
Marr and Mortensen, 2020), and reconstruction of
the ancestor form of a cognate set (Durham and
Rogers, 1969; Bouchard et al., 2007; Ciobanu and
Dinu, 2018; Meloni et al., 2021; He et al., 2022,
inter alia).

Other South Asian cognate databases. Cathcart
(2019a,b, 2020) and Cathcart and Rama (2020) also
previously made use of data from Turner (1962–
1966) by scraping the version hosted online by
Digitial Dictionaries of South Asia.

There was an effort to create a new digital South
Asian etymological dictionary in the early 2000s,
termed the SARVA (South Asian Residual Vocab-
ulary Assemblage) project (Southworth, 2005a).
This was unsuccessful however, and only a small
portion of the possible cross-family entries were
complete. Our database does not incorporate it.

Languages Cognate sets Lemmata

Indo-Aryan 433 16,464 194,834
Dravidian 78 5,649 78,502
Nuristani 22 3,645 12,088
Other 52 163 311
Munda 15 129 1,352
Burushaski 2 41 48

Total 602 23,024 287,135

Table 1: Statistics about the JAMBU database, factored
by language family. Cognate sets counts the number
of such sets that include at least one cognate from that
family (and so does not sum to the total).

3 Database

The JAMBU database incorporates data from
three major language families of South Asia:
Indo-European (the Indo-Aryan and Nuristani
subbranches), Dravidian, and Austroasiatic (the
Munda subbranch). This comes out to 287k lem-
mata from 602 lects across 23k cognate sets (ta-
ble 1).

The data is stored in the CLDF structured data
format. The overall database structure is described
in the file Wordlist-metadata.json, which in-
cludes information about the type of data recorded
in each column of each file. The file forms.csv

includes all lemmata (word form) and associated
etymological and linguistic information. The files
parameters.csv and cognates.csv include all
cognateset headwords and etymological notes for
each. The file languages.csv lists all languages
in the database and their geographical location. Fi-
nally, sources.bib lists all data references in Bib-
TeX format.

For each lemma in forms.csv, we store the fol-
lowing information: a unique form ID; the lan-
guage ID; the cognate set ID, linking it to other
cognate lemmata; a normalised representation of
the lemma itself, using our transcription scheme; a
gloss in English; the spelling of the lemma in the
native script; the phonemic IPA representation of
the lemma; the unnormalised form of the lemma
taken from the original source; a finer-grained cog-
nate set ID; notes; and references.

For each cognate set, we store a headword,
which is usually a common ancestor of the words
in that cognateset or a reconstruction of that ances-
tor if possible. We also store desiderata such as
definitions and etymological notes.

Finally, we take an expansive view of what con-
stitutes a “language” in our database. If a word is

69



454 ápavartayati tr. ‘turns away
from’ RV. 2. apavr.tta- ‘reversed’
ŚāṅkhŚr. [

√

vr.t1]

1. Pk. ōvattēi ‘causes to turn back’;
S. ot. ı̄ f. ‘turning over the edge of a
cloth and hemming’;
2. G. ot.vũ ‘to hem’, ot. ı̄ f. ‘tucked up
part of dhotı̄ or sār.ı̄’...

→

OIA ápavartayati

OIA apavr. tta-

Prakrit ōvattēi

Sindhi ot. ı̄

Gujarati ot.vũ

Gujarati ot. ı̄

←

forms.csv

ápavartayati454

apavahati455

apavartana453

parameters.csv

Figure 2: Diagram of some of the data in JAMBU parsed from CDIAL entry 454 (ápavartayati, ‘turns away from’).

1 1e1 1e2 1e3 1e4
Lemmata

0

50

100

150 Grouping
Burushaski
Dravidian
Indo-Aryan
Munda
Nuristani
Other

Figure 3: Distribution of languages by number of lem-
mata entered in JAMBU.

known to only be attested in a particular dialect,
we list that dialect separately. For example, for
the Shina language (northwestern Indo-Aryan), we
list 32 geographical dialects. The distribution of
languages by number of lemmata is depicted in
figure 3.

3.1 Data sources and scraping

The two major data sources are CDIAL (Turner,
1962–1966) and DEDR (Burrow and Emeneau,
1984), which have been scraped in their en-
tirety from web versions hosted by the University
of Chicago’s Digital Dictionaries of South Asia
project.4 Since the raw data is in HTML with lim-
ited structured markup, extracting CLDF-suitable
data is a significant hurdle, including matching
lemmata to the appropriate language and group-
ing associated metadata like grammatical gender
and etymological notes under the correct form (fig-
ure 2). Further cleanup of data from these two
sources will have to be done manually.

Since CDIAL and DEDR have not been updated
in decades, we are also incorporating more recent
sources that refer to them into our database, as well
as etymologising newer fieldwork data manually.

4https://dsal.uchicago.edu/dictionaries/

The additional sources we added (some partially)
are listed in appendix B.

3.2 Transcriptions

One serious issue has been reconciling differing
transcription systems from different sources; tran-
scription schemes vary across sources even for the
same language, since there is no standard transcrip-
tion for South Asian linguistics. An illustrative
example of this issue is the variable transcription
of the labiodental fricative as v or w.

Turner (1962–1966) normalises entries from var-
ious sources into a relatively mundane Indological
transcription, i.e., IAST5 with many extensions
for the varying phonologies of South Asian lan-
guages, but not always consistently. For example,
the phoneme /e:/ is notated ⟨ē⟩ for Sanskrit entries,
but ⟨e⟩ for Hindi (and in Burrow and Emeneau
(1984), as ⟨é⟩ for Malto entries). Elsewhere, e.g.,
in Bengali and Punjabi, transcriptions adhere to
the written form, which do not always adhere to
any phonemic analysis of the languages in ques-
tion. In the case of Kashmiri, Shina, and many
other languages, there are now better analyses to
base romanisation on than existed at the time of
compilation of the sources of Turner (1962–1966).
Meanwhile, (Burrow and Emeneau, 1984) does not
attempt to conventionalise transcription at all, in-
stead strictly copying the transcription from the
original source; e.g. all Bengali entries strictly re-
flect spelling and do not indicate the differing sur-
face realisations of the orthographic schwa (Johny
and Jansche, 2018).

We created a new, more rigidly standardised tran-
scription system based on Indological conventions
to unify all our data. We did not want to use pure
IPA because it obscures useful cross-lingual pat-

5https://en.wikipedia.org/wiki/International_

Alphabet_of_Sanskrit_Transliteration
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Language Original Normalised

Old Indo-Aryan *anugr
˚

bhāyati *anugr
"
bhāyati

European Romani učhar uchar
Shumashti ä́šin ǽśin
Palula beedhríi bēdh r̂ı̄
Pashai: Degano dew’âz dev´̄az

Table 2: Examples showing how our orthographic nor-
malisation process affected forms from various sources.

Figure 4: Web interface for Jambu, displaying re-
flexes of CDIAL entry 43 (áks. i, ‘eye’). See https:

//neojambu.herokuapp.com/entries/43.

terns6 and is not conventional in the Indological re-
search community (especially considering that the
database may be of use to non-linguist Indologists
as well). For that reason, we use a modified IAST
(for instance, using a superscript ⟨h⟩ to notate aspi-
ration and breathy voice distinguishing these from
genuine h-clusters) to suit cross-linguistic needs.
Some contrasts are made more explicit while nota-
tional consistency is maintained across the board.

We used the segments Python library to cre-
ate orthography normalisation profiles for each
source’s transcription scheme (Moran and Cysouw,
2018); some examples of the changes are shown in
table 2. So far, forms from all source have not yet
been orthographically standardised to our system.
However, we developed standardisation scripts cov-
ering 204k lemmata, of which 99.7% were auto-
matically converted without errors.

3.3 Web interface

Finally, we developed a web interface for the
JAMBU database; see figure 4. Originally, we used
the pre-existing clld webapp toolkit for the pub-

6E.g. the Indological a (called a schwa) varies in pronun-
ciation across South Asia, from [a] (Telugu) to [3] (Hindi) to
[O~o] (Bengali) to [2] (Nepali).

Model Perplexity BLEU TER

GRU 2.57 55.91 34.40
Transformer 2.53 56.03 35.15

Table 3: Performance of the two models on reflex pre-
diction on the Indo-Aryan segment of JAMBU.

lication of Cross-Linguistic Linked Data,7 but we
later switched to a custom Flask web app designed
from scratch in order to have finer control over
the database structure and to execute searches on
the backend more efficiently. This web interface
supports search, filtering, and geographical visuali-
sation. We hope this supersedes the unstructured
search interfaces currently available for browsing
older etymological dictionaries for these languages
(Turner, 1962–1966; Burrow and Emeneau, 1984).

4 Experiment

As a demonstration of the usability of the dataset
for computational historical linguistics, we repli-
cate the reflex prediction task of Cathcart and Rama
(2020). We train neural models on the task of reflex
prediction in Indo-Aryan languages, i.e. predict-
ing the descendant of an Old Indo-Aryan word in
a given Indo-Aryan language. Rather than being
restricted to data from Turner (1962–1966), we can
draw on all the sources present in JAMBU.

We train on 80% of the data and test on the
remaining 20%. We compare two models: a bidi-
rectional GRU encoder-decoder with Bahdanau at-
tention and a transformer encoder-decoder with
learned positional embeddings. The optimised hy-
perparameters for the GRU are a learning rate of
2 ⋅10−3, 4 layers, and embedding and hidden size of
64. The transformer had a learning rate of 1 (using
the parameter-based adjustment and warmup/de-
cay schedule from Huang et al., 2022), 3 layers,
4 attention heads per layer, embedding size of 64,
and FFN size of 128. Both models were trained for
50 epochs without early stopping with a batch size
of 1024 on a single Quadro RTX 6000, with a run
completing in about 15 minutes.

We evaluate BLEU and TER on the held-out set
using the SacreBLEU implementation (Post, 2018),
treating a single phoneme as a ‘word’. Even after
comprehensive hyperparameter tuning we find that
both models achieve similar performances, per the
results in table 3. We leave analysis of these models
for future work.

7https://github.com/clld/clld
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5 Conclusion

In this paper, we introduced JAMBU, the largest
and most up-to-date cognate database for South
Asian languages. We are continuing to expand
the database, incorporating all lexical data that has
so far been unused in comparative linguistic work
on the region. We believe that the open questions
of South Asian historical linguistics cannot be re-
solved without examining all the information (both
synchronic and diachronic) that linguists have col-
lected about language of the region. The old ety-
mological dictionaries are in desparate need of an
update. However, much work remains. We briefly
discuss some avenues of future work.

Many sources are yet to be incorporated, es-
pecially those recording loanwords from exter-
nal languages (especially Persian, Arabic, English,
and Portuguese) and from local literary languages
(particularly Sanskrit). We have yet to disten-
tangle cross-lectal interactions and mark lexical
isoglosses, which seem necessary to understand
the history of language interactions in the region;
Kalyan et al. (2018)’s wave model of linguistic
change has been thought by many scholars to be
suited for South Asian languages, but it has not
been operationalised yet due to a lack of compre-
hensive data (Toulmin, 2006; Kogan, 2017).

Another significant task ahead is extending
our database structure to support indicating and
analysing more complex cross-lingual interactions.
For example, the database as it stands does not
distinguish between inheritance from the parent
language and loaning mediated by a sibling lan-
guage.

We have also been working on a consistent or-
thography for tonemes in the languages where
tones are contrastive, such as the northwestern Indo-
Aryan languages (Baart, 2014). Older data from
these languages either does not notate tone at all
(for tonality was not yet recognized, as in Gawri
and Torwali), or represents it indirectly through di-
achronically correct, but synchronically confusing,
spelling systems (as in Punjabi and Kishtwari). So,
our work will also involve analyzing and incorpo-
rating new data from tonal languages, both from
existing sources and our own fieldwork.

Finally, we hope to manually improve data qual-
ity once the parsing of old sources is stable. This
includes fixing known mistakes, reorganising en-
tries to better indicate indirect derivations and cross-
lectal loans, and etymological notes that summarise

the extant literature.
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Figure 5: Map of South Asian languages present in JAMBU, coloured by phylogenetic grouping and sized by
number of lemmata included in the database. 74 lects (mostly varieties of Romani, an Indo-Aryan language, spoken
in Europe and the Middle East) are not visible within the bounds of this map.

A Licensing

Data from Burrow and Emeneau (1984) and Turner (1962–1966) has been scraped using the approval
of the SARVA project (of which one of the authors was previously involved in) for strictly academic
purposes. Additional data added to the dataset has either been manually etymologised (and therefore is an
original academic contribution) or obtained with permission of the respective authors.
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B Other data sources

Language(s) Reference Etymologised? In JAMBU?

Burushaski Berger (1998) ✓ †

Dravidian Burrow and Emeneau (DEDR; 1984) ✓ ✓

Emeneau and Burrow (DBIA; 1962) ✓

Southworth (2006) ✓ ✓

Southworth (2005b) ✓ ✓

Kurux, Malto Kobayashi (2022) ✓ †
Pfeiffer (2018) ✓ †

Indo-Aryan Turner (CDIAL; 1962–1966) ✓ ✓

Bagri Mathai (2011) ✓

Bhil Watters (2013)
Bundeli Boehm (2017) ✓

Chhattisgarhi Boehm (2002) ✓

Dhivehi Fritz (2002) ✓ ✓

Dogri Patyal (1991) ✓ ✓

Gawri Baart (1997) ✓

Indus Kohistani Zoller (2005) ✓

Kalkoti Liljegren (2013) ✓

Kamtapuri, etc. Toulmin (2006) ✓ ✓

Kannauji John and Varghese (2021) †
Khetrani Elfenbein (1994) ✓

Kholosi Arora and Etebari (2020–2021) ✓ ✓

Kundal Shahi Rehman and Baart (2005) ✓

Kvari Jouanne (2014) ✓

Maimani, Luwati Al Jahdhami (2022) †
Mandeali Patyal (1982, 1983, 1984) ✓ ✓

Palula Liljegren (2019) ✓ ✓

Punjabi, etc. Gill (1973) †
Shackle (1995) ✓ †

Rajasthani Abraham et al. (2012) ✓

Benjamin and Ngwazah (2012) ✓

Chacko and Ngwazah (2012) ✓

Koshy (2012) ✓

Mathai (2012) ✓

Shina, Domaaki Backstrom and Radloff (1992) ✓

Shina, Kashmiri Schmidt and Kaul (2008) †
Thari Bhawnani (1979) †
Tharu Boehm (1998) ✓

Vaagri Boli Varma (1970) ✓ †
Wadiyara Koli Zubair (2016) †
Zadjali Al Jahdhami (2017) ✓

Munda Rau (2019) ✓ ✓

Munda (1968) ✓

Nuristani Strand (1997–2021) ✓ ✓

Table 4: All sources included in JAMBU, grouped together by language and family. Etymologised? indicates
whether the original sources provided etymologies for the terms it listed; if not, we manually proposed etymologies.
In JAMBU? indicates what portion of the work has been incorporated into the current version of the database;✓
means entirely while † means partially.
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Abstract
Linguistic analysis is a core task in the pro-
cess of documenting, analyzing, and describing
endangered and less-studied languages. In ad-
dition to providing insight into the properties
of the language being studied, having tools to
automatically label words in a language for
grammatical category and morphological fea-
tures can support a range of applications useful
for language pedagogy and revitalization. At
the same time, most modern NLP methods for
these tasks require both large amounts of data
in the language and compute costs well beyond
the capacity of most research groups and lan-
guage communities.

In this paper, we present a gloss-to-gloss (g2g)
model for linguistic analysis (specifically, mor-
phological analysis and part-of-speech tagging)
that is lightweight in terms of both data require-
ments and computational expense.

The model is designed for the interlinear
glossed text (IGT) format, in which we expect
the source text of a sentence in a low-resource
language, a translation of that sentence into a
language of wider communication, and a de-
tailed glossing of the morphological properties
of each word in the sentence. We first produce
silver standard parallel glossed data by auto-
matically labeling the high-resource translation.
The model then learns to transform source lan-
guage morphological labels into output labels
for the target language, mediated by a struc-
tured linguistic representation layer. We test the
model on both low-resource and high-resource
languages, and find that our simple CNN-based
model achieves comparable performance to a
state-of-the-art transformer-based model, at a
fraction of the computational cost.

1 Introduction

Linguistic analysis is a core task in the documenta-
tion, analysis, and description of endangered and
less-studied languages. One frequent goal of lan-
guage documentation projects is to produce a cor-
pus of interlinear glossed texts, or IGT (Figure 1

Figure 1: Example of IGT: Uspanteko (usp) sentence.

shows an example from the Mayan language Us-
panteko). IGT can take many different forms, but
canonically consists of the target language sen-
tence, morphological segmentation of each word,
glossing of each word with its stem translation and
any relevant morphosyntactic features, and a trans-
lation into a language of wider communication.

In addition to providing insight into the proper-
ties of the language being studied, the linguistic
information in IGT can support a range of applica-
tions useful for language teaching and revitaliza-
tion. Modern NLP methods typically require both
large amounts of annotated data in the target lan-
guage and compute resources beyond the capacity
of most research groups and language communities.
In this paper we address the task of lightweight
morpheme labeling in context (McCarthy et al.,
2019), developing a model which achieves reason-
able accuracy with minimal requirements for both
labeled data and computational expense.

Following previous work (Moeller and Hulden,
2021; Moeller et al., 2021; McMillan-Major, 2020;
Zhao et al., 2020; Baldridge and Palmer, 2009,
among others), we aim to predict the parts of
speech (POS) and morphosyntactic features for
each word in the target sentence, producing the
third line of Figure 1, with stem translations re-
placed by POS labels. This model can produce
a first-pass labeling for correction by human ex-
perts working on the documentation project, saving
large amounts of time (as shown by Baldridge and
Palmer, 2009) and freeing experts to work on more
complex aspects of linguistic analysis.

To match the language documentation context,
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where we often have a transcription and translation
of the text before any other labeled data, we model
morpheme labeling as a translation task. Specifi-
cally, the model should learn to transform labels for
the high-resource translation into labels for the tar-
get language; hence the name gloss-to-gloss (g2g).

For initial model development, we use data la-
beled in the UniMorph1 format, so that we can test
the model’s performance on a range of languages.
Next, we test the same model on Uspanteko data
from a language documentation project (Pixabaj
et al., 2007), which involves the steps of:

a) Converting the morpheme labels from the Us-
panteko IGT into the UniMorph format, which
includes mapping Uspanteko-specific labels
into the UniMorph tag set;

b) Replacing stem translations (e.g. ropa
(clothes)) with part-of-speech labels;

c) Translating the Spanish translations of the Us-
panteko sentences into English, then automati-
cally labeling the English text with UniMorph
labels;

d) Using our g2g model to predict labels for the
Uspanteko sentences.

For step (a), the expected UniMorph representation
for the Uspanteko sentence above might be:

xk’amch ritz’iq
V;PFV;ALL N;ERG;3;PL

For example, the tag COM (completive aspect)
from the Uspanteko IGT is mapped to the Uni-
Morph label PFV (perfective aspect), and the tag
E3 (ergative 3rd person plural) is converted to the
UniMorph trio of ERG, 3, and PL.

Step (c) creates pseudo-parallel English data for
the texts. For Figure 1, this step yields the follow-
ing (noisy) morphological analysis:

[they]PRO;3;PL [brought]V;PST
[clothes]N;PL

Even in this simple example, we see that the mor-
phological information expressed in the two lan-
guages is similar but not identical, and the morpho-
logical features are distributed differently across
the words. Our model additionally incorporates a
layer that maps morpheme labels to their linguis-
tic dimensions, following the dimensions defined

1https://unimorph.github.io/

by the UniMorph schema (Sylak-Glassman, 2016).
Mapping to linguistic dimension is a first step to-
ward incorporating linguistic knowledge for the
task of morpheme glossing in context.

In step (d), we concatenate a vector of the En-
glish morpheme labels with static word embed-
dings for the English lexical items; this combined
representation serves as input to the final classifica-
tion layers, whose task is to produce the appropriate
labels for the target language.

To keep computational demands low, we use a
rather simple CNN-based architecture, and com-
pare to a fine-tuned BERT (Devlin et al., 2019)
model. On standard evaluations, the CNN model
achieves performance comparable to the BERT
model, at a fraction of the computational expense.

The contributions of this work are:

1. A lightweight (low computational expense,
reasonable data requirements) model for mor-
pheme labeling in context, with an architec-
ture designed for a modified IGT (interlinear
glossed text) format;

2. A simple structured linguistic representation
in the form of linguistic dimensions, used to
guide predictions;

3. Evaluation of the model on language docu-
mentation data (IGT) for the Mayan language
Uspanteko, and additional evaluations on a
range of high-resource languages.

We described related work in Section 2, our ap-
proach to data representation in Section 3, and
the model architecture in Section 4. Section 5
describes results for the high-resource language
development experiments, and Section 6 presents
our core results on IGT for Uspanteko. We wrap
up with discussion and conclusions.

2 Background and related work

One goal of this work is to develop time-saving
tools for use in the language documentation con-
text. Specifically, we aim to support the production
of interlinear glossed text (IGT) with a lightweight
model that can be run on a standard laptop, us-
ing whatever previously-produced IGT might be
available for the target language.

2.1 Computational support for IGT
IGT is a standard format for representing rich lin-
guistic information associated with text. It is a
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common representation in linguistic literature and
a frequent product of language documentation and
description projects.

At the same time, creating IGT is a time-
consuming and expertise-demanding process,
bringing together a collection of skilled tasks. De-
pending on the original data source, IGT produc-
tion may require transcription and translation of
recorded audio or video, as well as morphologi-
cal segmentation and morphological analysis. An
increasing amount of research effort has recently
been devoted to finding low-resource solutions for
each stage of the process, with work in transcription
(for example, Adams et al., 2017; Wisniewski et al.,
2020), translation (see Haddow et al. (2022) for
a survey), and segmentation (Ruokolainen et al.,
2013; Eskander et al., 2019; Mager et al., 2020,
among others) tasks. Work on automatic morpho-
logical inflection for low-resource languages is also
related, though it approaches the task from a differ-
ent direction (Anastasopoulos and Neubig, 2019;
Liu and Hulden, 2021; Muradoglu and Hulden,
2022; Wiemerslage et al., 2022, among others).

Representing IGT. Early computational efforts
in this area focused on defining data formats for
representing the complex relationships between the
various tiers of IGT (Hughes et al., 2003, 2004;
Palmer and Erk, 2007). The Xigt project (Goodman
et al., 2015) improves upon and modernizes previ-
ous formats, offering an easily-serializable repre-
sentation for IGT. In this study we take a different
approach, extracting the morpheme labels from the
IGT and clustering the labels for morphemes asso-
ciated with a particular word into a UniMorph-style
format (Batsuren et al., 2022). By using UniMorph,
we depart from an important property of IGT: the
direct and ordered association of labels with the
morphemes they describe.

Morpheme glossing. The task of automatically
producing IGT is the focus of a current (2023)
shared task competition at SIGMORPHON.2 Given
a paired source text and translation, participants
in the competition are asked to output, for each
word, the appropriate stem translation and mor-
pheme labels. Data are provided for seven different
low-resource languages.

The earliest work on this task we are aware
of (Baldridge and Palmer, 2009; Palmer et al.,

2https://github.com/sigmorphon/
2023GlossingST

2009, 2010) takes segmented data as input and
outputs part-of-speech labels and morpheme la-
bels, ignoring the stem translation part of the task.
Samardžić et al. (2015) break the task down into
two steps, starting with part-of-speech and mor-
pheme labels and then filling in stem translations
using dictionary resources, with predicted labels
helping to disambiguate. Sequence labeling ap-
proaches, including Conditional Random Fields
(CRFs), Hidden Markov Models, and Recurrent
Neural Networks are explored by Barriga Martínez
et al. (2021) for the Otomi language, and Moeller
and Hulden (2018) consider both neural and non-
neural sequence labeling approaches for several
endangered languages. McMillan-Major (2020),
who merge the outputs of two CRF models, one
training on the source text, the other on the transla-
tion. Zhao et al. (2020) also leverage the translation
signal for glossing.

In this work, we draw inspiration from earlier
work in our focus on the morpheme labels (leaving
aside the stem translation) and in our use of the
translation to guide learning. We use a CNN to
capture relationships between the source and tar-
get morpheme labels, combined with static word
embeddings for the translated task to boost the se-
mantic signal. The combination of these elements
gives us a low-compute solution.

2.2 CNNs, and treating language as images

Convolutional Neural Networks (CNNs) have been
used to some degree in NLP for static classification
tasks and to capture latent structures in text. Before
attention-based models became the standard ap-
proach to sequential prediction, CNNs were shown
to achieve results that were comparable to other
traditional language models such as RNNs and
LSTMs. Pham et al. (2016) show that CNNs can
be effective for dynamic sequence prediction tasks
where both local and long-range dependency infor-
mation needs to be captured. Their CNN model for
statistical language modeling has a perplexity score
comparable to popular RNN-based approaches.

A radically different approach to image-driven
NLP is taken by Rust et al. (2023) to overcome vo-
cabulary bottlenecks in languages. Their encoder
approach (PIXEL) renders text as images and mod-
els orthographic similarity between languages. Al-
though their approach does match BERT’s perfor-
mance on syntactic and semantic language tasks,
PIXEL proves to be a more robust option for noisy
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In 1923 she became a member of the Lägerdorf ADGB action committee.
[adp, num, 3;fem;nom;pro;sg, pst;ind;fin;v, det;indf, n;sg, adp, det;def, n;sg,

sg;propn, n;sg, n;sg, _]

1923 wurde sie Mitglied des Lägerdorfer ADGB - Aktionsausschusses.
[num, ind;3;v;sg;pst;fin;pass, 3;fem;sg;pro;nom, n;neut;sg;nom, gen;sg;def;det;masc,

propn, sg;gen;masc;propn, _, n;sg;gen;masc, _]

Table 1: Example of fully-prepared pseudo-parallel data. The source text is automatically-translated and glossed
English; the target text is German.

text inputs. Kim et al. (2015) use a CNN cou-
pled with an LSTM at the character level to per-
form language modeling. Although their model
has 60% fewer parameters than popular LSTM ar-
chitectures of the time, it outperforms word-level
and morpheme-level LSTM baselines. Our work
differs from this approach in that we encode both
word order and morpheme-level information in two
dimensions instead of using character-level repre-
sentations.

3 Data and its representation

For model development, we start with data from
the 2019 SIGMORPHON shared task on morpho-
logical analysis in context.3 Once the model has
been developed and tested, we apply it to a true
low-resource language (Section 6.)

The shared task data is a collection of datasets of
varying sizes, from 68 different languages and/or
varieties, with sentence level morphological anal-
ysis in the UniMorph (Batsuren et al., 2022; Mc-
Carthy et al., 2020) style. Here we report results
for 9 languages, selected for diversity of morpho-
logical systems. For each language, we select the
first 10,000 sentences from the corpus and use a
train/dev/test split of 60/20/20.

3.1 UniMorph data
The UniMorph (Universal Morphological Feature)
schema is a set of morphological feature labels.
This set of labels is intended to serve as an inter-
lingua for annotation of (mostly) inflectional mor-
phology, providing a universal schema into which
any tag set can be mapped. The data consists of
sentences, with lemmas and morphological labels
assigned to each word within the sentence.

Pseudo-parallel data. Recall that our model
treats morphological analysis as a translation task,
“translating” the source-side labels into labels for

3https://sigmorphon.github.io/
sharedtasks/2019/task2/

the target-side sentence, assuming semantic equiv-
alence. The UniMorph-labeled texts described
above are not parallel, and we are not aware of any
parallel texts with UniMorph-style labels. There-
fore, we produce pseudo-parallel data by automati-
cally translating each dataset into English and then
labeling the English sentences with a morphologi-
cal labeler trained on English UniMorph data. An
instance of the fully prepared source data appears
in Table 1.4 We use the Google Translate API5 to
back-translate target text to English, our choice of
high-resource anchor (source) language. We train
a 64-unit BiLSTM model (Figure 8) with categor-
ical cross-entropy loss to generate morphological
labels for each word in the source language. We
also trained a GRU model for the same purpose,
but found that the BiLSTM is superior in terms of
F1, as shown in Table 2.

3.2 Linguistic dimensions (LDs)

UniMorph’s more than 200 individual labels are
grouped into 23 linguistic dimensions, ranging
from Aktionsart to voice, and including domains
such as information structure and politeness (see
Sylak-Glassman for details). For example, the
marker PFV on the Uspanteko verb indicates com-
pletive aspect and can be mapped to the dimension
of ASPECT. The marker PST on the Spanish verb
indicates past tense, mapped to the linguistic di-
mension TENSE. We use the UniMorph linguistic
dimensions in our model.

4Further preprocessing involves removal of punctuation
and conversion to all-lowercase letters.

5https://cloud.google.com/translate/
docs

Model Loss Accuracy F1
Bidirectional LSTM 0.111 0.969 0.922
GRU 0.126 0.963 0.876

Table 2: Performance of English glossing models.
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Figure 2: Multi-hot encoding for morpheme labels.

3.3 Structured representation for
morphological features

Prior to encoding, the dataset consists of tokenized
sentence and gloss pairs for the source and target
languages. Each word in a sentence is naturally
associated with one or more morphological fea-
tures. This presents a multi-class encoding prob-
lem that is solved by using a categorical heat-map
representation (Section 4), in which each column
represents a single label (morphological feature
or part-of-speech), and each row represents one
word in the sentence. Considering the first three
words in the sentence shown in Table 1, the en-
coding would be: [In]->[adp], [1923]->[num],
[she]->[3,fem,nom,pro,sg]. The input to the model
is a full 2-D binary representation where the col-
umn headers are the set of all possible individual
morpheme labels and the rows consist of all words,
with additional padding to standardize the input
format. An example of the binary multi-hot encod-
ing is shown in Figure 2. The gloss labels are then
mapped to their linguistic dimensions (LDs).

4 Gloss-to-gloss (g2g) model

Figure 3 shows the architecture of the g2g system,
and Figure 4 schematizes the model’s workflow for
one sample input sentence. Gloss labels for both
source and target text are mapped to their linguis-
tic dimensions (LDs) and encoded as heat maps,
transforming the problem of glossing to an image-
to-image prediction problem. The CNN generates
heat maps with expectations over output gloss la-
bels. These heat maps can be seen be seen as binary
images, or alternately as sparse tensors. The heat
maps, concatenated with pre-trained word2vec em-
beddings for the source language text, serve as
inputs to shallow three-layer network for final la-
beling. The model’s output prediction is a 2-D
tensor of the same dimensions containing values
that represent the probability of each morpheme
label for each word in the sentence. We do not per-
form extensive parameter search, instead adopting
standard settings (Appendix B).

4.1 Motivation

We assume parallel meaning between the source
and target language texts. We also expect variabil-
ity in how that meaning is expressed. Transla-
tional divergence can include challenges like dif-
ferences in the structures employed by the two lan-
guages, differences in the morphological systems
and their inventories, and variation with respect to
what types of grammatical resources the languages
use to convey the intended meaning. From a lin-
guistic perspective, it is optimistic to expect a g2g
approach to yield accurate target language glosses.

At the same time, we know that there are reg-
ularities to these divergences, and we expect our
model to learn some of these mappings. To boost
performance, we use word embeddings to capture
meaning; these embeddings may also encode some
information about morphology (Schwartz et al.,
2022; Avraham and Goldberg, 2017; Soricut and
Och, 2015). We use LDs to abstract away from
particular labels into linguistic categories, and we
use an extra probabilistic component (Section 4.3)
to decide when to stop predicting labels.

4.2 Morphological representation and
training

Before the morphological data is fed into the pri-
mary CNN model, we prime the representation
with established classes/dimensions. For instance,
we classify labels such as ACC, NOM, and DAT
into the CASE category. This mapping reduces
the count of label types by 60% on average for all
source-target language pairs, consequently improv-
ing model accuracy and preventing mistakes that
pertain to multiple category labels being predicted
for the same word.

The heat map representation allows us to trans-
form the sequence learning problem into a 2D
image-based learning problem. The input is a bi-
nary image and the model output is a heat map
that represents the probability values for the pos-
sible morpheme labels for each word in the sen-
tence. Using this encoding format, we can create
lightweight CNN models that can take inputs of
any arbitrary padding (rows) and morphological
feature (column) size. Due to the relatively small
number of parameters, we can train a unique model
for each language pair.

The input heat map images are fed to a standard
convolutional neural network (CNN).6 We obtain

6Further model details in Appendix B.
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Figure 3: Architecture of g2g system.

a discretized output of linguistic dimension pre-
dictions by setting a threshold and assigning hard
categories to each cell (0 or 1). The threshold is
considered a pipeline parameter for each language
pair and is set by performing an optimal parameter
search that maximizes the F1 score post-facto. The
threshold for German, for instance, is set at 0.35.

4.3 Adding lexical information and
probabilistic length modeling

To capture lexical semantics, we concatenate w2v
embeddings (Mikolov et al., 2013) for the source
side words with the penultimate dense layer of the
CNN. We then train a shallow network with 3 dense
layers on the concatenated vectors, outputting a
flattened version of the heat map of target glosses.
This one-dimensional representation is then trans-
formed back into a 2D representation and decoded
to obtain the target language gloss.

One challenge of the heat map approach is un-
certainty about when to stop predicting labels. Sen-
tence lengths vary, but the model always predicts
a standard 40-word heat map. To address this is-
sue, we use the sentence length of the target text
(without lexical information; Zhao et al., 2020 use

a similar approach) and a probabilistic model that
determines the likelihood of a combination of mor-
pheme labels occurring together and drops low-
probability combinations (such as PRPN;PL (plu-
ral proper noun) for English) from the output heat
map until the number of rows matches the num-
ber of words in the target language sentence. The
selection is based on the joint probabilities of co-
occurring morphological labels drawn from a likeli-
hood lookup table constructed using the frequency
of various possible morphological combinations in
our training sets.

4.4 Training an LLM for morphological
labeling - BERT

Since there is no easily available baseline for par-
allel text glossing, we train a BERT model to act
as a comparable computationally-expensive base-
line. Pre-trained cased weights are used since our
common source language for all target languages
is English. The possible gloss combinations in the
target language form their own separate vocabulary
and are together treated as a language of their own.
The problem is reduced to a standard translation
problem where English is the source and the gloss
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Figure 4: Workflow of g2g system for the sample input from Table 1.

morpheme F1 LD F1 POS acc.
BERT CNN BERT CNN BERT CNN

Basque 0.75 0.69 0.87 0.86 0.91 0.86
Finnish 0.81 0.77 0.86 0.84 0.92 0.84
French 0.81 0.83 0.85 0.89 0.95 0.91
German 0.78 0.75 0.91 0.79 0.88 0.83
Italian 0.79 0.75 0.84 0.82 0.94 0.91
Russian 0.82 0.73 0.89 0.78 0.88 0.84
Spanish 0.73 0.65 0.88 0.87 0.96 0.92
Turkish 0.78 0.66 0.79 0.78 0.87 0.80
English 0.84 0.82 0.95 0.89 0.95 0.89

Table 3: Performance of CNN and BERT models
across languages. Morpheme-level=F1 over all la-
bels, LD-level=F1 over linguistic dimension categories,
POS=accuracy. F1 is computed following SIGMOR-
PHON 2019 shared task metric.

vocabulary is the target. Concatenating the source
language morphology vector with the BERT em-
bedding did not significantly affect the output, so
we use only contextual and positional embeddings
to fine-tune the model, with a separate fine-tuned
model for each source-target language pair.

5 Experiments, results, and discussion

To evaluate performance of the model, we test it
on nine different language pairs (see Table 3). For
all non-English languages, we back-translate to En-
glish. For English, our source language is German.

As a baseline, we fine-tune a pre-trained BERT
model for the morpheme labeling task, using the
same data and splits, but in a standard supervised

learning set-up (i.e. no parallel data and no LDs).
The CNN model experiments were run on a 2.6

GHz Intel(R) Core(TM) CPU, taking an average of
8.5 minutes to train. The BERT baseline experi-
ments were run on a multi-GPU cluster, taking an
average of 3.5 hours to train.

Evaluation. Table 3 shows results for both mod-
els across all languages, with accuracy for POS
labels and, for morpheme labels and linguistic di-
mensions, F1 as defined for the SIGMORPHON
2019 shared task: true positives are the set inter-
section of the gold and predicted labels for a word,
and false positives are labels in the predicted set
but not the gold.7 All measures are computed at the
heatmap level for each row (sentence) and averaged
over the full dataset.

Results. Some patterns hold across most lan-
guage pairs. For the most part, the CNN does
not quite match the performance of the transformer.
Crucially, though, the CNN trains on a single lap-
top in under 10 minutes, where the transformer
needs a compute cluster and multiple hours to train.
The CNN performance is generally within 5 per-
centage points of the BERT model, and this may be

7NOTE: although we use the same data and evaluation as
the shared task, our CNN results are not directly comparable,
because, unlike almost all participating teams, we do not use
target language lexemes or labels as training input.
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an acceptable performance in most documentation
contexts - an empirical question for future work.

The POS score represents the proportion of the
part of speech predictions that were correct. Be-
cause there are latent associations between POS cat-
egory and morpheme labels (for example, it would
be highly unusual to see aspectual features marked
on nouns), the POS score should be directly pro-
portional to the final F1 scores that we obtain for
each language. This is reflected across our results.
While both models struggle with Turkish and Rus-
sian, the CNN also performs poorly on Basque.

At the LD level, the model’s performance is
somewhat similar across the three Romance lan-
guages we considered (Spanish, French and Ital-
ian). While the CNN fails to perform better than
the transformer in most scenarios, it is interesting
to note that the CNN performs marginally better
than the transformer on French. However, both
models show a significant performance dip when it
comes to Spanish.

The CNN’s F1 dips to 0.66 for Turkish and 0.73
for Russian. This may be due to their high morpho-
logical complexity.

6 Applying the model to language
documentation data

Finally, we apply our model to data from the Mayan
language Uspanteko (Pixabaj et al., 2007), using
the train/dev/test splits defined for the SIGMOR-
PHON 2023 shared task: training on 21 texts (9774
sentences), and using one text each for dev and test
(around 200 sentences each). The model’s perfor-
mance on language documentation data parallels
the results for high-resource languages.

Experimental setup and data preparation
Translations of the Uspanteko sentences are avail-
able in Spanish. To remain consistent, we translate
the Spanish sentences to English using the Google
Translate API.

It is important to note that this translation step
adds compounding errors to the model’s final gloss
output.

IGT to UniMorph Mapping The labels used
in the Uspanteko IGT belong to the glossing con-
ventions selected by the language documentation
project. The label set is particular to the linguistic
properties of the language, and as such they make
some different distinctions than those encoded by
UniMorph. Some of the mappings between Uni-

Model F1
BERT Linguistic Dimension Level 0.80
CNN Linguistic Dimension Level 0.76
BERT Morpheme Level 0.71
CNN Morpheme Level 0.63

Table 4: Performance of models on Uspanteko data.

Morph and IGT are shown in Table 9. The custom
mapping table that we built to convert IGT to Uni-
Morph are available in our repository.8

Results and Discussion As seen in Table 4, the
model performance on Uspanteko is comparable to
its performance on morphologically complex high-
resource languages like Turkish. This leads us to
believe that our computationally efficient approach
can indeed be used in the low-resource language
documentation context to produce a first pass la-
beling, thus reducing the time an expert needs to
spend on labeling. To better understand the sys-
tem’s errors, we show the label distribution for
false positives output by the CNN model (Figure 5)
at the level of linguistic dimension. 33% of these
are the unk (unknown) label, which occurs when
the model fails to make a confident prediction on
the linguistic dimension. These are precisely the
cases where the human expert should intervene.

We note that the model is not over-predicting
the LD of part-of-speech, despite the fact that 42%
of gold labels in the test set are part-of-speech la-
bels. Instead, the model makes more errors for the
categories of case, person, and number. We ex-
pect that the prevalence of case errors comes from
the fact that Uspanteko uses an ergative-absolutive
case system, with patterning entirely different from
the rather impoverished nominative-accusative case
system of English. Uspanteko also uses a number
of grammatical categories not present in English,
such as directionals and relational nouns (Tyers
and Henderson, 2021). Looking at particular parts
of speech, the model does well on conjunctions
(84% accuracy), and struggles with adverbs and
adjectives. 24% of adverb predictions are confused
with adjective tags and about 13% of adverbs and
adjectives are labeled ‘unknown’.

8https://github.com/bhargav-ns/G2G_
Conversion
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Figure 5: CNN: distribution of false positive predictions
at the linguistic dimension level for Uspanteko.

7 Conclusion

We have presented the g2g model, a new architec-
ture for morphological analysis that dramatically
reduces compute time by modeling the task as, es-
sentially, an image-to-image translation task. The
model incorporates knowledge of linguistic cate-
gories by mapping labels to their linguistic dimen-
sions, with the effect of narrowing the space of
possible outputs. These strategies result in an enor-
mous reduction of compute time and a system more
suitable for use in low-resource scenarios than the
large language models currently achieving top per-
formance for this and similar tasks.

Model variants and future work. Working with
language documentation data adds several layers of
complexity. In this work, our model’s output lacks
the ordered association with individual morphemes
typical of most IGT. We use an unordered set of
labels to describe the morphological features of a
word, as shown in Table 1.

In addition, there is wide variability in both
the label sets and the glossing scheme across lan-
guage documentation projects. One widely-used
scheme is encoded in the Leipzig Glossing Rules
(Bernard Comrie, 2008); Table 5 shows an example
of a German phrase glossed according to Leipzig
conventions. In future work we aim to produce out-
puts that mimic the glossing conventions used in
the original data, including the order of the labels,
the nature of the labels, and the glossing syntax.

The Sigmorphon 2023 shared task on interlinear
glossing9 hews closer to this goal. In this shared

9https://github.com/sigmorphon/
2023glossingST

unser- n Väter- n
our- DAT.PL father DAT.PL
"To our fathers."

Table 5: German phrase labeled using Leipzig Glossing
Rules.

task, the source language text and target language
text are used as inputs to obtain the target language
glosses in Leipzig format. This is fundamentally
different from our input format, as we attempt to
obtain the target language glosses without the target
language text. Instead, we use all the information
available from the high-resource source language
(text and glosses) as inputs to the model.

Our next step is to work directly with documen-
tary linguists to evaluate whether and how such
tools can be usefully deployed by field linguists
and/or language community members. Another
planned direction is to work on more sophisticated
approaches to incorporating linguistic knowledge.

Limitations and ethical considerations. First,
the system’s performance is constrained by the use
of automated systems to produce pseudo-parallel
data. Errors in translation and morpheme labeling
on the high-resource side propagate to the output
and cause mistakes in target side labeling. We
have not yet performed the extensive error analyses
needed to understand how much error propagation
might be affecting the system.

Second, we have not yet tested the system in an
actual documentation project. When working on
NLP with endangered and/or indigenous languages
in mind, there is a clear risk of perpetuating existing
oppression (Bird, 2020; Schwartz, 2022). We hope
to avoid some of these harms by using data from a
wide range of non-threatened languages first, wait-
ing to involve language community members and
documentary linguists until we have a system with
good enough results that we expect it could actually
be helpful in real world contexts. We have already
developed collaborations with several speakers of
endangered languages and linguists working on
documentation projects, and we look forward to
continuing this work with their guidance and in-
volvement.
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Tanja Samardžić, Robert Schikowski, and Sabine Stoll.
2015. Automatic interlinear glossing as two-level
sequence classification. In Proceedings of the 9th
SIGHUM Workshop on Language Technology for
Cultural Heritage, Social Sciences, and Humanities
(LaTeCH), pages 68–72, Beijing, China. Association
for Computational Linguistics.

Lane Schwartz. 2022. Primum Non Nocere: Before
working with Indigenous data, the ACL must con-
front ongoing colonialism. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
724–731, Dublin, Ireland. Association for Computa-
tional Linguistics.

Lane Schwartz, Coleman Haley, and Francis Tyers.
2022. How to encode arbitrarily complex morphol-
ogy in word embeddings, no corpus needed. In Pro-
ceedings of the first workshop on NLP applications to
field linguistics, pages 64–76, Gyeongju, Republic of
Korea. International Conference on Computational
Linguistics.

Radu Soricut and Franz Och. 2015. Unsupervised mor-
phology induction using word embeddings. In Pro-
ceedings of the 2015 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
1627–1637, Denver, Colorado. Association for Com-
putational Linguistics.

John Sylak-Glassman. 2016. The composition and use
of the universal morphological feature schema (uni-
morph schema). Johns Hopkins University.

Francis Tyers and Robert Henderson. 2021. A corpus
of k’iche’ annotated for morphosyntactic structure.
In Proceedings of the First Workshop on Natural
Language Processing for Indigenous Languages of
the Americas, pages 10–20, Online. Association for
Computational Linguistics.

Adam Wiemerslage, Miikka Silfverberg, Changbing
Yang, Arya McCarthy, Garrett Nicolai, Eliana Col-
unga, and Katharina Kann. 2022. Morphological
processing of low-resource languages: Where we are

and what’s next. In Findings of the Association for
Computational Linguistics: ACL 2022, pages 988–
1007, Dublin, Ireland. Association for Computational
Linguistics.

Guillaume Wisniewski, Séverine Guillaume, and Alexis
Michaud. 2020. Phonemic transcription of low-
resource languages: To what extent can preprocess-
ing be automated? In Proceedings of the 1st Joint
Workshop on Spoken Language Technologies for
Under-resourced languages (SLTU) and Collabora-
tion and Computing for Under-Resourced Languages
(CCURL), pages 306–315, Marseille, France. Euro-
pean Language Resources association.

Xingyuan Zhao, Satoru Ozaki, Antonios Anastasopou-
los, Graham Neubig, and Lori Levin. 2020. Auto-
matic interlinear glossing for under-resourced lan-
guages leveraging translations. In Proceedings of
the 28th International Conference on Computational
Linguistics, pages 5397–5408, Barcelona, Spain (On-
line). International Committee on Computational Lin-
guistics.

A Dataset Preparation Details

Truncation and padding. Since 95% of the sam-
ple sentences in the dataset had fewer than 40
words per sentence, we set the padding/truncation
limit to 40, thus making each feature map to be a
40x40 pixel heat-map that encodes the labels for
all the words in a sentence.

Heat maps. The entire source and target mor-
phological data is represented as a 3-dimensional
cuboidal heat map. Each sentence (entry) in
the dataset is a single 2-D slice of the cuboid,
the dimensions of which are [Padding Length] x
[Number of Morpheme Categories]. The English-
German pair, for example, has a sentence map di-
mension of [40 x 20]. Padding length is manu-
ally set based on the 95th percentile of sentence
lengths across the dataset. Each row in the heat
map would represent the morphological labels for
a single word within the larger sentence. An exam-
ple heat map excerpt is shown in figure 6.

B Details of the CNN model

A sequential convolutional network with 3 blocks
of standard Convolution - Max Pool - Dropout -
Batch Norm layers are used in the network. Relu
activation and ‘same’ padding are used for all of
the convolutional layers and a pool size of (2,2)
is used for each MaxPooling2D layer. A fixed
dropout of 0.2 is applied after each pooling layer
in the three blocks. The output of the third block is
up-sampled and flattened into a single-dimensional
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Figure 6: Heat map representation

Figure 7: Sample output prediction

vector of length [categories x padding size]. A
sigmoid activation is used in the final dense layer
to facilitate the prediction of a probability score for
every possible linguistic dimension of a word. The
model is compiled with MSE as the loss function.
A sample output prediction is shown in figure 7

C Fine-grained evaluations

Evaluation metrics of different granularities were
explored to evaluate the model’s performance.
All the measures are computed at the heatmap
level for each row (sentence) and averaged out
over the entire dataset. We take standard ac-
curacy, precision, and F1 scores for the flat-
tened feature map vectors of the gold and pre-
dicted labels. Each feature map is originally
of size padding cut-off times number of
linguistic dimensions . Each unit of the
predicted vector is independently compared with
its corresponding gold label vector unit to evaluate
the model output for different languages.

To get a more fine-grained sense of the model’s
performance, we explore two additional evaluation
measures:

1. Proportion of missing labels

2. Proportion of extra labels

Tables 6 and 7 show fine-grained evaluations for
both models. The missing label score represents the
ratio of labels that are present in the gold gloss set
but are absent in the model predictions. Similarly,
the excess label score is the fraction of labels that
have been wrongly predicted by the model.

D Variable training data experiments

Table 8 show results from experiments varying the
amount of training data used.

Certain language families seem to demonstrate
a significantly higher threshold for variance ex-
plainability based on dataset size. Spanish, French,
and Italian (all romance languages) show massive
jumps in accuracy from 20% to 40% training data
but improve less drastically beyond the 60% train-
ing data mark. On the other hand, German and
English show a rise in accuracy from 60% to 100%
training data. Russian and Finnish demonstrate
large jumps from 40% to 60% training data. Since
the datasets’ size was normalized before training,
we might be able to conclude that these patterns
are endemic to language families. For instance,
it might be possible to conclude that the model
requires significantly lesser training data to reach
peak performance for romance languages as com-
pared to Germanic languages. This generaliza-
tion cannot be drawn from our small subset of
languages and morphological tests, and therefore
requires further investigation.

E Bi-directional LSTM for English
Glossing

Figure 8 shows the model architecture for the Bi-
directional LSTM that was used to gloss our source
data and generate our source dataset for training
purposes. The data was encoded with static w2v
embeddings and the model was trained for 20
epochs (until convergence) on an English dataset
containing UniMorph tags from the 2019 SIG-
MORPHON shared task referenced earlier. Model
performance is detailed in table 2.
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CNN - Proportion of
Missing Labels

CNN - Proportion of
Extra Labels CNN - POS Accuracy

Spanish 0.234 0.243 0.92
French 0.23 0.17 0.91
Basque 0.38 0.33 0.86
Italian 0.27 0.26 0.91
German 0.236 0.238 0.83
English 0.23 0.24 0.89
Turkish 0.39 0.32 0.8
Russian 0.36 0.33 0.84
Finnish 0.24 0.13 0.92

Table 6: CNN - Morpheme Tagging Scores, fine-grained evaluation

Figure 8: LSTM Model for English Text Glossing - Pseudo-parallel data generation
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BERT - Missing Labels BERT - Extra Labels BERT - POS Accuracy
Spanish 0.17 0.19 0.96
French 0.21 0.22 0.95
Basque 0.27 0.13 0.91
Italian 0.2 0.16 0.94
German 0.18 0.2 0.88
English 0.17 0.09 0.95
Turkish 0.25 0.13 0.87
Russian 0.24 0.28 0.88
Finnish 0.18 0.09 0.92

Table 7: BERT Morpheme Tagging Scores, fine-grained evaluation

Limited Train
Data - F1 Score 20% 40% 60% 80%

Spanish 0.38 0.48 0.55 0.63
French 0.46 0.52 0.62 0.76
Basque 0.36 0.37 0.49 0.52
Italian 0.41 0.45 0.59 0.68
German 0.49 0.56 0.64 0.72
English 0.49 0.59 0.68 0.73
Turkish 0.33 0.38 0.52 0.58
Russian 0.39 0.4 0.64 0.71
Finnish 0.47 0.53 0.71 0.73

Table 8: Variable Training Data - Results

IGT Abbreviation UniMorph Abbreviation
??? Unk
A1P [’ABS’, ’1’, ’PL’]
A1S [’ABS’, ’1’, ’SG’]
A2P [’ABS’, ’2’, ’PL’]
A2S [’ABS’, ’2’, ’SG’]
ADJ ADJ
ADV ADV
AFE V
AFI POS
AGT AGFOC
AP ANTIP
APLI APPL
ART ART, INDF
CAU CAUS
CLAS CLF
COM PRF
COND COND
CONJ CONJ

Table 9: IGT to UniMorph Mappings
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Abstract 

The process of lexical blending is difficult 
to reliably predict. This difficulty has been 
shown by machine learning approaches in 
blend modeling, including attempts using 
then state-of-the-art LSTM deep neural 
networks trained on character embeddings, 
which were able to predict lexical blends 
given the ordered constituent words  in  less 
than half of cases, at maximum. This 
project introduces a novel model 
architecture which dramatically increases 
the correct prediction rates for lexical 
blends, using only Polynomial regression 
and Random Forest models. This is 
achieved by generating multiple possible 
blend candidates for each input word 
pairing and evaluating them based on 
observable linguistic features. The success 
of this model architecture illustrates the 
potential usefulness of observable 
linguistic features for problems that elude 
more advanced models which utilize only 
features discovered in the latent space. 

1 Introduction 

1.1 Descriptive Research on Lexical Blends 

Lexical blends have long been noted as a 
linguistic phenomenon with little consistent 
predictability. Researchers have described many 
different factors which affect how much of two 
given input words will be preserved in the resulting 
blend. This is often described in terms of the 
“switchpoint,” or point at which each input word is 
truncated.  

Factors described in the literature include a 
tendency for words to split at syllable constituent 
boundaries (Gries 2012, Kelly 2009), an 
observation that blends tend to match the length of 

the 2nd input word (Bat-El 2006), and a finding that 
the prosodic structure (Arndt-Lappe & Plag 2013). 
None of these noted tendencies or a combination 
thereof has thus far been used to create a predictive 
model of blending. 

1.2 Predictive Models of Lexical Blends 

Researchers who have used data-driven 
methods to model blending have instead opted for 
the use phoneme-by-phoneme insertion and 
deletion counts or the use of character embeddings.  
The former of these approaches was used by Deri 
& Knight (2015) as part of a multi-tape FST model 
that used grapheme-phoneme alignments to train 
the model on transformations to the phoneme 
sequence and produce the correct orthographic 
output, achieving a maximum of 45.75% correct 
blend predictions.  

Gangal et. al. (2017) used the latter approach, 
training a then state-of-the-art LSTM deep neural 
network on character embeddings to attempt to 
generate English-like blends. This was shown to 
improve the rate of correct predictions to 48.75%, 
and found that the best performing models 
entertained multiple blend candidates and selected 
the most probable form, described as “exhaustive 
generation”, rather than using greedy decoding 
from the vector space. Both of these models often 
produced sequences which were phototactically 
invalid,  though sometimes these were 
orthographically plausible. 

Because of the overall limited success of the 
models, including only a small increase in 
performance between the models despite a large 
increase in model complexity, we have developed 
an alternative model architecture which utilizes the 
same grapheme/phoneme alignment system as 
Deri & Knight and the exhaustive generation 
strategy laid out by Gangal et. al., but uses 
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linguistically-motivated features which were 
directly observable from the input forms. The use 
of linguistically-informed feature spaces was 
shown to improve performance in blend prediction 
using a modified form of the Gangal et. al. LSTM 
architecture, though improvements were once 
again quite modest (Kulkarni & Wang 2018). This 
paper proposes a more dramatic change in 
architecture which uses a novel feature set based 
primarily on the descriptive blend characteristics of 
Arndt-Lappe & Plag (2013). 

For the purpose of this analysis, we constraint 
the blend structures entertained to only be those 
that follow typical English blend formation 
patterns by keeping some initial portion of the first 
word and some final portion of the second word. 
This model architecture was applied to 3 different 
corpora of lexical blends and was compared to 
previous model performance on each corpus, when 
applicable. 

2 Methods 

The model architecture laid out in this paper 
included the following elements: 

• A component to generate all plausible blend 
candidates from the two input words and 
extract linguistically-based feature values 
using grapheme/phoneme alignments and 
syllable structure information. 

•  A component which uses the extracted 
features to calculate the probability of being 
a valid blend for each blend candidate. 

• A feature to select the most probable 
candidate from each input word pairing. 

The generation process was performed by 
iteratively creating prefixes from the first input 
word and suffixes from the second input word 
using grapheme-phoneme alignments, such that the 
substring consisted of a contiguous sequence of 
phonemes and their corresponding graphemes. 
Each prefix was then concatenated with each suffix 
to produce the full candidate set for each input 
word pair.  

Feature values were calculated for each 
candidate using a set of phonemically-defined 
features, modified from Arndt-Lappe & Plag 
(2013).  Labels were assigned to each candidate 
based on whether the graphemes of the candidate 
matched the desired blend output. Candidates with 

feature values which were identical to a candidate 
already in the feature set were removed. 

Given the feature values for all candidates, we 
used Random Forest classifiers and Polynomial 
regression models to learn probabilities for each 
candidate based on the extracted feature values. 
Rather than assign each data instance to a class, 
probabilities are retained for each candidate so that 
the candidate with the maximum probability can be 
selected. Random Forest and Polynomial 
regression were chosen for this experiment  
because they are easier to train and interpret than 
deep neural approaches. 

Finally, a selection component was used to find 
the candidate from each input word pairing with the 
greatest probability of being a valid blend of 
English. This candidate was then chosen as the 
model’s predicted output for that input word 
pairing.  

2.1 Feature Set 

The model used features which were modeled 
after the most relevant cues for blends discussed in 
previous linguistic literature on blend formation 
and structure. Among these are features that track 

Feature names Description 
W1/W2 length number of syllables 
Candidate length number syllables 
Medial overlap whether candidate has 

contiguous phonemes shared 
by prefix/suffix  

W1/W2 left/right 
edge to primary 
stress 

number of syllables from 
input word edges to primary 
stress 

W1 left edge to 
switchpoint 

number of syllables from W1 
left edge to switchpoint 

W2 left edge to 
switchpoint 

number of syllables from W2 
right edge to switchpoint 

Switchpoint 
syllable bound 

whether switchpoint occurs at 
onset, nucleus, or coda 
boundary, or not at boundary 

W1/W2 primary 
stress preserved 

whether candidate preserves 
primary stress of input(s) 

W1/W2 segments 
preserved 

proportion of segments from 
each input preserved in 
candidate 

W1/W2 syllables 
preserved 

proportion of syllable nuclei 
from each input preserved in 
candidate 

Switchpoint at 
W2 primary 
stress syllable 

whether switchpoint in W2 
falls within primary syllable 
bearing primary stress 

Table 1:  Complete set of linguistically-based 
model features utilized in trials 
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whether the switchpoint aligns with syllable 
structure boundaries, the proportion of the input 
word that is preserved, and which word (if any) has 
it’s stress patterns preserved.  

 In addition to these phonological features 
derived directly from the phoneme representations 
of input words, the model uses the phonotactic 
markedness score calculated by the BLICK 
phonotactic learner, which returns a score to 
indicate how well a sequence of phonemes follows 
English phonotactics (Hayes 2012). This is 
expressed as a sum of weighted violations of 
MaxEnt grammar constraints learned from a large 
sample of  words from the CMU pronouncing 
dictionary (Hayes 2008). This feature was included 
to improve the phonotactic plausibility of output 
candidates. Specific names and descriptions for all 
model features are given in Table 1.  

3 Experiments 

The specific trials the model was used for are 
given here, along with the datasets utilized in 
training/testing for those trials. 

3.1 Datasets 

Three separate corpora were used in training 
and testing the model. The first two corpora were 
those used in the previous machine learning models 
of blending, Deri & Knight (2015) and Gangal et. 
al. (2017), respectively. These were both acquired 
through online resources such as Wikipedia, 
Wiktionary, and Urban Dictionary. The final corpus 
used comes from Shaw (2014) and is a curation of 
an earlier dictionary assembled by Thurner (1993). 
After filtering to meet the project design, 322 
blends were used in trials of the Deri & Knight 
corpus, 1092 were used from Gangal et. al., and 
1096 were used from Shaw. 

3.2 Trials Performed 

For each corpus, the model architecture was 
tested and evaluated using three different learners: 
LASSO regression, 2nd order Polynomial 
regression (with interaction terms), and Random 
Forest classifiers. Due to high collinearity among 
the feature set, we selected subset of the model 
features was  selected to minimize correlations and 
maximize coefficient values by removing measures 
of syllable proportion, word length, and syllable 
distances to the switchpoint from the feature set. 
Each learner was trained once using the full feature 

set and once using the manually selected subset of 
features. Each trial was validated using 10-fold 
cross validation. 

4 Results 

Model predictions were evaluated on the 
average percentage of blends correctly predicted 
and the average Levenshtein edit distance between 
the predicted output form and the correct blend 
form. 

4.1 Quantitative Results 

Models trained and tested on the Deri & 
Knight corpus outperformed the benchmark set by 
the multi-tape FST on both measures of model 
performance for every variation of the model. For 
the Gangal et. al. corpus, only the variation of the 
model using the LASSO regression learner failed 
to outperform the benchmark set by the LSTM 
model using character embeddings. The Shaw 
corpus demonstrated the highest performance of 
any model, with an average of 74.13% of blends 
correctly predicted with the best performing model 
trained on this corpus. 

Learner Features Correct Edit dist. 
LASSO Full 56.13% 1.05 
Polynomial Full 64.42% 0.72 
RF Full 60.39% 0.81 
LASSO Subset 55.21% 1.09 
Polynomial Subset 63.83% 0.79 
RF Subset 60.39% 0.83 
Previous benchmark 45.39% 1.59 

Table 2: Model Performance on D.&K. Corpus 

Learner Features Correct Edit dist. 
LASSO Full 47.72% 1.36 
Polynomial Full 59.51% 0.89 
RF Full 57.32% 0.89 
LASSO Subset 46.17% 1.43 
Polynomial Subset 54.21% 1.06 
RF Subset 57.32% 0.95 
Previous benchmark 48.75% 1.12 
Table 3: Model Performance on G. et. al. Corpus 

Learner Features Correct Edit dist. 
LASSO Full 66.09 0.93 
Polynomial Full 74.13% 0.58 
RF Full 73.96% 0.58 
LASSO Subset 64.17% 0.98 
Polynomial Subset 71.67% 0.66 
RF Subset 72.58% 0.65 

Table 4: Model Performance on Shaw Corpus 
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For all corpora, the model variations that used 
Polynomial regression learners outperformed all 
others, and models using full data set outperformed 
those with the manually curated subset, in spite of 
the high collinearity of the dataset. 
 A comparison of the highest performing 
models to date for all corpora is given in Figure 1. 

4.2 Qualitative Results 

Qualitative error analysis shows that the best 
performing model across all corpora, the 
Polynomial regression with full features trained on 
the Shaw corpus, tends to over-preserve phonemic 
material from both input words, rather than over-
delete. In a random sample of 100 instances in 
which this model selected an incorrect candidate, 
40 of them preserved too many contiguous 
segments from the first word, compared to 15 
instances in which the output candidate had a 
sequence from the first word which was too short. 
Similarly, the sample demonstrated that 33 
candidates had over-preserved segmental material 
from the second input word, compared to 18 
instances in which too many segments of the word 
were deleted.  In general, this resulted in a greater 
number of candidates that were longer than the 
desired output than candidates that were too short. 

5 Discussion 

5.1 Usefulness of Observable Features 

Results from the trials we have conducted so 
far provide a compelling argument for the potential 
usefulness of observable linguistic features in the 
generation of lexical blends. This, in turn, may 
provide a framework for dealing with similar 
linguistic processes which exhibit some degree of 
unpredictability or are infrequently attested in 
natural language text data and accordingly are 
difficult for models which rely on features obtained 
in the latent space. 
 Little work  has been done to date to tune 
hyperparameters or optimize the feature set used by 
the models. Future research into these areas could 
lead further improvements in the prediction rates 
that has already gained by using this model 
architecture, including research into measures to 
reduce the apparent model bias toward longer 
candidates. 

5.2 Potential Linguistic Applications 

The architecture may also be useful for 
testing hypotheses about blend generation. 
Because the learners used in this model 
architecture are more interpretable than neural 
networks, the actual feature weights and decision 
tree splits used by the model can be directly 
examined and can be used as a datapoint in 
evaluating the relative importance of different 
factors that affect blend formation. Given the fact 
that there are often many possible blends that 
speakers can produce from an input word pair 
before it enters the lexicon (Gries 2012), testing the 
model’s performance on novel blend forms and 
comparing it to blends produced by human 
speakers would be the most informative way to test 
how well this model truly does at replicating 
human-like blend generation behavior.  

Such a trial would also be informative 
in comparing this methodology against modern 
large language models, as it provides a chance to 
use genuinely held-out data to evaluate them. 
One drawback of this architecture is its lack of 
generalizability to low resource languages. 

5.3 Limitations of the Model Architecture 

  While  this methodology does not require 
the large amount of text data utilized by more 
advanced models, it does depend on access to 
grapheme/phoneme alignment information for all 
input words. This does limit the usefulness of the 
model for languages with little linguistically-
tagged data available, though the success of the 
small Deri & Knight corpus does indicate that 
the model architecture can be made to function 
effectively with a limited amount of  
annotated data. 

 

Figure 1: Maximum Model Correct Prediction 
Rates by Corpus 
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Abstract

Colexification refers to the linguistic phe-
nomenon where a single lexical form is used
to convey multiple meanings. By studying
cross-lingual colexifications, researchers have
gained valuable insights into fields such as
psycholinguistics and cognitive sciences (Jack-
son et al., 2019; Xu et al., 2020; Karjus et al.,
2021; Schapper and Koptjevskaja-Tamm, 2022;
François, 2022). While several multilingual
colexification datasets exist, there is untapped
potential in using this information to bootstrap
datasets across such semantic features. In this
paper, we aim to demonstrate how colexifica-
tions can be leveraged to create such cross-
lingual datasets. We showcase curation pro-
cedures which result in a dataset covering 142
languages across 21 language families across
the world. The dataset includes ratings of
concreteness and affectiveness, mapped with
phonemes and phonological features. We fur-
ther analyze the dataset along different di-
mensions to demonstrate potential of the pro-
posed procedures in facilitating further inter-
disciplinary research in psychology, cogni-
tive science, and multilingual natural language
processing (NLP). Based on initial investiga-
tions, we observe that i) colexifications that
are closer in concreteness/affectiveness are
more likely to colexify; ii) certain initial/last
phonemes are significantly correlated with con-
creteness/affectiveness intra language families,
such as /k/ as the initial phoneme in both Tur-
kic and Tai-Kadai correlated with concreteness,
and /p/ in Dravidian and Sino-Tibetan corre-
lated with Valence; iii) the type-to-token ratio
(TTR) of phonemes are positively correlated
with concreteness across several language fami-
lies, while the length of phoneme segments are
negatively correlated with concreteness; iv) cer-
tain phonological features are negatively corre-
lated with concreteness across languages. The
dataset is made public online for further re-
search1.

1https://github.com/siebeniris/ColexPhon

Figure 1: Colexification subgraph for DAD. The weight
of the edges are proportional to the frequency of the
colexification pattern in the dataset.

1 Introduction

Semantic typology studies cross-lingual seman-
tic categorization (Evans et al., 2010). Within
this area, the term “colexification" was first intro-
duced and used by François (2008) and Haspel-
math (2003) to create semantic maps. The study
of colexifications focuses on cross-lingual colex-
ification patterns, where the same lexical form is
used in distinct languages to express multiple con-
cepts. For instance, mapu in Mapudungun and apa-
kee in Ignaciano both express the concepts EARTH

and WORLD (Rzymski et al., 2020). Colexifica-
tions have been found to be pervasive across lan-
guages and cultures. The investigation of colex-
ifications have led to interesting findings across
different fields, such as linguistic typology (Schap-
per and Koptjevskaja-Tamm, 2022), psycholinguis-
tics (Jackson et al., 2019), cognitive science (Gib-
son et al., 2019), but remain relatively unexplored
in NLP (Harvill et al., 2022; Chen et al., 2023).

In recent years, with the increasing popularity
of automatic methods and big data in linguistics,
datasets such as Concepticon (List et al., 2022)
and BabelNet (Navigli and Ponzetto, 2012) have
been developed, affording large-scale cross-lingual
semantic comparisons. The Database of Cross-
lingual Colexifications (CLICS3) (Rzymski et al.,
2020) was created based on the Concepticon con-
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cepts, including 4,228 colexification patterns across
3,156 languages, to facilitate research in colexifi-
cations. Studies have also been shown to curate
large-scale colexification networks from BabelNet,
consisting of over 6 million synsets across 520 lan-
guages (Harvill et al., 2022; Chen et al., 2023).

While syntactic typology is relatively well-
established in NLP (Malaviya et al., 2017; Bjerva
and Augenstein, 2018a,b, 2021; Cotterell et al.,
2019; Bjerva et al., 2019a,b,c, 2020; Stanczak et al.,
2022; Östling and Kurfalı, 2023; Fekete and Bjerva,
2023), semantic typology has so far only been sub-
ject to limited research (Chen et al., 2023; Chen and
Bjerva, 2023; Liu et al., 2023). As a relatively new
topic in both semantic typology and NLP, colex-
ifications covers a wide-range of languages and
language families. In contrast, although the con-
cepts of concreteness/abstractness and affective-
ness (e.g., valence, dominance and arousal) have
long been in the center stage of interdisciplinary re-
search fields such as cognitive science, psychology,
linguistics and neurophysiology (Warriner et al.,
2013; Solovyev, 2021; Brysbaert et al., 2014), lan-
guage coverage of such resources is severely lim-
ited, and curation prohibitively expensive.

The study of phonemes and phonological fea-
tures have furthermore been essential to, e.g., ad-
dress the problems of non-arbitrariness in lan-
guages and investigating universals of spoken lan-
guages (de Varda and Strapparava, 2022). Stud-
ies such as Gast and Koptjevskaja-Tamm (2022)
demonstrate the genealogical stability (persistence)
and susceptibility to change (diffusibility) via
studying the patterns the phonemes/phonological
forms and the colexifications across European
languages. However, this study is limited to a
small range of languages, and the investigated
concepts are also restricted to 100-item Swadesh
list (Swadesh, 1950). With the proposed proce-
dures, a wider range of concepts and the phonolog-
ical forms across language families are curated.

In this paper, we create a synset graph based on
multilingual WordNet (Miller, 1995) data from Ba-
belNet 5.0. We then develop a cross-lingual dataset
that includes ratings of concreteness and affective-
ness, as this approach yields more comprehensive
data than using CLICS3. In addition, we meticu-
lously select and organize phonemes and phono-
logical features for the lexicons that represent the
concepts. Our methodology for data creation is not
limited to the constructed dataset, as it has potential

for broader applications. We showcase the versatil-
ity of our approach through analysis across various
dimensions, and make our dataset freely available.

2 Related Work

Colexifications The creation of semantic maps
using cross-linguistic colexifications was initially
formalized by François (2008). Semantic maps
are graphical representations of the relationship
between recurring expressions of meaning in a
language (Haspelmath, 2003). This method is
based on the idea that language-specific colexifi-
cation patterns indicate the semantic proximity or
relatedness between the meanings that are colexi-
fied (Hartmann et al., 2014). When analyzed cross-
linguistically, colexification patterns can provide
insights into various fields, such as cognitive prin-
ciples recognition (Berlin and Kay, 1991; Schapper
et al., 2016; Jackson et al., 2019; Gibson et al.,
2019; Xu et al., 2020; Brochhagen and Boleda,
2022), diachronic semantic shifts in individual
languages (Witkowski and Brown, 1985; Urban,
2011; Karjus et al., 2021; François, 2022), and lan-
guage contact evolution (Heine and Kuteva, 2003;
Koptjevskaja-Tamm and Liljegren, 2017; Schapper
and Koptjevskaja-Tamm, 2022).

Jackson et al. (2019) conducted a study on
cross-lingual colexifications related to emotions
and found that different languages associate emo-
tional concepts differently. For example, Persian
speakers associate GRIEF closely with REGRET,
while Dargwa speakers associate it with ANXIETY.
The variations in cultural background and universal
structure in emotion semantics provide interesting
insights into the field of NLP. Bao et al. (2021) an-
alyzed colexifications from various sources, includ-
ing BabelNet, Open Multilingual WordNet, and
CLICS3, and demonstrated that there is no univer-
sal colexification pattern.

In the field of NLP, Harvill et al. (2022) con-
structed a synset graph from BabelNet to boost
performance on lexical semantic similarity task.
More recently, Chen et al. (2023) use colexifica-
tions to construct language embeddings and further
model language similarities. Our goal is to utilize
colexifications to construct cross-lingual datasets,
including diverse ratings and phonological forms
and features, to support further research, particu-
larly in low-resource languages where norms and
ratings are notably scarce.
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Norms and Ratings A large number of words in
high-resource languages have been assigned norms
and ratings by researchers in psychology (Brys-
baert et al., 2014; Warriner et al., 2013). Norms
and ratings of words are essential components in
psychology, linguistics, and recently being widely
used in NLP. Norms refer to the typical frequency
and context in which words are used in a partic-
ular language, while ratings represent subjective
judgements of individuals on various dimensions
such as concreteness, valence, arousal, and image-
ability. These norms and ratings can improve the
performance on downstream tasks, such as senti-
ment analysis, emotion recognition, word sense
disambiguation, and affective computing (Kwong,
2008; Tjuka et al., 2022; Strapparava and Mihalcea,
2007; Mohammad and Turney, 2010).

The study of concreteness and abstractness of
concepts is interdisciplinary and spans across vari-
ous fields, including linguistics, psychology, psy-
cholinguistics, and neurophysiology (Solovyev,
2021). Concrete concepts are those that can be
perceived by the senses, such as CAT and MOUN-
TAIN, while abstract concepts, like RELATIONSHIP

and UNDERSTANDING, cannot be perceived by the
senses. Brysbaert et al. (2014) conducted a study on
concreteness ratings for 37,058 English words and
2,896 two-word expressions, involving over 4,000
participants, which has provided insights across
various linguistic disciplines. The concreteness
ratings are based on a scale of 1 (abstract) to 5
(concrete). These ratings have been used in con-
junction with various tasks such as classification
of metaphoricity (Haagsma and Bjerva, 2016) and
animacy (Bjerva, 2014), as well as cultural studies
(Berger and Packard, 2022).

Apart from concreteness, affective ratings are
also essential for interdisciplinary research in psy-
chology, linguistics and NLP. The affective norms
for English words (ANEW) dataset, providing rat-
ings of valence, arousal and dominance for English
words, has been widely used in both psychology
and NLP research (Bradley and Lang, 1999). Sub-
sequently, the affective norms for French Words
(FAN) and the affective norms for German words
(ANGST) datasets, proving similar affective ratings
for French and German words, respectively, have
also been developed (Monnier and Syssau, 2014;
Schmidtke et al., 2014). The Spanish version of
ANEW is developed by Redondo et al. (2007). Ex-
tending the English ANEW, Warriner et al. (2013)

covers nearly 14,000 English lemmas, providing
ratings for valence (the pleasantness of a stimulus),
arousal (the intensity of emotion provoked by a
stimulus), and dominance (the degree of control
exerted by a stimulus). For creating our dataset,
we use the ratings from Warriner et al. (2013), see
details in Section 3.

The data for linguistic norms and ratings is usu-
ally collected only for one language. For low-
resource languages, such data is obviously lacking.
Using our procedures, the norms and ratings can be
bootstrapped for low-resource languages by shar-
ing cross-lingual concepts through colexifications.

Phonemes and Phonological Features While di-
rect phonetic comparison across languages is diffi-
cult, a common practice in comparing phonological
characteristics across languages is to combine simi-
lar sounds into one multilingual phone set (Salesky
et al., 2020). While more advanced methods for
phonological typology do exist, e.g. Cotterell and
Eisner (2017, 2018), a basic approach to phonology
is found via the International Phonetic Alphabet
(IPA), which classifies sounds based on general
phonological properties. In this vein, WikiPron is
created to serve as an open-source tool for min-
ing phonemic pronunciation data from Wikitionary
and still under continuous maintenance (Lee et al.,
2020). To this date, it contains more than 1,8 mil-
lion word/pronunciations across 543 languages.2

The pronunciations are given in IPA, and seg-
mented in a way that IPA diacritics can be properly
recognized (Lee et al., 2020).

Demonstrating that phonological features outper-
form character-based models, PanPhon is created
and used for various NER-related tasks (Mortensen
et al., 2016). To date, PanPhon is a database
relating over 5,000 IPA segments to 24 subseg-
mental articulatory features.3 It has been used
for various purposes, such as cross-modal and
cross-lingual study of iconicity in languages (Zhu
et al., 2021), and cross-linguistic phonoseman-
tic correspondence using a deep-learning frame-
work (de Varda and Strapparava, 2021).

In this paper, we build upon this work by diving
into the relationship between phonological features,
and the concreteness and affectiveness of sense
lemmas across a wide set of languages. The pa-
per is inspired by findings such that the sounds of
words can influence their meaning and emotional

2https://github.com/CUNY-CL/wikipron
3https://github.com/dmort27/panphon
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impact. For example, words with round vowel
sounds are often associated with positive emotions,
while harsher, more angular sounds can convey
negative emotions (Ćwiek et al., 2022). This study
aims to initiate the study on the intricate interplay
between sound and affective/abstract meanings.

3 Dataset Curation

A colexification pattern refers to a case where two
concepts are colexified, such as DAD-POPE shown
in Figure 1. Specifically, a colexification is an in-
stance of a colexification pattern, such as far in
Danish, as shown in Table 1.

In order to leverage colexifications to create a
cross-lingual dataset incorporating norms and rat-
ings in psychology and other fields, we propose the
following procedures for data curation and creation,
as illustrated in Fig. 2.

Concept1

Concept2

Concept3

1
WikiPron

2

PanPhon
4Norms, Ratings 3

Figure 2: The Workflow of the Procedures for Creating
the cross-lingual Dataset using Colexifications.

Building the Synset/Concept Graph In Word-
Net, a sense is a discrete representation of one
aspect of the meaning of a word. For example, the
lemma bank can either mean the sense FINANCIAL

INSTITUTION or the sense SLOPING MOUND. The
set of near-synonyms for a sense is called a synset,
which is a primitive in WordNet (Jurafsky and Mar-
tin, 2023). Synsets are groups of words sharing
the same concept. In order to construct of colex-
ification networks, i) the WordDNet synsets are
extracted from BabelNet; ii) for each synset, all the
included word senses with their lemmas in the re-
garding language are elicitated; iii) finally, the sets
of synsets sharing the same lemmas are extracted
to represent a sysnet graph, with nodes being the
synsets and the edges being the lemmas and their
languages. The construction of a synset graph from
BabelNet is first formalized in (Harvill et al., 2022),
and adapted by (Chen et al., 2023) incorporating
information of the languages and lemmas, see the
Algorithm 1.

We adopt the algorithm presented in Chen et al.
(2023) to construct a large-scale synset graph from
WordNet synsets for our study. The difference
in Chen et al. (2023) and Harvill et al. (2022) lies
in the addition of Gs at line 3 and line 9, as shown
in Algorithm 1. Gs affords the construction of
colexification patterns and modeling language rela-
tions.

Algorithm 1 Construction of Colexification Graph:
Given a set of languages L and corresponding vo-
cabularies V, create graph edges between all colex-
ified synset pairs (nodes), consisting of the set of
tuples of lemmas and their language.

1: function CONSTRUCTGRAPH(L,V )
2: CSP ← {} ▷ Colexified Synset Pairs
3: Gs ← graph
4: for l ∈ L do
5: for x ∈ Vl do
6: if |Sx| ≥ 2 then
7: for {s1, s2} ∈

(
Sx

2

)
do

8: CSP ← CSP ∪ {si, sj}
9: Gs(s1, s2)← {x, l}

10: end for
11: end if
12: end for
13: end for
14: G← graph
15: for s1, s2 ∈ CSP do
16: G(s1, s2)← 1
17: end for
18: return G
19: return Gs

20: end function

A WordNet synset comprises a sense word, a
Part-of-speech (POS) tag, and a sense number, e.g.,
dad#n#1. The sense numbers indicate the preva-
lence of the use of senses, with the most frequently
used sense labeled 1. The frequency of use is deter-
mined by how often a sense is tagged in semantic
concordance texts.4 Our assumption is that the
mean score of lexicon ratings, annotated by mul-
tiple humans across domains and languages, rep-
resents the ratings for the most prevalent sense.
However, when it comes to cross-lingual synset-to-
concept mapping, there may be variations in the
sense annotations between languages. Suppose that
in French the main sense KNOT is knot#n#4, which

4https://wordnet.princeton.edu/documentation/
wndb5wn
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refers to a unit of speed, while in English, the an-
notation for KNOT likely refers to an actual knot
that you tie, which is the 1st sense for the synset.
As a result, we cannot expect the same ratings of
concreteness or affectiveness for these two differ-
ent senses. Therefore, to map synsets to concepts,
we always select the initial sense of the synsets..

Once filtered by the 1st sense of the synsets, as
illustrated in Table 1, we derive concepts by extract-
ing the sense word from each synset. The resulting
concept graph comprises nodes representing the
1st senses of synsets and edges indicating the cor-
responding languages and sense lemmas.

Phonemes Extraction To facilitate analysis of
phonetic characteristics cross-lingually in the con-
text of colexifications and against ratings of con-
creteness and affectiveness, we extract phonemes
from WikiPron, which to this date includes
1,882,240 word/pronunciation pairs in 543 lan-
guages.5 To map the pronunciations to our data, we
mapped their word/language code pairs to the pairs
of sense lemma/language code extracted from Ba-
belNet. As a result, there are 139,698 sense lemma/
phonemes pairs across 142 languages, presented as
in Table 1. In our dataset, the median size of the
phonemes per language is 32.

Phonological Features Extraction Phonologi-
cal features have been proposed as the foundation
of spoken language universals. Despite variations
in phones across languages, the set of phonologi-
cal features remains constant. Phones can be con-
structed from a set of phonological features. In
our study, we extract phonemes for sense lem-
mas and then further extract phonological (artic-
ulatory) features based on the subsegments using
PanPhon. PanPhon generates 24 phonological fea-
tures for each segment, such as syllabic, sonorant,
consonantal, continuant, delayed release, lateral,
nasal, strident, voice, spread glottis, constricted
glottis, anterior, coronal, distributed, labial, high
(vowel/consonant, not tone), low (vowel/consonant,
not tone), back, round, elaric airstream mechanism
(click), tense, long, hitone, hireg 6. Each feature is
assigned a value of ‘1’, ‘-1’, or ’0’, where ’1’ indi-
cates a positive value of the feature, ’-1’ indicates a
negative value of the feature, and ’0’ indicates that
the feature is absent for that sound. For instance,
a vowel cannot possess consonant features, so it is

5https://github.com/CUNY-CL/wikipron
6https://github.com/dmort27/panphon

marked as ‘0’. We use PanPhon to convert each
phone into a vector with length 24 in our dataset.

Figure 3: The map of language families of our data.
The size of the points are proportional to the number of
concepts in each language. Colors represent language
families.

Incorporating Norms and Ratings Having built
the concept graph from the synset graph by select-
ing the 1st senses of the synsets across languages,
we map the concepts from databases containing
norms and ratings to the concept graph. As shown
in Table 1, the concept 1 DAD is mapped from con-
creteness/affectiveness rating lists to the synset 1
dad#n#1, while the concept 2 POPE is mapped to
the synset 2 pope#n#1 by intersecting the datasets
by the sense words. When each concept in the
colexification pair has a rating, the distance of
the concreteness/affectiveness can be calculated by
computing the absolute distance of the two. When
concept 1 has a (mean) concreteness of conc1 and
concept 2 has a (mean) concreteness of conc2, then
the Conc.Dist is calculated as |conc1 − conc2|.
Similar procedures are used for computing distance
of valence (V.Dist), arousal (A.Dist) and domi-
nance (D.Dist).

To conduct analysis of the correlations be-
tween phonemes/phonological features against the
concreteness/affectiveness, the ratings for each
phonemes are calculated as the average of the
ratings of the included concepts, grouped by the
phonemes and its language, respectively.

Undergoing these procedures, we create a
dataset in 142 languages across 21 language fami-
lies, including ratings in concreteness/affectivness,
and phonemes for lemmas. The overall statistics
of the data is shown in Table 2. The map for the
data color coded by language families is presented
in Fig. 3. As shown, the data is highly skewed
towards Indo-European languages, and the data is
quite scarce in Americas.
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Sense Lemma Language Phonemes Synset 1 Synset 2 Concept 1 Concept 2 Conc.Dist V.Dist A.Dist D.Dist
H� AK� Persian p A: p dad#n#1 pope#n#1 DAD POPE 0.42 1.96 0.16 1.88

AK. AK. Arabic b A: b A: dad#n#1 pope#n#1 DAD POPE 0.42 1.96 0.16 1.88

papa Russian p a p @ dad#n#1 pope#n#1 DAD POPE 0.42 1.96 0.16 1.88
far Danish - dad#n#1 sire#n#1 DAD SIRE - 0.74 0.05 0.57

pare Castilian p a R e Santa_Claus#n#1 dad#n#1 SANTA CLAUS DAD 0.17 - - -

Table 1: An example of the dataset. {CONC,V,D,A}.Dist represent the distance of the concreteness, valence,
dominance and arousal of the pair of concepts for each lexicon. The value is unknown(-) if either of the concepts
does not have a rating.

#Entries Colex. Patterns #Synset #Lexicalization #Phone/Lemma pairs #Concept #Concept w/ Aff. #Concept w/ Conc.
186,6558 676,594 72,604 68,249 613,906 84,084 10,353 19,179

Table 2: Statistics of the Dataset.

4 Analysis and Results

4.1 Colexifications vs. Closeness in
Concreteness/Affectivness

Figure 4: Correlation between Affectiveness- and
Concreteness-Distances between the Colexified Con-
cepts. The size of the squares represent correlation
coefficients.

Conc.Dist V.Dist A.Dist D.Dist
#Colex. -0.4716* -0.4192* -0.5798* -0.5083*

Colex. Patterns -0.4634* -0.4115* -0.581033* -0.5065*
#Languages -0.4727* -0.4178* -0.5798* -0.5090*

Table 3: Correlation between #Colexifications and
the Concreteness/Affectivness Distances between the
Colexified Concepts, p-values are in the brackets. The
sign * indicates the statistical significance of the corre-
lation at 95% (p < 0.0001).

Previous studies show that abstract concepts are
often understood by reference to more concrete con-
cepts (Lakoff and Johnson, 2008), and words that
first arise with concrete meanings often later gain
an abstract one (Xu et al., 2017). Xu et al. (2020)
leans on these findings to show that concepts more

dissimilar in concreteness and affective valence are
more likely to colexify. To test this, we calculate
the correlation coefficients7 between the number of
colexifications and concreteness/affectiveness dis-
tances of the colexified concepts across languages.
However, the results show the exact contrary to
the previous theories and findings. As shown in
Table 3, there is a statistically significant and rela-
tively strong negative correlation between colexifi-
cations and the distance of concreteness, valence,
arousal and dominance. This verifies that it is more
likely for a pair of concepts to colexify when they
are closer in concreteness and affectiveness. Our
results about affectivness in colexifications is also
corroborated by Di Natale et al. (2021).

Since both distances of conreteness and affec-
tiveness are correlated with colexifications, it is
intuitive to assume they might be correlated to each
other. To test this, we calcuate the correlation co-
efficients between each dimension of concreteness
and affectiveness. As shown in Fig. 4, the distances
of valence and dominance are correlated with each
other stronger than other pairs. And, concreteness
distance is not significantly correlated with any
dimension of affectiveness.

4.2 Phonemes vs. Concreteness/Affectiveness

Previous studies suggest that characteristics of the
initial and the last phoneme have the most signifi-
cant impact on the phonetic characteristics of the
whole phone set (Pimentel et al., 2020). To test
whether there are universals between the initial/last
phoneme and the concreteness/affectiveness, we
calculate the correlations between them per lan-
guage family.

Since the whole results are too large to present,

7All the correlation analyses done in this study are using
the SciPy implementation of Pearson correlation algorithm.
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Lang. Family #Lang. # Sample # Phonemes Initial Phoneme Last Phoneme
Turkic 7 2453 53 k (0.1148), t (0.1020) -

Tai-Kadai 3 2701 20 k (-0.1122), n (0.1066) -
Austroasiatic 2 3400 26 P (0.1028) -
Austronesian 7 21365 33 - N (0.1053)

Uralic 5 23352 37 V (-0.1082) i (0.1423), n (-0.1983), 6 (0.1005)
Dravidian 3 339 22 p (0.2072) í (-0.2738)

Sino-Tibetan 5 7567 39 y (-0.1189) 1 (-0.1428), 4 (0.1092), 5 (0.1066)
Afro-Asiatic 5 862 44 e (-0.1450) o (-0.1107), r (-0.1582),

B (-0.1074), X (-0.1432)

Table 4: Correlation between the Initial/Last Phoneme and the Concreteness of Sense Lemma across Languages per
Language Family. All the presented coefficients (in the brackets) are statistically significant and at least bigger than
0.1 or smaller than -0.1, corrected with Bonferroni correction (p < 0.05/#Lang.*).

Tai-Kadai Austroasiatic Indo-European Uralic
Features (2822/3) (3555/2) (229661/75) (26795/6)

syl -0.1570* -0.1870* -0.1851* -0.2716*
son -0.1533* -0.1698* -0.1453* -0.2783*
cons -0.1734* -0.2252* -0.1284* -0.2092*
cont -0.1567* -0.1768* -0.1520* -0.2692*
nas - -0.1038* -0.1120* -0.1718*
voi -0.1524* -0.1546* -0.1726* -0.2486*
sg - -0.1185* - -
ant -0.1217* -0.1407* -0.1553* -0.2670*
cor -0.1574* -0.1956* -0.1215* -0.2195*

distr - - - -0.1719*
lab - - - -0.1706*
lo - - - -0.1244*
hi -0.1194* -0.1678* -0.1015* -
lo -0.1424* - - -

back -0.1009* -0.1513* - -
tense -0.1631* -0.1175* -0.1350* -0.2675*

Table 5: Correlation between Phonological Features
and the Concreteness of Sense Lemma per Language
Family. All the presented coefficients are statisti-
cally significant and at least bigger than 0.1 or smaller
than -0.1, corrected with Bonferroni correction (p <
0.05/#Lang.*).

we report here only the results where the correla-
tions are statistically significant, and the absolute
value of which are bigger than 0.1. To prevent data
from incorrectly appearing to be statistically sig-
nificant, we correct the p-value with Bonferroni
correction by dividing it with the number of the
languages within the language family that is tested
on. Only the results, that are statistically significant
at 95% after applying Bonferroni correction, are
reported.

We can observe that, as in Table 4, by correlating
against the concreteness distance, the p as the initial
phoneme and the last í is significantly and stronger
correlated within Dravidian languages, and a in
Artificial languages as the first phoneme, compared
to others. While across language families, k is
correlated with concreteness.

Similarly, we test the correlations against the af-
fectivness distance. Only the results with valence
is reported, since the correlations of the phonemes
against other affective ratings are not significant.
As shown in Table 6, p as initials present corre-
lations with affectiveness cross language families,
i.e., Sino-Tibetan and Dravidian.

To represent the complexity of phonemes in-
tra language families, we calculate the TTR as
the ratio of unique phonemes and the length of
all the phonemes for each lemma. Furthermore,
the correlation between the TTR and the concrete-
ness/arousal is computed, as shown in Table 4. And
also the length of the phoneme segments are cal-
culated for similar correlation test. Across all 8
language families, the segment length is statisti-
cally negatively correlated with the concreteness,
but positively correlated with arousal. While, the
correlations between TTR and the concreteness
shows that the more concrete concept, the more
diverse (complex) the phonemes are.

4.3 Phonological Features vs.
Concreteness/Affectiveness

To test whether phonological features of the
phonemes correlate with concreteness or affective-
ness, for each phoneme/lemma pair, the phonolog-
ical feature vectors are calculated and the values
are aggregated by frequency of the present features.
As indicated in Table 5, in the reported data, all
the phonological features are negatively correlated
with the concreteness. While the correlation coef-
ficients in general are quite small, this hints at the
possible existence of effects of these phonological
features on concreteness. For instance, the coronal
obstruent (cor) feature in all four language families
is highly negatively correlated with concreteness,
indicating that there is a general preference for such
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Lang. Family #Lang. # Sample # Phonemes Initial Phoneme Last Phoneme
Turkic 7 2453 53 c (-0.1178), a (-0.1284) p (-0.1412), y (-0.1158)

Austroasiatic 2 3400 26 - h (-0.1169)
Artificial Language 2 448 24 m (-0.2464) -

Dravidian 3 339 22 p (0.1667), r (-0.2044) í (-0.2693)
Sino-Tibetan 5 7567 39 p (-0.1337), u (-0.1272), y (0.1010) -
Afro-Asiatic 5 862 44 i (-0.1070), j (0.1065), z (-0.1058), R (0.1353), P (-0.1588)

g (-0.1268), P (0.1091)

Table 6: Correlation between the Initial/Last Phoneme and the Valence of Sense Lemma across Languages per
Language Family. All the presented coefficients (in the brackets) are statistically significant and at least bigger than
0.1 or smaller than -0.1, corrected with Bonferroni correction (p < 0.05/#Lang.).

words to be abstract in meaning.

Lang. Family #Lang. # Sample TTR LEN
vs. Concreteness

Turkic 8 2557 - -0.1373*
Tai-Kadai 3 2701 0.1511* -0.1834*

Austroasiatic 2 3398 0.1794* -0.2715*
Uralic 6 23508 0.1876* -0.2402*

Dravidian 3 339 - -0.2585*
Indo-European 75 211371 - -0.1697*
Sino-Tibetan 5 7567 0.1257* -0.1184*
vs. Arousal
Austroasiatic 2 3398 - 0.1157*

Mongolic-Khitan 3 66 - 0.3294*

Table 7: Correlation between TTR (Type-to-Token Ra-
tio)/ Segment Length and the Concreteness of Sense
Lemma per Language Family. All the presented coeffi-
cients (in the brackets) are statistically significant and
at least bigger than 0.1 or smaller than -0.1, corrected
with Bonferroni correction (p < 0.05/#Lang.).

5 Conclusion and Future Work

In this study, we proposed a set of procedures to
leverage colexifications to bootstrap cross-lingual
datasets, incorporating human ratings of concrete-
ness and affective meanings. The created dataset
presents data in 142 languages across 21 language
families and 5 language macro areas. However, the
procedures can be applied beyond the datasets used
in this paper.

Inspired by previous works, we test the cor-
relations between i) the distance of concrete-
ness/affectiveness and the number of colexifica-
tions; ii) the phonemes and concreteness/ affec-
tiveness; and iii) the phonological features and the
ratings. It is shown that i) colexifications closer in
concreteness/effectiveness are more likely to colex-
ify; ii) certian initial/last phonemes do present sta-
tistically significant correlations with the ratings
across languages; and iii) there is a positive cor-
relation between the phoneme diversity and con-
creteness; finally iv) certain phonological features

are negatively correlated with the ratings. While
it is difficult to draw any meaningful conclusions
from this finding without a prior hypothesis, we
hope that future work can use this dataset to make
well-founded findings on the interactions between
phonology, concreteness, and affectiveness.

We have showcased the soundness and validity
of our approach to curate data from different do-
mains and create a cross-lingual dataset mapping
the information. The initial analyses and findings
could inspire further applications in NLP and also
other fields, such as psychology and psycholin-
gusitics, which we will explore extensively for fu-
ture work.

Nevertheless, the analyses conducted in this
study are confined to individual correlation tests,
which are inadequate for reaching definitive conlu-
sions. For future work, we will employ multivariate
modeling techniques utilizing affective/concrete
ratings and the phonetic features to delve deeper
into understanding the connections between human
conceptualization and sounds across diverse lan-
guages and cultures.
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Limitations

A limitation of this study is the fact that the con-
creteness ratings of Brysbaert et al. (2014) are
curated solely from self-identified U.S. residents.
And the affectiveness ratings of Warriner et al.
(2013) are solely curated in English. As such,
there is a risk of an anglocentric bias in the created
dataset. Nonetheless, the goal of this study is to
explore the potential of leveraging colexifications
to bootstrap cross-lingual datasets in as many lan-
guages as possible, including a lot of low-resource
languages.
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work increases research potential for low-resource
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Abstract

This paper evaluates various character align-
ment methods on the task of sentence-level
standardization of dialect transcriptions. We
compare alignment methods from different sci-
entific traditions (dialectometry, speech pro-
cessing, machine translation) and apply them to
Finnish, Norwegian and Swiss German dialect
datasets. In the absence of gold alignments, we
evaluate the methods on a set of characteris-
tics that are deemed undesirable for the task.
We find that trained alignment methods only
show marginal benefits to simple Levenshtein
distance. On this particular task, eflomal out-
performs related methods such as GIZA++ or
fast_align by a large margin.

1 Introduction

In recent research, a wide range of charac-
ter transduction tasks (Wu and Cotterell, 2019)
have been studied, such as modernization of
historical spellings, correction of non-standard
spellings in user-generated content, lemmatization,
or grapheme-to-phoneme conversion (G2P). While
most work aims at creating and improving genera-
tive models that produce the target representation
given its source representation, we focus in this
paper on the task of aligning characters when both
representations are given. Character alignment is a
key step in the training pipeline of certain charac-
ter transduction models such as those based on the
statistical machine translation (SMT) paradigm.

Other lines of research have been concerned with
finding distances between strings, e.g., to compare
different dialectal pronunciations (dialectometry)
or to identify cognate pairs in corpora of related lan-
guages. While most research in these areas focuses
on finding the optimal distance metric for a given
task, we rather look at the alignments produced by
these distance metrics here. Indeed, character align-
ments are a by-product of distance computations
and readily available.

In most cases, both character transduction and
distance computation are performed at word level,
i.e., one word at a time. However, we argue that
it is beneficial to carry them out at sentence level
(if appropriate corpora are available) to enable con-
textual disambiguation, to avoid relying on pre-
existent tokenization and to capture assimilation
effects at word boundaries.

In this work, we focus on sentence-level stan-
dardization of dialect transcriptions. We compare
character alignment methods from different sci-
entific traditions and apply them to corpora of
transcribed dialectal speech from three languages,
namely Finnish, Norwegian and Swiss German.
In the absence of gold alignments, we evaluate
the alignment methods on a set of characteris-
tics (e.g., the amount of vowel-to-consonant align-
ments) that are deemed undesirable for dialect-to-
standard character alignment.

2 Alignment Methods

Character alignment methods have been proposed
for different purposes in different fields, but all of
them can be meaningfully applied to sentence-level
dialect-to-standard alignment.

Dialectometry The core idea of dialectometry is
to obtain abstract representations of dialect land-
scapes from large numbers of individual features
(see e.g. Nerbonne and Kretzschmar, 2003; Wiel-
ing and Nerbonne, 2015). One way to achieve this
is to compute distances between phonetic transcrip-
tions of a given word in different dialects, followed
by aggregating the distances over all words of the
dataset. Levenshtein distance (Levenshtein, 1966)
is generally used as a starting point for such un-
dertakings, but over the years, several extensions
have been proposed, such as vowel-sensitive Lev-
enshtein distance, or the possibility to learn the
edit weights from a corpus (Heeringa et al., 2006).
While most work focuses on the obtained distance
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docs sents words sents/doc words/doc words/sent chars/word |C∪| |C∩|
SKN 99 51,254 841,859 518 8504 16.4 5.7 243 70
NDC 648 145,961 1,937,905 225 2991 13.3 4.4 93 84
ArchiMob 6 11,959 93,450 1993 15575 7.8 5.3 49 33

Table 1: Key figures of the three datasets. The table shows the absolute number of documents, sentences and words,
as well as the average number of sentences per document, words per document, words per sentence, and characters
per word. |C∪| refers to the size of the union of dialectal and standardized character sets, |C∩| to their intersection.

values and their correlation to existing dialecto-
logical findings, Wieling et al. (2009) specifically
evaluate the alignments obtained by such distance
metrics.

Cognate identification Similar distance metrics
have been employed for identifying cognates in
large corpora of related languages (e.g. Mann and
Yarowsky, 2001; Kondrak and Sherif, 2006).

Grapheme-to-phoneme conversion Many text-
to-speech systems contain a G2P component that
turns words spelled in conventional orthography
into sequences of phoneme symbols that corre-
spond to the actual pronunciation of the word.
Before neural sequence-to-sequence models were
used, the standard approaches for G2P relied on
stochastic transducers or HMMs with weights
learned from training data using expectation-
maximization (EM). For example, Ristad and Yian-
ilos (1998) introduced a stochastic memoryless
transducer. Jiampojamarn et al. (2007) proposed
an extension to this model that also covers multi-
character graphemes and phonemes.

Statistical machine translation Word alignment
is a crucial ingredient of the SMT paradigm intro-
duced at the beginning of the 1990s (Brown et al.,
1993). GIZA++, an open-source aligner that has
become standard over the years, uses a pipeline of
increasingly complex word alignment models (Och
and Ney, 2000). Follow-up work such as fast_align
(Dyer et al., 2013) and eflomal (Östling and Tiede-
mann, 2016) introduced simpler, faster and less
memory-hungry alignment approaches with only
minor sacrifices in accuracy.

Although designed to align words in sentence
pairs, the word alignment models can also operate
on single characters. This approach has become
popular as character-level SMT and has been used
e.g. to translate between closely-related languages
(Tiedemann, 2009) or for historical text moderniza-
tion (Scherrer and Erjavec, 2013).

3 Data

We use existing dialect corpora from Finnish, Nor-
wegian and Swiss German for our experiments:

SKN – Finnish The Samples of Spoken Finnish
corpus (Suomen kielen näytteitä, hereafter SKN)
(Institute for the Languages of Finland, 2021) con-
sists of 99 interviews conducted mostly in the
1960s. It includes data from 50 Finnish-speaking
locations, with two speakers per location (with one
exception). The interviews have been transcribed
phonetically on two levels of granularity (detailed
and simplified) and normalized manually by lin-
guists. We use the detailed transcriptions here.1

NDC – Norwegian The Norwegian Dialect Cor-
pus (Johannessen et al., 2009, hereafter NDC) was
compiled between 2006 and 2010 in the context of
a larger initiative to collect dialect data of the North
Germanic languages. Typically, four speakers per
location were recorded, and each speaker appears
both in an interview with a researcher and in an
informal conversation with another speaker. The
recordings were transcribed phonetically and there-
after semi-automatically normalized to the Bokmål
standard.2

ArchiMob – Swiss German The ArchiMob cor-
pus (Scherrer et al., 2019) consists of oral history
interviews conducted between 1999 and 2001. It
contains 43 phonetically transcribed interviews, but
only six of them were normalized manually. We
only use these six documents for our experiments.

Some quantitative information about the datasets
is given in Table 1. One may note that ArchiMob
has the longest documents and NDC the shortest.
On the other hand, ArchiMob has the shortest sen-
tences. SKN has the most detailed transcriptions

1Details about the availability of the corpora are given in
Table 6 in the appendix.

2The publicly available phonetic and orthographic tran-
scriptions are not well aligned. We use (and provide) an
automatically re-aligned version of the corpus, cf. Table 6.
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SKN:
mä oon syänys "seittemän

“
"silakkaa , ’aiva niin , ’häntä erellä .

minä olen syönyt seitsemän silakkaa , aivan niin , häntä edellä .
‘I have eaten seven herrings, that’s right, tail first’

NDC:
å får eg sje sjøra vår bil før te påske
og får jeg ikke kjøre vår bil før til påske
‘and I don’t get to drive our car until Easter’

ArchiMob:
aber meer hènd den furchpaari finanzijelli schwirigkaite gchaa
aber wir haben dann furchtbare finanzielle schwierigkeiten gehabt
‘but then we had terrible financial difficulties’

Table 2: Example sentence pairs from the three datasets.
The top row presents the phonetic dialectal transcription,
the middle row the standardized version, and the bottom
row provides an English gloss. Although the number of
transcribed and standardized tokens is the same in the
three shown examples, we do not presuppose this for
our experiments. Likewise, we do not presuppose that
the data is aligned at token level.

and therefore the largest character vocabulary. Ta-
ble 2 provides some example sentences.

4 Experimental Setup

4.1 Data Preparation

We reformat the three datasets in such a way that
the utterances are split into sequences of characters
and that the word boundaries are marked with a
special symbol (_), as exemplified in Figure 1.

_ å _ f å r _ e g _ s j e _ s j ø r a _
_ o g _ f å r _ j e g _ i k k e _ k j ø r e _

Figure 1: Tokenized example sentence, dialectal tran-
scription above and orthographic normalization below.

Since all alignment methods are unsupervised
and there are no gold alignments for evaluation,
we do not split the data into training and test sets.
We train one alignment model per document, using
the dialectal transcriptions as the source and the
orthographic normalizations as the target.

4.2 Alignment Methods

We apply the following alignment methods:

• Levenshtein distance with default edit opera-
tion weights (leven).

• Weighted Levenshtein distance using PMI
scores as edit operation weights (Wieling
et al., 2009). We extract the PMI scores from
the concatenation of all Levenshtein-aligned
documents of a corpus (leven-pmi).

• Stochastic memoryless unigram transducer
with weights trained iteratively on sin-
gle documents (Ristad and Yianilos, 1998)
(unigram).3

• Stochastic memoryless bigram transducer (Ji-
ampojamarn et al., 2007); we override the
default settings and allow deletions and in-
sertions, as well as mappings of two bigrams
(bigram).

• GIZA++ with default parameters.
• fast_align with default parameters.
• eflomal with default parameters.
• eflomal can extract prior alignment probabil-

ities from a previously aligned dataset to ini-
tialize a new alignment model. We concate-
nate all documents of a corpus to extract the
probabilities (eflomal-priors).

To summarize, our experiments cover one un-
trained model (leven), five models trained on
document-level data (unigram, bigram, GIZA++,
fast_align, eflomal) and two models trained on
corpus-level data (leven-pmi, eflomal-priors).

4.3 Symmetrization

Word alignment algorithms can only produce one-
to-many alignments, but no many-to-one align-
ments. Therefore, it is standard practice to run
the models twice, once in the “forward” direction
and once in the “reverse” direction. The produced
alignments are then symmetrized, e.g., by taking
the intersection if precision is favored, or the union
if recall is favored. Heuristics such as the popular
grow-diag-final-and method produce a more bal-
anced result (Och and Ney, 2003). For consistency,
we apply symmetrization to all methods.

4.4 Adding Adjacent Identicals

_ A m e r i i k k a s a _

_ A m e r i k a s s a _

Figure 2: Additional alignments (dashed lines) are
added to the initial alignments (solid lines) on the basis
of consecutive identical characters (in bold).

Levenshtein-based models only produce one-
to-one alignments, but leave inserted and deleted
characters unaligned. To reduce the amount of

3We use the implementation by (Jiampojamarn et al., 2007)
available at https://github.com/letter-to-phoneme/
m2m-aligner.
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unaligned characters, we add a simple heuristic
that identifies two consecutive identical characters
on one side and, if one of them is unaligned, in-
troduces a new many-to-one alignment link (see
Figure 2 for an example).

4.5 Evaluation Criteria
In a similar study, Wieling et al. (2009) compare
various alignment methods with a set of manually
verified gold alignments. Unfortunately, such anno-
tations are not available for the three datasets used
in this work. Instead, we gather four statistics about
various phenomena that we consider undesirable
for the given task, and rank the alignment methods
according to these phenomena. They include:

U-src proportion of unaligned source characters,
U-tgt proportion of unaligned target characters,
V-C proportion of vowel-to-consonant and

consonant-to-vowel alignments (disre-
garding semi-vowels, nasals, laterals and
suprasegmentals),

X proportion of crossing alignment pairs (swaps).

We aggregate these proportions over all docu-
ments of a given dataset.

Note that we do not expect the optimal values
of these proportions to be 0. The expected values
depend on the languages and dialects, and reliable
estimates would require access to a gold-aligned de-
velopment set. However, based on our knowledge
of the languages and dialects, we estimate V-C to
lie below 1% and X below 0.2%. U-tgt is expected
to be higher than U-src,4 but both proportions are
unlikely to exceed 15%.

Besides these quality indicators, we also report
run times (on 1 CPU) and memory usage of the
alignment methods.5

5 Results

5.1 Symmetrization Strategies
Table 3 exemplifies the effect of different sym-
metrization strategies on the basis of eflomal and
the SKN dataset, but similar results are obtained for
the other methods and datasets. It can be seen that
recall-focused strategies (union) provide the lowest
number of unaligned characters, whereas precision-
focused strategies (intersection) show the lowest

4In SKN, U-src may be higher than U-tgt because of the
suprasegmentals occurring in the source.

5The code for all experiments is available at
https://github.com/Helsinki-NLP/dialect-align-
sigmorphon23.

amounts of vowel-consonant alignments and cross-
ing alignments. The grow-diag-final-and (gdfa)
strategy is largely similar to union, but greatly re-
duces the number of crossing alignments. We find
that gdfa provides the best compromise overall
and select this symmetrization method for all sub-
sequent experiments.

forward reverse intersect union gdfa

U-src 9.39 9.51 13.77 7.53 7.63
U-tgt 6.00 7.18 11.11 4.64 4.76
V-C 0.17 0.15 0.11 0.21 0.20
X 0.50 0.49 0.02 1.00 0.12

Table 3: Impact of alignment symmetrization strate-
gies. All values are percentages and refer to eflomal
alignments on the SKN dataset.

5.2 Adding Adjacent Identicals

Table 4 shows that the adjacent-identicals heuristic
effectively reduces the number of unaligned char-
acters on both source and target sides, but leaves
the other measures largely unaffected. In the fol-
lowing, we add this heuristic to all Levenshtein-
and unigram-based methods and apply it after sym-
metrization with gdfa.

SKN NDC ArchiMob

–aai +aai –aai +aai –aai +aai

U-src 9.27 8.85 5.09 1.25 4.57 2.65
U-tgt 6.18 5.22 8.10 7.92 13.76 12.78
V-C 0.31 0.31 0.36 0.38 1.37 1.34
X 0.00 0.00 0.00 0.00 0.02 0.02

Table 4: Impact of adding adjacent identicals (+aai) on
Levenshtein alignment. All values are percentages.

5.3 Method Comparison

The comparison between the eight alignment meth-
ods enumerated in Section 4.2 is shown in Table 5.

Two methods, GIZA++ and fast_align, yield
unrealistically high proportions of unaligned char-
acters, leaving half of all characters unaligned in
the worst case. The same methods also show
higher-than-expected amounts of swaps. On the
other hand, the bigram transducer produces unex-
pectedly large amounts of vowel-consonant align-
ments. These three methods can therefore not
be recommended for character alignment with the
used parameters.
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Leven Leven+PMI unigram bigram GIZA++ fast_align eflomal eflomal+priors

SKN U-src 8.85 8.11 9.83 9.60 39.99 50.13 7.63 7.67
U-tgt 5.22 4.67 6.47 7.35 38.56 48.66 4.76 4.65
V-C 0.31 0.46 0.07 8.51 0.20 0.24 0.20 0.25
X 0.00 0.00 0.00 0.05 0.75 0.26 0.12 0.40

NDC U-src 1.25 1.11 1.95 5.17 15.34 26.64 2.49 3.22
U-tgt 7.92 7.54 8.85 8.13 21.03 31.59 7.51 7.45
V-C 0.38 0.46 0.15 6.36 0.39 1.26 0.43 0.38
X 0.00 0.00 0.00 0.07 0.39 0.32 0.02 0.13

ArchiMob U-src 2.65 2.66 13.54 3.74 7.45 13.91 2.33 3.67
U-tgt 12.78 12.85 23.59 10.51 17.52 23.95 9.14 12.61
V-C 1.34 1.39 0.63 7.81 0.71 1.48 2.00 1.22
X 0.02 0.00 0.00 0.07 0.50 0.63 0.12 0.14

CPU time (hh:mm) 0:30 11:17 20:20 105:27 30:36 0:45 12:32 16:18
Memory (MB) 69 76 1290 2350 58 34 263 268

Table 5: Evaluation of character alignment methods. All values are percentages, lower values are assumed to be
better. Values violating our expectations are shown in italics.

The Levenshtein-based and unigram models do
not permit swaps, leaving the corresponding mea-
sure at 0.6 Since this is a technical limitation of the
models, it should not be considered as an argument
in their favor.

Learning the weights over the entire corpus
(leven-pmi, eflomal-priors) does not consis-
tently improve (nor worsen) results. We would
have expected this approach to be useful especially
for SKN and NDC with their short texts. This also
contrasts with the findings of Wieling et al. (2009),
who obtained significant error rate reductions with
PMI-based Levenshtein distance. More thorough
inspection of the results will be required to explain
this divergence.

Three models (leven, unigram, eflomal) show
similar performance over our criteria. They can
be recommended in different situations. If cross-
ing alignments (swaps) are expected to occur in
the data, eflomal is the only recommended solu-
tion. If phonological consistency is highly rated,
the unigram transducer is the method of choice
because it produces the lowest rate of vowel-
consonant alignments, at the expense of slightly
higher amounts of unaligned tokens. Finally, plain
Levenshtein distance remains remarkably competi-
tive compared to the trained models. It is also one
of the fastest and least memory-hungry approaches.

6It is nevertheless possible to obtain swaps through sym-
metrization. It has also been proposed to add a swap transition
to Levenshtein distance, but preliminary experiments have
shown that this addition negatively affects the other measures.

6 Discussion

Our evaluation of character alignment methods is
based on a set of “undesirable characteristics” of
the task. In this section, we would like to discuss
some issues arising from this experimental setup.

In Swiss German and Finnish, a common pattern
is the lack of final n in the dialectal pronunciation.
For Swiss German müesse / müssen, two solutions
are available: (a) a one-to-many alignment contain-
ing both e–e and e–n, and (b) leaving n unaligned.
Although both options can be considered linguisti-
cally equivalent, our evaluation favors solution (a).
In the opposite direction, the same argument holds
for the suprasegmental symbols in the SKN corpus.

The transcription systems of Norwegian and
Swiss German are based on conventional orthogra-
phy and render some phonemes by multiple char-
acters (e.g. Norwegian sje / ikke). It is unclear
how alignment errors inside such multi-character
graphemes should be evaluated.

Alignment can be performed left-to-right or
right-to-left. For Norwegian æin / en, the former
yields æ–e and the latter i–e. Although symmetriza-
tion minimizes the effects of alignment direction,
its impact on the evaluation scores is not entirely
clear.

Despite these yet unsolved questions, we believe
that our evaluation provides interesting insights
into the performance of character alignment meth-
ods for sentence-level dialect-to-standard normal-
ization.
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Limitations

A major limitation of the current work is the ab-
sence of gold alignments for evaluating the differ-
ent methods. Gold alignments would also enable us
to provide more reliable estimates of the prevalence
of the evaluated phenomena in the three datasets.
We are not aware of any other similar corpora that
come with gold character alignments. The work
of Wieling et al. (2009) uses word lists, not entire
sentences.

Furthermore, our work currently only covers Eu-
ropean languages in Latin script. Some of the pre-
sented techniques also assume identical writing
systems in the transcribed and normalized layers.
Our setup may therefore not generalize well to the
dialectal variation and writing systems present in
other parts of the world. For example, the V-C
proportion cannot be easily determined in scripts
that do not specify all vowels. Although there is
an extensive amount of research in particular on
Arabic and Japanese dialects and their normaliza-
tion (e.g., Abe et al., 2018; Eryani et al., 2020), we
currently limit our experiments to data written in
Latin script.

Ethics Statement

All experiments are based on publicly available
corpora. Even though some of the corpora contain
personal information, they have been cleared for
publication. The reported experiments do not intro-
duce any new artifacts that would be problematic
from an ethical point of view.
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textgroup/ArchiMob.html

Table 6: Datasets used in the experiments.
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Abstract

The 2023 SIGMORPHON–UniMorph shared
task on typologically diverse morphological in-
flection included a wide range of languages: 26
languages from 9 primary language families.
The data this year was all lemma-split, to al-
low testing models’ generalization ability, and
structured along the new hierarchical schema
presented in (Batsuren et al., 2022). The sys-
tems submitted this year, 9 in number, showed
ingenuity and innovativeness, including hard
attention for explainability and bidirectional
decoding. Special treatment was also given
by many participants to the newly-introduced
data in Japanese, due to the high abundance of
unseen Kanji characters in its test set.1

1 Introduction

As a long-running shared task, the SIGMORPHON-
UniMorph task on morphological inflection is a
major engine behind the surging interest in com-
putational morphology, as it facilitated both the
building of UniMorph as a large multilingual mor-
phological dataset, and the development and testing
of morphological inflection models. In its first few
installments (Cotterell et al., 2016, 2017, 2018; Vy-
lomova et al., 2020) the focus of the task was first
and foremost on generalization across languages,
with the their number raising steadily from 10 lan-
guages in the task of 2016 to 90 languages in 2020.

Later studies, both in the 2021 shared task
(Pimentel et al., 2021) and otherwise (Goldman
et al., 2022a), discovered that the impressive re-
sults achieved by systems submitted to these tasks
were in large part due the presence of test lemmas
in the train set. As a result, the 2022 shared task
(Kodner et al., 2022) focused on generalization to
both unseen lemmas and unseen feature combina-
tions.

1Data, evaluation scripts, and predictions are available at:
https://github.com/sigmorphon/2023InflectionST

In this task we continue to test systems on the
challenging lemma-split setting while circling back
to the inclusivity objective that guided the task from
its inception. To this end, we employ the hierarchi-
cal annotation schema of UniMorph 4.0 (Batsuren
et al., 2022) that allows more natural annotation
of languages with complex morphological struc-
tures such as case stacking and polypersonal agree-
ment. This year we include 26 languages from
9 primary language families: Albanian, Amharic,
Ancient Greek, Arabic (Egyptian and Gulf), Arme-
nian, Belarusian, Danish, English, Finnish, French,
Georgian, German, Hebrew, Hungarian, Italian,
Japanese, Khaling, Macedonian, Navajo, Russian,
Sámi, Sanskrit, Spanish, Swahili and Turkish. The
inclusion of Japanese, written in Kanji characters
that are rarely shared across lemmas, compelled all
systems this year to find ways to deal with unseen
characters in the test set.

In total, 9 systems were submitted by 3 teams,
both neural and non-neural models, and they were
compared against 2 baselines, neural and non-
neural as well. The submitted systems experi-
mented with innovative ideas for morphological
inflection as well as for sequence-to-sequence mod-
eling in general. Girrbach (2022) introduced an
elaborate attention mechanism between static repre-
sentations for explainability, and Canby and Hock-
enmaier (2023) experimented with a new type of
decoder for transformer models that is able to de-
code from both left to right and vise versa simulta-
neously. Lastly, Kwak et al. (2023) improved the
non-neural affixing system used as a baseline.

The results show that although on average sys-
tems achieve impressive results in inflecting unseen
lemmas, some languages still present a substantial
challenge, mostly extinct languages like Ancient
Greek and Sanskrit or low resourced languages like
Navajo and Sámi. In addition, the results point to
a dependency on the writing system that could be
further explored in future shared tasks.
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Family Subfamily ISO
639-2

Language Source of Data Annotators

Afro- Semitic afb Arabic, Gulf Obeid et al. (2020) Salam Khalifa
Nizar HabashAsiatic arz Arabic, Egyptian

amh Amharic Gasser (2011) Michael Gasser
heb Hebrew Wiktionary Omer Goldman

Indo- Albanian sqi Albanian Wiktionary Kirov et al. (2016)
European Armenian hye Eastern Armenian Wiktionary Hossep Dolatian

Balto-Slavic bel Belarusian Wiktionary Ekaterina Vylomova
mkd Macedonian Wiktionary Ekaterina Vylomova
rus Russian Wiktionary Ekaterina Vylomova

Germanic dan Danish Wiktionary Mans Hulden
Khuyagbaatar Batsuren

eng English Wiktionary Mans Hulden
Khuyagbaatar Batsuren

deu German Wiktionary Ryan Cotterell
Helenic grc Ancient Greek Wiktionary Kirov et al. (2016)
Indo-Aryan san Sanskrit Huet’s inflector Aryaman Arora
Romance fra French Wiktionary Géraldine Walther

ita Italian Wiktionary Géraldine Walther
fra Spanish Wiktionary Géraldine Walther

Japonic jap Japanese Wiktionary Khuyagbaatar Batsuren
Omer Goldman

Kartvelian kat Georgian Guriel et al. (2022) David Guriel
Simon Guriel
Silvia Guriel-Agiashvili
Nona Atanelov

Na-Dené Southern nav Navajo Wiktionary Mans Hulden
Athabascan Rob Malouf

Niger–Congo Bantu swa Swahili Goldman et al. (2022b) Lydia Nishimwe
Shadrak Kirimi
Omer Goldman

Sino-
Tibetan

Kiranti klr Khaling Walther et al. (2013) Géraldine Walther

Turkic Oghuz tur Turkish Wiktionary Omer Goldman
Duygu Ataman

Uralic Finnic fin Finnish Wiktionary Mans Hulden
sme Sámi Wiktionary Mans Hulden

Ugric hun Hungarian Wiktionary Judit Ács
Khuyagbaatar Batsuren
Gábor Bella, Ryan Cotterell
Christo Kirov

Table 1: Languages presented in this year’s shared task

2 Task Description

This year’s task was organized in a very similar
fashion to previous iterations. Participants were
asked to design supervised learning systems which
could predict an inflected form given a lemma and
a morphological feature set corresponding to an
inflectional category, or a cell in a morphological
paradigm. They were provided with a training set
of several thousands of examples, as well as a de-
velopment set and test set for each language. The
training data consisted of (lemma, feature set,
inflected form) triples, while the inflected forms
were held out from the test set. The development
set was provided in both train- and test-like for-
mats.

Data was made available to participants in two
phases. In the first phase, the training and develop-
ment sets were provided for most languages. In the

second phase, training and development sets were
released for some extra (“surprise”) languages and
the test sets were provided for all languages.2

Schema Differences The data this year followed
the hierarchical annotation schema that was sug-
gested by Guriel et al. (2022) and adopted in Uni-
Morph 4.0 (Batsuren et al., 2022). The difference
that was most pronounced in the data was the re-
placement of opaque tags that grouped several fea-
tures such as AC3SM(a 3rd person singular mascu-
line accusative argument) with the hierarchically
combined features ACC(3,SG,MASC), i.e. without
introducing a new tag for each feature combination
in the cases of polypersonal agreement.

2The surprise languages were: Albanian, Belarusian, Ger-
man, Gulf Arabic, Khaling, Navajo, Sámi and Sanskrit.
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3 The Languages

The selection of languages used in this year’s task
is varied at almost any dimension. In terms of lan-
guage genealogy we have representatives of 9 lan-
guage families, some are widely used, like English
and Spanish, and others are endangered or extinct,
like Khaling and Sanskrit. The languages employ a
wide variety of orthographic systems with varying
degrees of transparency (Sproat and Gutkin, 2021):
alphabets (e.g., German), abugidas (e.g., Sanskrit),
abjads (e.g., Hebrew), and even one logographs
using language (Japanese).

In light of the new annotation schema, many lan-
guages in this year’s selection employ forms that
refer to multiple arguments. Possessors are marked
on nouns in 6 of the languages: Hebrew, Hungar-
ian, Amharic, Turkish, Armenian and Finnish. In
addition, polypersonal agreement appears in verbs
of 5 of the languages: Georgian, Spanish, Hun-
garian, Khaling and Swahili.3 Other notable mor-
phological characteristics include, among others,
the ablaut-extensive Semitic languages and prefix-
inclined Navajo.

All in all, Table 1 enumerates the languages in-
cluded in the shared task.

Languages new to UniMorph A couple of lan-
guages, namely Swahili and Sanskrit, have seen
their respective UniMorph data increased substan-
tially in size for this task. The Swahili data, that pre-
viously had partial inflection tables, was expanded
using the clause morphology data of Goldman et al.
(2022b), so a Swahili verbal inflection table in-
cludes more that 14,000 forms rather than mere 180.
The Sanskrit data was massively expanded, mostly
in terms of the number of lemmas, by incorporating
data from Gérard Huet’s Sanskrit inflector.4

In addition, one previously unrepresented lan-
guage was introduced to UniMorph — Japanese.
The data was crawled from Wiktionary and canon-
icalized to match the UniMorph 4.0 format. The
usage of Kanji characters, logograms of Chinese
origin that are completely unrepresentative of the
pronunciation and almost uniquely used per lemma,
can pose an interesting challenge to inflection sys-
tems that will have to deal with many unseen char-
acters.

3Nouns in Arabic also mark their possessor and Verbs in
Navajo also agree with multiple arguments, but the UniMorph
data includes partial inflection tables for these languages.

4https://sanskrit.inria.fr/index.fr.html

# Inflection LanguagesTables

500
fin, fra, grc, heb, hun, hye, ita
kat, klr, nav, san, sme, spa, sqi
swa, tur

1000 amh, bel, deu, jap, mkd, rus
2000 dan
3000 afb, arz, eng

Table 2: Results of all the systems, submitted and base-
lines over the test sets in all languages. the best sys-
tem(s) per language in marked in bold. The systems are
ordered by the averaged success.

4 Data Preparation

All data for this task is provided in standard
UniMorph format, with training items consist-
ing of (lemma, morphosyntactic features,
inflected form) triples. Since the goal of the
task is to predict inflected forms, the test set was
presented as (lemma, features) pairs. The data
for all languages was lemma-split (Goldman et al.,
2022a).

For each language, a number of inflection tables
(i.e., lemmas) were sampled from the entire Uni-
Morph dataset. 80% of the tables were used for
the train set, and the rest were split between the
validation and the test sets, then 10,000 forms were
sampled from the inflection tables of the train set,
and 1,000 forms were sampled for the validation
and test sets from the respective tables. The num-
ber of inflection tables used was capped at 500, in
cases where the tables were too small to generate
enough data more tables were added until it was
sufficient. Table 2 details the amount of tables used
for each language.

5 The systems

5.1 Baseline Systems
The baseline systems provided this year are a recur-
rent appearance of the baselines of yesteryears: a
neural character-level transformer (Wu et al., 2021,
details in Appendix A), and a non-neural statis-
tical application of affixing rules firstly used by
Cotterell et al. (2017).

5.2 Submitted Systems
University of Arizona Kwak et al. (2023) sub-
mitted several non-neural models. Their first sys-
tem (AZ1) is a re-implementation of the non-neural
baseline, while another system of theirs (AZ2) uses
the same framework but improves the rules used
for both processing of the training data and making
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the predictions over the test set. In addition, they
experimented with a weighted finite-state transduc-
ers (WFST; AZ3), and they provided an ensemble
of the WFST with AZ2 (AZ4).

University of Tübingen Girrbach (2023) fo-
cused on explainability of the predictions of a neu-
ral inflection model. They did not get into de-
bate on whether soft attention between model’s
hidden states is a good explanation (Jain and Wal-
lace, 2019; Wiegreffe and Pinter, 2019), but rather
applied a hard attention mechanism directly over
static character representations. The models com-
plexity comes solely from the attention module
itself, that includes a LSTMs that run over the ex-
ample’s source and target.

University of Illinois Canby and Hockenmaier
(2023) provided the most extensive set of experi-
ments with transformer-based neural models. The
ultimate focus of their work was the directionality
of the decoder. Rather than decoding left-to-right,
their first system (IL1) used two unidirectional
models and chose a prediction that got the higher
probability assessed by its respective model. In
addition, they experimented with a model capable
of deciding whether to decode from left or right
at each step separately and used it either to select
between unidirectional predictions (IL2) or as a
standalone model (IL3). Lastly, they equipped IL3
with a beam re-ranker (IL4).

Common system characteristics The Japanese
data, with its high abundance of unseen characters,
posed a major problem to the neural submitted sys-
tems. Thus, they all gave the Japanese data special
treatment and replaced the unseen characters with
special place holders that were filled in with the
lemma characters as a post-processing step.5

None of the systems submitted made explicit
use of the hierarchy of the features. The teams
opted for flattening the structure and letting the
models understand the relations between the fea-
tures from the order. Thus, for example, the feature
bundle V;PRS;NOM(1,SG);ACC(2,PL) was treated
as V;PRS;NOM;1;SG;ACC;2;PL, with multiple per-
son and number features on the same level.

6 Results and analysis

Table 3 summarizes the accuracy results of all sys-
tems over all languages based on the exact match
between the prediction and gold outputs. In addi-
tion, we also provide macro-averaged score over
languages.

System performance In terms of averaged per-
formance, all neural systems outperformed the
non-neural systems, with IL4 having the best per-
formance. When examining the results per lan-
guage, the neural baseline and three of the Illinois-
submitted systems take the lead in about 6 lan-
guages each. The exceptions to this are English,
Danish and French, in which the non-neural base-
line is the best performing system. Partial explana-
tion may be the small size of the inflection tables in
Danish and English that necessitated inclusion of
many lemmas in the training set and may facilitated
better generalization ability of the non-neural base-
line. Admittedly, this explanation is not valid for
French, but this language was proven difficult in
previous shared tasks (Cotterell et al., 2017, 2018)
and in other works (Silfverberg and Hulden, 2018;
Goldman and Tsarfaty, 2021).

The neural baseline system was significantly
hampered by the lack of a special mechanism for
the unseen characters in Japanese. When discard-
ing the Japanese performance for all systems, the
neural baseline is second in averaged performance.
That is to say that devising a strategy to deal with
unseen characters is highly necessary when inflect-
ing lemma-split data in general, and logographic
languages in particular.

Being the neural system with the lowest aver-
aged accuracy, TÜB seem to trade some predictive
power in favor of having more explainable outputs,
as exemplified in Figure 1.

Although the WFST system that is AZ3 is the
system with the lowest scores, including it as part
of an ensemble resulted in some advantages and
helped producing the best non-neural system —
AZ4.

Language performance The performance of the
per-language best system over most languages is
quite impressive, and in some cases like Swahili
and Khaling even exceptionally impressive. How-

5Another possible solution to this bind could have been
to introduce a copy mechanism in the model itself, such as
the one used by Makarov and Clematide (2018). However, no
team chose this path.
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Language AZ3 AZ1
Baseline

Non-neural AZ2 AZ4 TÜB
Baseline
Neural IL1 IL2 IL3 IL4

macro 56.1 67.2 69.6 71.7 72.4 76.9 81.6 82.6 84.0 84.1 84.3average
afb 34.5 30.8 30.8 52.7 52.7 75.8 80.1 80.7 82.2 84.1 84.6
amh 59.9 65.4 65.4 74.0 74.0 83.8 82.2 88.9 90.6 88.9 88.6
arz 75.7 77.2 77.9 80.8 80.8 87.6 89.6 89.2 88.7 89.1 88.7
bel 46.2 68.1 68.1 64.5 64.5 56.3 74.5 73.5 74.7 72.9 72.9
dan 64.8 89.5 89.5 87.4 87.4 85.7 88.8 88.8 89.5 86.5 87.5
deu 59.9 79.8 79.8 77.9 77.9 74.5 83.7 79.7 79.7 80.2 79.7
eng 67.0 96.6 96.6 96.2 96.2 96.0 95.1 95.6 95.9 94.6 95.0
fin 48.2 80.8 80.8 80.6 80.6 67.6 85.4 79.2 80.6 85.7 86.1
fra 76.7 77.7 77.7 76.3 76.3 67.9 73.3 69.3 74.7 71.7 72.9
grc 40.4 52.6 52.6 54.8 54.8 36.7 54.0 48.9 53.7 56.0 56.0
heb 51.6 64.5 64.5 76.7 76.7 81.3 83.2 77.3 79.3 83.7 83.6
hebvoc 34.7 30.9 30.9 65.3 65.3 82.7 92.0 92.9 92.6 90.9 91.0
hun 45.9 74.7 74.7 74.7 74.7 75.9 80.5 76.3 79.8 84.3 85.0
hye 88.9 86.3 86.3 86.2 88.9 85.9 91.0 88.4 91.5 94.4 94.3
ita 78.0 75.0 75.0 63.6 78.0 84.7 94.1 95.8 97.2 92.1 92.2
jap 67.0 64.1 64.1 64.1 67.0 95.3 26.3 92.8 94.2 94.9 94.9
kat 71.7 82.0 82.0 82.1 82.1 70.5 84.5 84.1 84.7 81.3 82.9
klr 27.8 54.5 54.5 53.1 53.1 96.4 99.5 99.4 99.4 99.4 99.4
mkd 64.9 91.6 91.6 90.8 90.8 86.7 93.8 91.9 92.4 92.1 92.4
nav 23.7 35.8 35.8 41.8 41.8 53.6 52.1 54.0 55.1 55.1 55.6
rus 66.8 86.0 86.0 85.6 85.6 82.1 90.5 87.4 87.3 84.2 85.5
san 47.0 62.2 62.2 62.1 62.1 54.5 66.3 63.3 69.1 67.7 65.9
sme 30.1 56.0 56.0 49.7 49.7 58.5 74.8 69.9 71.8 67.4 67.3
spa 86.3 87.8 87.8 87.4 87.4 88.7 93.6 90.9 91.4 93.8 93.1
sqi 73.8 19.3 83.4 78.1 78.1 71.5 85.9 87.6 88.9 92.0 91.6
swa 56.2 60.5 60.5 65.0 65.0 94.7 93.7 93.1 93.1 96.6 96.6
tur 28.1 64.6 64.6 64.6 64.6 81.8 95.0 90.9 90.8 90.3 92.0

Table 3: Results of all the systems, submitted and baselines over the test sets in all languages. the best system(s) per
language in marked in bold. The systems are ordered by the averaged success.

ever, there are still some languages over which no
system achieves over 80% accuracy. These are:
Navajo, Ancient Greek, Sanskrit, Belarusian, Sami
and French. While there is no one characteristic
shared between all of these languages, it is worth
noting that this list includes the only two extinct
languages tested in this task, and the only mostly
prefixing language. Perhaps further development
of tailored models could close this gap.

The orthography’s influence As in previous
years, the Hebrew data was provided in two for-
mats: the standard unvocalized abjad where vowels
are largely omitted from the text, and the rarely
used fully vocalized form that is computationally
equivalent to an alphabet.

For most systems, the difference in performance
between the two variants is stark. In general, the
non-neural systems succeeded better over the un-
vocalized variant, presumably because omitting
the vowels masks the non-concatenative ablauts.
However, the neural systems fared better over the
vocalized data, potentially due to the far lower level
of ambiguity it exhibits.

However, the Arabic data complicates this pic-

Language AZ4 IL4
afb 52.7 84.6
afb no diacr. 80.8 89.2
arz 80.8 88.7

Table 4: Results of all the best neural and non-neural
systems over Gulf Arabic, with and without omission
of diacritics. Results over Egyptian Arabic are provided
for reference. Further evaluations and results for all
systems appear in Appendix B.

ture. Although Egyptian and Gulf Arabic are
closely related dialects with marginal differences
in the inflectional system, most systems’ success
rates differ significantly between these two Ara-
bic varieties. Error analysis revealed that incon-
sistent diacritization in the Gulf data is the main
driving factor in this discrepancy in performance.
Unlike the Egyptian Arabic data, not all forms in
the Gulf data are diacritized. While all lemmas are
diacritized in Gulf, only a subset of the verbal in-
flected forms are diacritized and the rest are not. In
total, around 46% of the training data is diacritized.

The result is that the non-neural systems failed
to generate vowel diacritics in the same somewhat
arbitrary pattern unlike the neural systems, which
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Figure 1: An example of explained inflection by TÜB.
Each predicted character is anchored in one input sym-
bol, other conditioning symbols omitted and can be
found in Girrbach (2023).

managed to deal well with the inconsistency in the
data. The exact match accuracy for Gulf Arabic
for the best neural and non-neural systems, which
was calculated after omission of all diacritics, is
presented in Table 4 and detailed for all systems in
Appendix B. It shows that without this source of
inconsistency, the performance of Gulf Arabic is in
line with the performance of Egyptian.

All in all, it seems like a consistent indication of
vowels does not have the same effects in Hebrew
and Arabic, despite their typological and ortho-
graphic similarity. The results over Arabic dialects
are similar regardless of whether diacritics were
omitted, while in Hebrew the vocalization played a
greater role. This conundrum may point to a need
to investigate further the role of the orthographic
system in the success rate of inflection models, both
neural and non-neural.

7 Conclusions

This year’s shared task further promoted the goals
of the recurring UniMorph inflection task: we
tested innovative inflection systems on a challeng-
ing lemma-split data, and did so in an inclusive
fashion both in terms of typological diversity of the
languages included and the annotation schema that
allows treatment of more complex morphological
phenomena.

We received 9 submitted systems and tested
them on 16 typologically diverse languages. The

most interesting pattern arising from our results is
the greatly varied performance between languages,
with the best performing system ranging from 55.6
to 99.4 accuracy percentage. We thus conclude that
further research is needed to close this gap.

Moreover, this year’s task gave a prominent role
to the orthographic systems of the languages se-
lected, both by including for the first time a lo-
gographically written language and by analysing
the role of abjad-vocalization in Semitic languages.
We believe that this direction is a promising lead
for promoting the understanding of the factors in-
fluencing the performance of inflection models.
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A Hyper Parameters of the Neural
Baseline

For the neural baseline models we used the stan-
dard hyper parameters of Wu et al. (2021). These
are:

• 4 transformer layers
• 4 attention heads
• 256 dimensions in the embeddings
• 1024 dimensions in the hidden feed forward

layers
• 0.3 dropout chance
• 400 examples per batch
• 20,000 training steps at max
• Inverse square root scheduler with 4,000

worm up steps
• Adam optimizer with β of 0.98
• learning rate of 0.001
• label smoothing with α of 0.1
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Language AZ3 AZ1
Baseline

Non-neural AZ2 AZ4 TÜB
Baseline
Neural IL1 IL2 IL3 IL4

afb original 34.5 30.8 30.8 52.7 52.7 75.8 80.1 80.7 82.2 84.1 84.6
afb mixed 66.9 70.7 70.7 70.3 70.3 77.4 82.2 83.1 84.5 86.0 86.5
afb no diacr. 74.4 77.4 77.4 80.8 80.8 81.9 87.9 87.8 89.2 89.0 89.2
arz 75.7 77.2 77.9 80.8 80.8 87.6 89.6 89.2 88.7 89.1 88.7

Table 5: Results of all the systems over Gulf Arabic with different considerations for inconsistent diacritization of
the original data. Results over Egyptian Arabic are provided for reference.

B Detailed evaluations for Gulf Arabic

Table 5 details several evaluations done over Gulf
Arabic, with the results of Egyptian Arabic pro-
vided for reference. Specifically:

• original is the evaluation done over the in-
consistently diacritized data, as it appears in
Table 3.

• mixed is the evaluation done after removing
diacritics only the predictions whose respec-
tive gold contains no diacritics

• no diacr. is the evaluation done after removing
all diacritics from both predictions and gold
outputs.
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Abstract
This paper summarises data collection and cu-
ration for Part 2 of the 2023 SIGMORPHON-
UniMorph Shared Task 0, which focused on
modeling speaker knowledge and generaliza-
tion of a pair of interacting phonological pro-
cesses in Korean. We briefly describe how
modeling the generalization task could be of
interest to researchers in both Natural Lan-
guage Processing and linguistics, and then
summarise the traditional description of the
phonological processes that are at the center of
the modeling challenge. We then describe the
criteria we used to select and code cases of pro-
cess application in two Korean speech corpora,
which served as the primary learning data. We
also report the technical details of the experi-
ment we carried out that served as the primary
test data. 1

1 Introduction
This paper summarises data collection and cu-
ration for Part 2 of the 2023 SIGMORPHON-
UniMorph Shared Task 0, which focused on mod-
eling speaker knowledge and generalization of a
pair of interacting phonological processes in Ko-
rean. We briefly describe how modeling the gener-
alization task could be of interest to researchers in
both Natural Language Processing and linguistics,
and then summarise the traditional description of
the phonological processes that are at the center of
the modeling challenge. We then describe the cri-
teria we used to select and code cases of process
application in two Korean speech corpora, which
served as the primary learning data. We also report
the technical details of the experiment we carried
out that served as the primary test data.

1.1 Motivation
In this subtask, we sought to build on the success of
the human-generalization subtasks (wug-tests) in

1All data discussed here are available at: https://
github.com/sigmorphon/2023InflectionST

the 2021 and 2022 SIGMORPHON Shared Tasks
by creating a dataset that would be of interest to
both researchers in NLP and those working in lin-
guistic theory, with the goal of sparking further
mutually beneficial collaboration and exchange of
ideas between the two fields. The dataset that
we gathered documented two phonological pro-
cesses in Korean that sometimes overlap in their
scope of application. Thus, the data bear on ques-
tions of linguistic interest about whether human
language users generate language in a derivation-
based (serial) or output-oriented (parallel) man-
ner. This question of cognitive architecture has
clear parallels in computational models of lan-
guage, where there is a range of statistical, mathe-
matical, and neural methods that embody both the
extreme ends, and wide middle, of this architec-
tural range.

Of relevance to both NLP researchers and lin-
guistics is our finding that the disambiguating
learning data is also quite sparse: in a child-
directed speech corpus of 53,000 words, we found
that the environment crucial to learn what happens
when rule conditioning contexts overlap appears
only 12 times (The Ko Corpus, Ko et al. (2020)). In
a corpus of adult speech, the forms occur a total of
about 1,000 times in 900,000 phrases (The NIKL
Korean Dialogue Corpus; National Institute of Ko-
rean Language (2022)). This poses a challenge for
models that need large amounts of data to reliably
learn linguistic patterns. By pairing the generaliza-
tion task with the curation of corpus data, we hope
to shed light on what kind of generalizations hu-
man learners form in the face of such sparse data.
These data can be then used to inform the further
the development of cognitively plausible linguis-
tic theories, and can also be used to benchmark
the development of machine learning models that
learn to generalize from sparse data to novel out-
of-domain items in a human-like way.
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2 Description of the phonological
processes

We bring to bear data from the interaction of two
phonological processes in Korean, Post-Obstruent
Tensification (POT) and Cluster Simplification
(CS). When their conditioning environments over-
lap, we can observe crucial evidence about how (or
whether) the processes are ordered (Kim-Renaud,
1974; Sohn, 1999;Kim, 2003). Note that through-
out we use the International Phonetic Alphabet for
linguistic data, augmented with the symbol “*” to
indicate the tense stop series in Korean; we use the
symbol “C” to represent an obstruent consonant,
and the symbol “V” to represent a vowel. We fol-
low convention in the linguistic literature by using
/slashes/ to represent underlying representations
(URs) presumed to be represented in the speaker’s
mental lexicon, and [brackets] to represent surface
representations (SRs)which are taken to be the in-
tended phonetic targets of phonological computa-
tion.

2.1 Post-obstruent tensification (POT)

POT causes a lenis consonant to tensify after an
obstruent; using SPE-style rewrite rules (Chomsky
and Halle, 1968), the process can be expressed as:
lax C → tense C / [p, t, k] _. For example, 잡다
/cap-ta/ is realized as [cap-t*a] ‘to hold-DECL’ ;
받고 /pat-ko/ → [pat-k*o] ‘to receive-and’ . POT
is described as nearly categorical within the accen-
tual phrase (Jun, 1998), a finding which we also
observe in the data we report here, and applies in
nearly all possible morphological and phrasal en-
vironments.

2.2 Cluster simplification (CS)

CS targets underlying consonant clusters in coda
position, yielding simplification when followed by
a C-initial suffix or a word boundary. The process
can be expressed using SPE rules as: CC → C /
_{#, C}. For example, in 앉는 /anc-n1n/, the final
/c/ is deleted in the surface form [an-n1n] ‘to sit-
COMP’ ; a similar outcome is seen in 굶나 /kulm-
na/ → [kum-na] ‘to starve-INTERROG’ . The pro-
cess also applies at word boundaries, such that un-
derlying닭 /talk/ surfaces as [tak] ‘chicken’. CS is
variable depending on verb identity and final con-
sonant place (Kwon et al., 2023), and the condi-
tioning context exists in verbs and nouns.

2.3 Overlapping contexts
When verbs that end in an /-lC/ consonant cluster
are suffixed with a lax obstruent-initial affix (de-
noted /C-/), the conditioning contexts for both pro-
cesses are met. In verbs, the majority outcome
is that the /lC/ cluster is simplified to singleton
[l], and the following stop is tensed. For exam-
ple,맑고 /malk-ko/ is realized as [mal-k*o] ‘to be
clear-and’, with a tense [k*] in spite of the trigger-
ing context having been deleted; a similar exam-
ple is낡고 /nalk-ko/ → [nal-k*o] ‘to be old-and’.
These types of form suggest that the two processes
apply “in sequence”,with POT ordered before CS,
as shown in table 1.

UR /pat-ko/
to receive-and

/anc-n1n/
to sit.COMP

/malk-ko/
to be clear-and

POT pat-k*o — malk-k*o
CS — an-n1n mal-k*o
SR [pat-k*o] [an-n1n] [mal-k*o ]

Table 1: Example of apparent ordering between POT
and CS in Korean /-lC/-final verbs.

This type of process interaction is known in the
phonological literature as counter-bleeding opac-
ity (Kiparsky, 1968): CS would destroy the con-
ditioning environment for POT (removing the ob-
struent in the cluster), but applies too late to do
so, resulting in an apparent “overapplication” of
CS – it seems to have applied outside its condi-
tioning environment. Note that in general, post-
liquid tensification is absent from the language
(e.g. 줄다 /cul-ta/ →[cul-ta], not *[cul-t*a] ‘to
decrease-DECL’ ), so the observed outcome맑고 /
malk-ko/→ [mal-k*o] cannot be attributed to other
phonological processes at work.

Although the opaque outcome, as in맑고 /malk-
ko/ → [mal-k*o], is the canonical and majority
type, the literature contains reports of variability
in how CS and POT apply when overlapping. For
example, (Kim, 2003) reports that the target of CS
may vary between coda /l/ and coda /C/; for exam-
ple밟고 /palp-ko/ → [pal-k*o]~[pap-k*o] ‘to step
on-and’; 낡지 /nalk-ci/ → [nal-c*i]~[nak-c*i] ‘to
be old-CONN’. Further, while in /-lC/-final verbs
the opaque outcome obtains when an obstruent-
initial suffix is attached, in nouns of the same shape
the outcome is not opaque; CS always targets the
/l/ rather than the /C/, yielding outcomes like닭도
/talk-to/ → [tak-t*o] ‘chicken-also’ and흙과 /h1lk-
kwa/ → [h1k-k*wa] ‘soil-and’ (Tak, 2008). Thus,
we suspect that further examination of more nat-
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uralistic data in corpora and in the generalization
task may surface a more complex pattern of varia-
tion.

3 Task description

The task was to predict human responses to a gen-
eralization task (a wug-test, cf. Berko (1958)),
involving existing high-frequency verb stems, ex-
isting low-frequency verb stems, and novel verb
stems. The stems were paired with affixes that cre-
ated environments that were designed to condition
POT alone (as in 막다 /mak-ta/ ‘to block-DECL’),
CS alone (as in밟는 /palp-n1n/ ‘to step on-COMP’),
the critical overlapping context (as in 밟고 /palp-
ko/ ‘to step on-and’), or designed to trigger neither
process, so that the underlying consonant cluster
is resyllabified across the syllable boundary and
survives deletion (as in넓어 /n2lp-2/ ‘to be wide-
DECL’).

Training data came in two types: a list of the
53 /-lC/-final verbs in the frequency list of Ko-
rean from Kang and Kim (2004), and counts and
hand-coding of the outcome of environments that
could condition POT and/or CS in verbs from
an adult-directed speech corpus and an infant-
directed speech corpus.

The list and corpus counts were designed to be
used as the primary training data, and results of the
generalization task were divided up into train, dev,
and test splits. The train and dev splits were in-
tended to be used during model development, and
model performance calculated on the test set.

4 Corpus data collection

To approximate the data that a learner of Korean
might be exposed to while acquiring their phonol-
ogy, we culled relevant data from two corpora of
spoken Korean.

4.1 Adult-directed speech corpus
For adult-directed speech, we used the NIKL di-
alogue corpus (National Institute of Korean Lan-
guage, 2022), which consists of approx. 900,000
phrases of semi-spontaneous speech, together with
orthographic and phonemic transcription. We ex-
tracted each suffixed /-lC/ verb from the corpus
(7,570 tokens, 1,395 types), and manually anno-
tated them for pronunciation. We excluded words
with /-lh/-final stems because they participate in
additional processes, such as coalescence with the

following stop that yields aspiration instead of ten-
sification 잃다 /ilh-ta/ → [il-tha], not *[il-t*a] ‘to
lose-DECL’) (Kim-Renaud, 1974; Sohn, 1999). We
did not extract POT-only contexts (simple /-C/-
final verbs with following /C-/-initial suffixes) be-
cause they were extremely frequent, and impres-
sionistic judgements of the second author align
with the literature (Jun, 1998) that POT applies
nearly obligatorily within phrases. In the smaller
infant corpus and the results of the generalization
task, such environments were extracted and coded.

4.2 Infant-directed speech corpus
For infant-directed speech, we used the Ko cor-
pus (Ko et al., 2020), collected from interactions
of mother-child pairs in a free-play session. The
corpus consists of approx. 53,000 words of spon-
taneous infant-directed speech, paired with ortho-
graphic and phonemic transcription. We extracted
and hand-checked all affixed /-lC/ verbs in the cor-
pus (289 tokens, 38 types), as well as all simple
/-C/ verbs with a following /C-/-initial affix (1,083
tokens, 171 types). Exclusions were the same as
for the adult-directed speech corpus.

5 Experimental data collection

To probe how adult speakers represent CS, POT,
and their interaction in existing words, and how
they generalize this knowledge to entirely novel
contexts, we carried out a production task where
speakers were asked to produce inflected forms of
verbs, and record their productions.

5.1 Stimuli
Stimuli had two stem types (/-lC/ and /-C/),
and three frequency levels (high-frequency, low-
frequency, and nonce). Frequency levels were
calculated using information from Kang and Kim
(2004). We selected 10 stimuli in each of the six
resulting categories, and paired each with three af-
fix types (/-a, 2/ -아,어 ‘DECLARATIVE, INTERROG-
ATIVE, IMPERATIVE’,2 /-na/ -나 ‘INTERROGATIVE’,
and /-ta/ -다 ‘DECLATIVE’). This yielded 180 stim-
uli, selected to elicit the four types of contexts ex-
emplified in section 3: contexts where POT and CS
could apply non-overlappingly, contexts where we

2The distribution of these allomorphs is governed by
vowel harmony which is unrelated to the consonantal phe-
nomena under investigation here; see Ahn (1985) for a tradi-
tional description, and Jo (forthcoming) for a recent overview
of the empirical landscape.
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could observe the form of the stem with no phono-
logical effects at all, and contexts where POT and
CS overlap.

5.2 Participants
Our goal was to recruit 30 speakers of Korean
who were born in Korea and grew up with Ko-
rean as their dominant language. We used a combi-
nation of recruitment on Prolific, word-of-mouth,
and posting on online forums to recruit partici-
pants, and ended up with 23 by the deadline for
data release. We released data from 12 speakers
to teams at that time as train data and 4 for as
dev, held back data from 7 speakers as test and re-
leased their demographic info and trial information
without the right answers, and continued collect-
ing data. By the time the due date for releasing
test data came, we had collected data from 6 more
speakers, and so the correct answers were released
for the original 7 test subjects, plus 6 “surprise”
speakers. 1 more participant’s data was collected
after test data were released, to reach the total tar-
get of 30. Participants recruited through Prolific
were paid for their time.

5.3 Design and procedure
The design leveraged the fact that, although Ko-
rean has a number of phonological processes that
cross both morpheme-boundaries within words
and word-boundaries within prosodic phrases
(Sohn, 1999), the standard practice in writing Ko-
rean using the Hangul orthography is to write
each morpheme as though no phonological pro-
cesses had applied to it (approximating phono-
logical URs). In spite of this norm, however,
the orthography is still capable of expressing and
uniquely identifying the full range of phonetic re-
alizations that these alternations give rise to (ap-
proximating the SRs). For example, the underlying
form of ‘to block-DECL’ is /mak-ta/, and is written
in Hangul as막다 and when POT applies, it is pro-
duced as [mak-t*a]; this can be represented in the
spelling as 막따, though the normal written form
is 막다. These facts about Korean orthographic
norms allowed us to rely on the “self-transcription”
method of Moore-Cantwell (2020), where partic-
ipants spoke their response out loud in response
to the standard written form of the stimulus (indi-
cating the UR), and then were asked to choose an
orthographic form that most closely matched the
form they produced where the different possible
surface realizations (SRs) were disambiguated.

The experiment was carried out over the in-
ternet using the Labvanced experimental platform
(Finger et al., 2017). Participants were instructed
to find a quiet room to complete the experiment,
and that it would take approximately an hour. They
were told that they would be asked to read a series
of inflected words out loud while being recorded,
and then select one of several multiple-choice op-
tions that matched what they had said the most
closely. After, they would be asked to indicate
whether they knew the word or not.

The experiment began with four practice trials,
after which each participant completed the 180
inflection trials in a random order. On each in-
flection trial, the target word would be shown to
participants with a V-initial suffix not included
in the experimental design (/-ajo, 2jo/ -아요,
-어요 ‘DECLARATIVE, INTERROGATIVE, IMPERA-
TIVE-polite’), and they would be asked to say the
word out loud with one of the three affixes (/-a, 2/,
/-na/, /-ta/), depending on the trial. Then, after pro-
ducing the form and the recording was complete,
they were asked to choose which of a number of
multiple-choice options they had said. The num-
ber of multiple-choice items differed from trial to
trial based on the type of stem (/-lC/- or /-C/-final)
and suffix (vowel-, sonorant-, or obstruent-initial).
The options always included transcriptions where
each expected phonological process (POT and/or
CS, depending on the stem and affix) either ap-
plied or not independently, and also overlapped; in
cases with sonorant-initial affixes, candidates also
included outcomes for possible application of lat-
eralization and nasalization (Sohn, 1999) – the lat-
ter two are not the focus of study here, but were in-
cluded for the sake of completeness. On each trial,
the prompt was shown while participants were be-
ing recorded, then when they stopped the record-
ing, the display was changed to show only a but-
ton to allow a replay of their own production, and
the range of possible outcomes. There was always
an “other” case listed, where participants were al-
lowed to write their pronunciation if none of the
options provided matched their pronunciation. In
practice this was extremely rare; see section 5.4 for
details.

After the production task, the second phase of
the experiment was a vocabulary test. On each
screen, participants saw a stem with the same non-
target vowel-initial affix as in the prompt on the
production task, and then indicated using a 5-point
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Likert scale how familiar they were with the word,
ranging from 1 (“I don’t know this word at all”) to
5 (“I am extremely familiar with the word”).

Finally, participants were asked to provide some
background information about themselves, includ-
ing whether they had begun speaking Korean in
some context before the age of seven, and what
other languages they spoke. No recruited partic-
ipants were excluded on grounds of having a lan-
guage background that did not meet our criteria for
inclusion described in section 5.2.

5.4 Data coding
Spot-checks were carried out to make sure that the
forms produced by the speakers were consistent
with the forms that they indicated that they pro-
duced; in general, subjects were extremely accu-
rate in reporting what they said; “other” responses
were excluded, which comprised only an extremely
small percentage of the data.

After data checking, existing stems that were
rated as 1 (=“I don’t know this word at all”) by
a given subject were re-classified as novel for that
subject. This was done to allow for accurate es-
timation of the knowledge of each subject, and to
avoid making the assumption that all participants
know all words in the study.

6 Discussion
As stated in section 1, the goal of this subtask was
to spur collaboration and cross-talk between two
communities; thus, we set aside here a discussion
of the contents of the dataset, referring the reader
to the paper by Jeong et al. (2023) to summarise
the findings in of the one team that worked on this
subtask. The model and discussion found in their
paper notwithstanding, we hope the data we gath-
ered in this subtask may also have broader utility in
testing linguistic theories of learning and represen-
tation, and in benchmarking models that attempt
to reach human-like levels generalization while
maintaining human-like requirements in terms of
data efficiency. It is our hope that it may continue
to be of use outside the context of this subtask go-
ing forward.
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Abstract

This paper describes the submission by the
University of Arizona to the SIGMORPHON
2023 Shared Task on typologically diverse
morphological (re-)infection. In our submis-
sion, we investigate the role of frequency,
length, and weighted transducers in address-
ing the challenge of morphological reinflec-
tion. We start with the non-neural baseline
provided for the task and show how some im-
provement can be gained by integrating length
and frequency in prefix selection. We also in-
vestigate using weighted finite-state transduc-
ers, jump-started from edit distance and di-
rectly augmented with frequency. Our specific
technique is promising and quite simple, but
we see only modest improvements for some
languages here.

1 Introduction

This paper describes the submission by the Univer-
sity of Arizona to the SIGMORPHON 2023 Shared
Task on typologically diverse morphological (re-
)infection. The goal of the Shared Task is to model
inflectional morphology. The specific task is to
learn how to inflect for a language generally from
a limited number of examples.

In this task, we are given 10, 000 examples of
inflected forms in 27 languages along with the mor-
phological category and the generally accepted
lemma form. For example, in English, we have
data as in Table 1.

Morphosyntactic information is in Unimorph for-
mat (Guriel et al., 2022). The logic is that we are
given complete paradigms for n lemmas for each
language where the number of lemmas we see in
the training data is a function of the size of the
paradigms. Specifically, if paradigms are small, we
see more lemmas than if paradigms are big.

The goal is to build a system that learns the rela-
tionship between lemmas L, morphosyntactic de-
scriptions M , and inflected words W . The system

. . .
argue V;NFIN argue
argue V;PRS;NOM(3,SG) argues
argue V;PST argued
argue V;V.PTCP;PRS arguing
argue V;V.PTCP;PST argued
ascertain V;NFIN ascertain
ascertain V;PRS;NOM(3,SG) ascertains
ascertain V;PST ascertained
ascertain V;V.PTCP;PRS ascertaining
. . .

Table 1: Some English training data

effectively computes a function from L×M to W .
More details on the task are given in Goldman et al.
(2023).

The organizers provided two baseline systems,
a neural and a non-neural one. We decided to fo-
cus our efforts on a non-neural solution and so we
began our work by attempting to understand the
non-neural baseline more clearly.

For comparison purposes, we ultimately submit-
ted four sets of results: i) our implementation of the
non-neural baseline; ii) a version of the non-neural
baseline with adjustments for prefix frequency and
length; iii) an approach using weighted finite-state
transducers; and iv) an ensemble approach using
both prefix frequency/length and weighted trans-
ducers.

In the following sections, we first review the
structure of the baseline non-neural system. We
then outline our approaches and present our results.
We conclude with a discussion of shortcomings and
next steps.1

2 Non-neural baseline

The non-neural baseline system (Cotterell et al.,
2017) was inspired by (Liu and Mao, 2016). It

1All of our code is available at https://github.
com/hammondm/sigmorphon23/.
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Prefix Stem Suffix
∅ happ y

un happ iness

Table 2: Alignment of happy and unhappiness

Prefixes Suffixes
(<ha, <unha) (py>, piness>)
(<, <un) (>, ess>)
(<hap, <unhap) (happy>, happiness>)
(<happ, <unhapp) (>, s>)
(<h, <unh) (>, ness>)

(appy>, appiness>)
(y>, iness>)
(ppy>, ppiness>)
(>, ss>)
(>, >)

Table 3: Hypothesized rules for happy and unhappiness
(angled brackets are word boundaries)

aligns lemmas and surface forms utilizing Ham-
ming distance and Levenshtein distance and uses
this alignment to hypothesize potential prefixes and
suffixes.

For example, if the system were presented happy
and unhappiness, it would hypothesize the morpho-
logical analysis in Table 2.2

This alignment would be used to extract potential
prefix rules and suffix rules as in Table 3. During
inference, the best prefix rule and suffix rule are
chosen based on length and frequency. Specifically,
the longest rule that produces the most identical
forms is chosen.

Our first submission is essentially as described
above.

3 Non-neural Baseline improvements

For our second submission, we made two revisions
to the non-neural baseline system.

First, we replaced the input for extracting prefix
rules, which was originally specified as the con-
catenation of lemma’s prefix and surface form’s
root, with the concatenation of lemma’s prefix and
lemma’s root. Given the alignment algorithm de-
scribed above, this shouldn’t have an effect in most
cases, but it actually produced a small improve-
ment. Presumably, this is because of cases where

2The example in the text is an instance of derivational
morphology. Unfortunately, English does not have inflectional
prefixes, so we use this.

the lemma and word form do not share an obvious
root.

Second, we changed the criteria for choosing
the best prefix rule. The criteria for choosing the
best rule had been set up asymmetrically for prefix
rules and suffix rules. For suffix rules, the longest-
matching rule(s) given an input and the morphosyn-
tactic description was chosen as the best rule. If
there are ties, the most frequent rule was chosen.
For prefix rules, frequency had been the only cri-
terion and the length of the match had not been
considered. We revised the system so that the same
criteria apply to both prefix rules and the suffix
rules.

We were able to get a modest improvement
in performance as a result of these revisions
(non-neural baseline: 69.60%, revised system:
71.71%).3

4 Weighted finite-state transducers

We also built a system, inspired by the non-neural
baseline described above, but which uses weighted
finite-state transducers instead. Similar techniques
have been tried before, for example, Durrett and
DeNero (2013) and Forsberg and Hulden (2016).
In fact, a number of them showed up in the 2016
version of this task, e.g. Alegria and Etxeberria
(2016), Nicolai et al. (2016), Liu and Mao (2016),
and King (2016).4

Durrett and DeNero (2013) learns a set of trans-
formations: separate ones for prefixes, stems, and
suffixes. They use a conditional random field
(CRF) to combine and apply them.

Forsberg and Hulden (2016) generate probabilis-
tic and non-probabilistic morphological analyzers
in an automatic way by converting morphologi-
cal inflection tables into unweighted and weighted
FSTs.

Alegria and Etxeberria (2016) uses Phoneti-
saurus, a WFST-based system (Novak et al., 2012).
This system directly learns a single WFST to model
the lemma-to-word relation. The model thus in-
cludes a role for frequency, but not length. Mor-
phosyntactic information is directly encoded in the
WFST.

Nicolai et al. (2016) uses DirecTL+ (Jiampoja-
marn et al., 2008), a discriminative transducer that

3Our implementation of the non-neural baseline gets a
slightly different macro average, so we cite the organizers’
macro average here.

4Merzhevich et al. (2022) use transducers as well, but they
are constructed by hand, not learned from data.
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searches for a sequence of character transforma-
tion rules. It uses a version of the MIRA algorithm
(McDonald et al., 2005) to assign weights to each
feature. Transformations are N -gram-based and
combined to produce surface forms.

Liu and Mao (2016) use a linear-chain condi-
tional random field model with contextual features,
e.g. what is a consonant or vowel.

King (2016) uses conditional random fields as
well. Separate edit rules are induced from edit
distance comparisons and combined at inference.
Other features like position in the string were also
incorporated.

In our model, we use edit distance to calculate
the precise overlap between a lemma and a sur-
face form and then build a weighted finite-state
transducer (WFST) from that that specifies changes
with interleaving variables. The weights penalize
degrees of mismatch with the variables.

For example, take a lemma-word pair like break
and broken. First, we use edit distance to calculate
an optimal alignment. We then replace all identical
spans with variables that penalize mismatches. In
this example, br would be a variable and k would
be a variable. Our transducers are implemented in
pyfoma5. Using the formalism of that system, the
resulting transducer would be specified as below:

(. ∗<n>|br)(ea : o)(. ∗<n>|k)(′′: en)<m>

Here there is a penalty associated with not match-
ing the spans where the two forms align. In the
formalism above, we’ve specified these as n to indi-
cate that we experimented with different weighting
options. There is a penalty associated with the rule
as a whole, indicated above as m. This was used to
incorporate different possible costs for the length
of the rule. Again, we tried different options here,
but the general strategy was to penalize shorter less
frequent rules.

In training, we built transducers in this way for
all training items, separated by morphosyntactic
descriptions. For inference, we generated all possi-
ble outputs for a lemma with the WFSTs for that
morphosyntactic description and chose the one that
had the lowest cost.

We expected such a system would be better
able to capture nonconcatenative morphological
systems, systems where morphological categories

5https://github.com/mhulden/pyfoma

might be marked by stem-internal changes as op-
posed to prefixes or suffixes. In fact, as we discuss
below, this was not the case.

Based on development split performance, we
saw that the frequency of forms played a role:
as with the baseline system, more frequent out-
put forms were preferred. To handle this, we ad-
justed our weighting scheme so that if multiple
WFSTs produced the same output, those got low-
ered scores.

Our approach differs from previous WFST-based
approaches in three main respects. First, our align-
ment and overall system is extremely simple, as
described above. Second, our weights are naive,
not trained, and assigned on the basis of a general
theory of what should matter, as described above.
Finally, our system employs only transducers.

One strength of our system is that it’s very
straightforward and easy to manipulate the weights.
It can be used to test the effect each factor (e.g.,
form frequency, length of rules, etc.) has over the
system’s performance.

5 Ensemble system

We found that our system generally did not per-
form as well as the non-neural baseline or our re-
vision of it, but we saw improved performance for
some languages with development data, specifi-
cally Japanese, Armenian, and Italian. Therefore
we also submitted a ensemble system. where we
generated test outputs using our improved baseline
and our WFST system and selected the test results
based on development data performance.

6 Results

Results for our four submissions are given in Ta-
ble 4.

Submission 1 is our execution of the non-neural
baseline. It is here simply for comparison pur-
poses.6

Submission 2 is our simple adaptation of the
non-neural baseline to make prefixation and suf-
fixation sensitive to the same variables of length
and frequency of surface forms. The adapted sys-
tem performed better than the non-neural baseline
(67.1% vs. 71.7%).

6Just for completeness, our version of the non-neural base-
line differs from the organizer’s in one key line where lists
of strings are zipped together. In the organizer’s version that
object is then converted directly to a list; in our version, it is
not.
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Submission 3 is the WFST-based system. It
does not perform very well in general (56.1%), but,
as noted above, it does better than the systems 1
and 2 in a couple of cases: Armenian, Italian, and
Japanese.

Finally, submission 4 is the ensemble system,
where we draw on systems 2 and 3 depending on
which performed better with development data.

7 Discussion

We focused our efforts on a non-neural approach
and thus did not expect competitive results. That
said, we did manage to improve over the non-neural
baseline. Our intention was to understand more
deeply how morphological systems could be mod-
eled in the simplest finite-state terms. To this end,
we conducted several experiments with our WFST
system.

One of the experiments we did is to create the
WFST with individual characters, instead of spans,
as variables. In our submitted system, spans that
are identical in a lemma-word pair are replaced
with variables. We revised the system to replace
individual matching characters with variables. For
example, take the lemma-word pair break and bro-
ken once again. In our submitted system, identical
spans br and k are replaced with variables that
penalize mismatches. In the revised system, in-
dividual characters b, r, and k are replaced with
variables. Thus the first variable in the formula
below is replaced as shown.

(. ∗<n>|br)(ea : o)(. ∗<n>|k)(′′: en)<m>

not split: (. ∗<n>|br)
split: (. ∗<n>|b)(. ∗<n>|r)

The motivation for this experiment was to see if
penalizing each unmatched character, rather than
the whole span, would enhance the system’s per-
formance. Our hypothesis was that penalizing indi-
vidual characters would improve the system, as it
would give a more specific penalty to an unmatched
span.

This was not the case. At least for the various
weightings we tried, the individual character vari-
able versions did not perform as well as system 3
above.

In addition, the individual variable versions en-
tailed much larger transducers and much longer run
times. For the systems we submitted, running the

languages in parallel meant a complete run always
took less than an hour. For the individual variable
versions, running the languages in parallel took
over 15 hours on our campus supercomputer.

Our expectation is that with a compiled trans-
ducer system like Foma or OpenFST and with more
aggressive parallelization, we could reduce this run-
time significantly.

Another experiment we did is to adjust weights
based on the frequency of the form produced by the
candidate WFSTs. During error analysis, we found
out that there are many WFST candidates produc-
ing the same form. In many cases these frequent
forms were the correct ones, but they were not se-
lected as the optimal forms due to high weights.
In order to mitigate this issue, we tried adjusting
the weights of the WFSTs based on the frequency
of the form the transducer produced. As a result
of this adjustment, we were able to obtain a boost
of approximately 5% in system performance on
development data (from 51% to 56%).

8 Conclusion

In conclusion, we developed three non-neural mod-
els. The first combined frequency and length in
the selection of prefixes. The second used WF-
STs built from edit distance alignments. The third
model combined the results of the first two models.

The direct baseline changes resulted in overall
improvements, but the WFST system did not. How-
ever, there were specific language improvements
from the WFST solution and we were able to incor-
porate these in our ensemble system.

9 Limitations

While the WFST model didn’t perform very well
overall, our sense is that it is worth pursuing fur-
ther. Specifically, there are several moves worth
exploring.

First, we should move to a compiled system so
that we can test the "individual variable" models
more thoroughly.

Second, we should try models where we set the
variable weights by training, rather than naively in
advance.

Third, in an individual variable setting, it would
be promising to weight the variables by locality.
Specifically, do mismatched variables have more
effect when they are closer to where the changes
happen? Similarly, we might adjust the granular-
ity of the variables as a function of position, with
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Language 1 2 3 4
Arabic, Gulf 0.308 0.527 0.345 0.527
Amharic 0.654 0.74 0.599 0.74
Arabic, Egyptian 0.772 0.808 0.757 0.808
Belarusian 0.681 0.645 0.462 0.645
Danish 0.895 0.874 0.648 0.874
German 0.798 0.779 0.599 0.779
English 0.966 0.962 0.67 0.962
Finnish 0.808 0.806 0.482 0.806
French 0.777 0.763 0.767 0.763
Ancient Greek 0.526 0.548 0.404 0.548
Hebrew 0.309 0.653 0.347 0.653
Hebrew (Unvoc) 0.645 0.767 0.516 0.767
Hungarian 0.747 0.747 0.459 0.747
Armenian 0.863 0.862 0.889 0.889
Italian 0.75 0.636 0.78 0.78
Japanese 0.641 0.641 0.67 0.67
Georgian 0.82 0.821 0.717 0.821
Khaling 0.545 0.531 0.278 0.531
Macedonian 0.916 0.908 0.649 0.908
Navajo 0.358 0.418 0.237 0.418
Russian 0.86 0.856 0.668 0.856
Sanskrit 0.622 0.621 0.47 0.621
Sami 0.56 0.497 0.301 0.497
Spanish 0.878 0.874 0.863 0.874
Albanian 0.193 0.781 0.738 0.781
Swahili 0.605 0.65 0.562 0.65
Turkish 0.646 0.646 0.281 0.646
macro 0.671 0.717 0.561 0.724

Table 4: Language-by-language results for our four submissions

single-character variables sometimes and variable
spans in other cases.

Fourth, We had individual WFSTs for each
lemma, but with a compiled system it makes sense
to put them all together into a single WFST.
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Abstract

This paper presents our submission to the SIG-
MORPHON 2023 task 2 of Cognitively Plau-
sible Morphophonological Generalization in
Korean. We implemented both Linear Discrim-
inative Learning and Transformer models and
found that the Linear Discriminative Learning
model trained on a combination of corpus and
experimental data showed the best performance
with the overall accuracy of around 83%. We
found that the best model must be trained on
both corpus data and the experimental data of
one particular participant. Our examination of
speaker-variability and speaker-specific infor-
mation did not explain why a particular par-
ticipant combined well with the corpus data.
We recommend Linear Discriminative Learn-
ing models as a future non-neural baseline sys-
tem, owning to its training speed, accuracy,
model interpretability and cognitive plausibil-
ity. In order to improve the model performance,
we suggest using bigger data and/or performing
data augmentation and incorporating speaker-
and item-specifics considerably.

1 Introduction

There has been a heated debate on whether human
language users generate language in a generative
manner (e.g., Chomsky and Halle (1968)) or an
output-oriented manner (e.g., Prince and Smolen-
sky (2004)). In accordance with the theoretical
stance, computational models have been proposed.
The generative approach is essentially rule-based
at an abstract level. The Minimal Generalisation
Learner (MGL) by Albright and Hayes (2003) is

† These authors contributed equally to this work.

Senior and corresponding author: Kevin Tang
(kevin.tang@hhu.de)

a traditional, symbolic rule learner. More recent
rule-based computational approaches include Allen
and Becker (2015) and Belth et al. (2021).

With the availability of large corpus data, output-
oriented models have become widely popular.
Output-oriented models can be rule-based or end-
to-end. The former includes Prince and Smolensky
(2004) and Lignos et al. (2009); in the former, a
search procedure is implemented on a set of candi-
dates, or outputs, in order to find the surface form
that is most compatible with the underlying repre-
sentation. On the other hand, output-oriented mod-
els can be rule-free. For instance, Malouf (2017)
showcased a recurrent deep learning model to pre-
dict paradigm forms. Similarly, Kirov and Cotterell
(2018) proposed a encoder-decoder network archi-
tecture to model linguistic phenomena.

Both approaches have their own advantages and
disadvantages. However, in terms of model perfor-
mance, output-oriented models surpass generative
ones presumably due to difficulty of incorporat-
ing many other variations in conversation. Nev-
ertheless, output-oriented models are not panacea.
They are not as cognitively motivated, thus making
them less appealing for cognitive research. Deep
learning-based models, in particular, show great
performance, but they lack interpretability. These
shortcomings necessitate a hybrid model, which
is i) cognitively motivated, ii) more agnostic than
generative models, and iii) more transparent than
deep learning-based models.

Recently, Baayen et al. (2019) proposed Linear
Discriminative Learning (LDL), part of the dis-
criminative lexicon (Chuang and Baayen, 2021).
As the model follows the Rescorla-Wagner Rule
and Widrow-Hoff Rules, some insight into human
cognition can be obtained through model imple-
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mentation. Moreover, as it implements a linear
mapping between form and meaning in simple
two layers without any hidden layer, LDL fea-
tures higher interpretability and embraces linguis-
tic engineering. Considering these advantages, an
LDL model was chosen as the main model for
the SIGMORPHON 2023 shared task 2, which
aims to generalize morphological inflections in
Korean. A transformer model, which has been
state-of-the-art models for various NLP tasks, was
also implemented for comparison. The code and
data are available here: https://github.com/
hhuslamlab/sigmorphon2023

2 Related Work

While neural-based systems typically dominate
SIGMORPHON challenges, perhaps because they
generally perform well in morphological inflec-
tion tasks, their limitations can be better examined
using wug testing. For instance, McCurdy et al.
(2020) examined the ability of modern Encoder-
Decoder (ED) architectures to inflect German plu-
rals and concluded that ED does not show human-
like variability as shown in wug data. In fact, recent
SIGMORPHON challenges involve learning from
corpora that better represent the actual linguistic
input of children (such as child-directed speech)
and evaluating on phonetically-transcribed spoken
production by children or adults in corpora or in ex-
periments. For instance, the SIGMORPHON 2021
shared Task 0 Part 2 was to predict the judgement
ratings of wug words (Calderone et al., 2021) as
opposed to using real words held-out from the train-
ing data as test data. Similarly, the SIGMORPHON
2022 challenge involved computational modeling
of the data drawn from corpora of child-directed
speech and evaluation on children’s learning tra-
jectories and erroneous productions (Kodner and
Khalifa, 2022; Kakolu Ramarao et al., 2022).

Turning to studies from the field of laboratory
phonology, there is a long history of training mod-
els on corpora to learn specific aspects of morpho-
phonological grammar and evaluating their produc-
tivity with experimental data (wug-test and accept-
ability judgement). For instance, Jun (2010)’s study
on stem-final obstruent variation in Korean trained
a model with multiple stocastic rules (Albright
and Hayes (2002)’s Paradigm Learning Model) in
which the acquisition of morphology is based on
the distributional pattern of the learning data, using
the Sejong corpus, and evaluated on acceptabil-

ity judgement data. Related to the linguistic phe-
nomenon in this study, Albright and Kang (2009)
conducted a computational modeling of inflected
forms of Korean verbs using the Minimal Gener-
alization Learner algorithm (Albright and Hayes,
2002) and evaluated the model’s performance with
attested child errors and historical changes.

Finally, there is a growing number of morpho-
logical inflection studies that use the Linear Dis-
criminative Learning model (which will be intro-
duced later) to train on corpus data and evaluate on
experimental data (Nieder et al., 2021; Heitmeier
et al., 2021; Chuang et al., 2020; Heitmeier and
Baayen, 2020; Baayen et al., 2018) and they typi-
cal yielded relatively high performance (compared
to traditional, symbolic rule learner) while being
easy to interpret and cognitively motivated.

3 Task and Evaluation Details

We challenge the shared task 2 Cognitively Plausi-
ble Morphophonological Generalization in Korean.
The aim of this task is to predict human responses
to a generalization task (wug-test), considering
high-frequency, low-frequency, and pseudoword
items. This implies that human responses may vary
depending on the word frequency and familiarity.

The phonological phenomenon to be tested
through this task is Korean Post-Obstruent Ten-
sification (henceforth, POT). In Korean, when a
lenis consonant in the coda is followed by another
obstruent, it can be tensified. However, when a
consonant cluster occurs in the coda position, it
undergoes Consonant Simplification (henceforth,
CS) before POT if the following segment is either
an obstruent or a sonorant. On the other hand, nei-
ther CS nor POT does occur when the following
segment is a vowel.

Depending on the type of the deleted consonant,
variation can occur, which can be affected by such
speaker- and item-specific features as language fa-
miliarity and frequency. In this regard, the main
task can be rephrased as predicting features as com-
pletely as possible in accordance with those in the
answers. For this task, both corpus and experimen-
tal data are provided, which include variation pat-
terns. Models are to be evaluated on the accuracy
of the prediction of the feature vectors given the
corresponding features in the answers from unseen
participants.
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4 Data

Both corpus and experimental data are provided
for this task. The National institute of Korean
Language (NIKL) Korean Dialogue corpus (NIKL,
2021) is provided as the main corpus data. All
the word tokens affixed with -lC verbs, except
for -lh final stems, are provided after manual
annotation by the organizers. They further are
categorized as lC+Obstruent, lC+Sonorant, and
lC+Vowel, depending on the type of the conse-
quent segment. lC+Obstruent and lC+Sonorant
data each include target words with morphologi-
cal boundaries and produced words with syllable
breaks both in a Romanized form and Korean or-
thography. Whether target words undergo POT is
also provided, as well as such features as obstruent
deletion and lateral deletion pertinent to CS and
POT.

On the other hand, lC+Vowel data only provide
target words with morphological boundaries both in
a Romanized form and Korean orthography. They
do not include produced word information as this
condition is not subject to POT and CS; thus, all
the feature values of obstruent deletion and lateral
deletion are labeled as 0 with the POT value being
labeled as 0. Whether the target is lateralizated or
nasalized is marked only in the lC+Sonorant data
while labeled as NA in the others. The number of
tokens in lC+Obstruent data is 876, that of tokens
in lC+Sonorant data is 95, and that of tokens in
lC+Vowel data is 2,525 with 514 types–1,485 if
frequency information in lC+Vowel data is ignored.
Thus, the total number of tokens in the NIKL data
is 3,496.

In addition to the adult corpus, some part of a
child spontaneous speech corpus, the Ko corpus
(Ko et al., 2020), is provided. As with the NIKL
data, the Ko corpus provides target words and their
production but solely in a Romanized form. The
POT value with the lateralization and nasalization
feature values are labeled. As it does not include
any lC verbs followed by a sonorant, both nasaliza-
tion and lateralization are not applicable. A total of
336 tokens are provided.

In the case of experimental data, the experimen-
tal responses of 12 participants, in addition to 4
participants for the development data, are provided.
They include what are included in the corpus data
with the experimental specifics: the trial number,
the trial ID, the subject ID, option, language famil-
iarity, and word frequency. A total of 2,843 tokens

are provided.

5 System Description

The main task is to accommodate as many varia-
tion patterns as possible. We navigated through all
the corpus and experimental data, in which process
we found inconsistencies in transcription in the
data. In particular, the Ko corpus includes items
transcribed in a very detailed manner, including
phonological processes, such as deletion and inser-
tion, other than those pertinent to the task. We also
found that the target item does not always feature
one-to-one mapping, but more-than-one mapping.

Based on the observations above, data prepro-
cessing was of primary importance and was the
most time-consuming component. We manually
corrected the Ko corpus and automatically unified
the transcription style. We then selected models
adequate to this task. Considering the nature of the
shared task that investigates morphological varia-
tions with both corpus and experimental data and
the time constraint, LDL was chosen as the main
model, along with a Transformer model that has
demonstrated great performance in NLP. For each
of the two modelling approaches we conducted two
studies: Study 1 experimented with systems that
train only on the corpus data and/or only on the
experimental data; Study 2 used the insights from
Study 1, and experimented with systems that train
on both the corpus and the experimental data.

5.1 Linear Discriminative Model

LDL generates a system of form-meaning rela-
tions by discriminating between different forms
and meanings, with forms and meanings being
represented by numerical vectors. Form vectors
are based either on segmental representations of
various lengths, or on representations of acoustic
transitions gleaned directly from the speech sig-
nal (Arnold et al., 2017; Shafaei-Bajestan et al.,
2021). Meaning itself is taken to be a dynamic
concept, being emergent from the context in which
words are being used, and is represented by seman-
tic vectors, similar to approaches in distributional
semantics (Boleda, 2020). The idea is that if both
forms and meanings can be expressed numerically,
we can mathematically connect form and meaning,
i.e. map meaning onto form and vice versa. In this
system of mappings, the two sets of vectors are
combined into matrices – a form matrix and a se-
mantic matrix. The form vectors are mapped onto
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semantic vectors to model comprehension, and se-
mantic vectors are mapped onto form vectors to
model production. The mapping between them at
the theoretical end-state of learning is predicted us-
ing multivariate multiple linear regression (hence
the term ‘Linear Discriminative Learning’). The
network is simple and interpretable, because, in
contrast to deep learning networks, it features just
two layers (i.e. the form and meaning matrices),
both of which are linguistically transparent.

5.1.1 Data Preprocessing
Due to the time limitation, we decided to winnow
out the data that are only pertinent to POT and CS
from the Ko corpus. To be specific, the Ko corpus
includes tokens involving other phonological pro-
cesses, like insertion, as well. For instance, there
are 6 instances of ipko and the produced forms
are ikgo, lipgo, tipgo, ikgu, linkgo, and nipgo.
Considering POS and CS rules, the ideal outputs
are ipgo and ikgo. Moreover, based on the ten-
dency of negative vowelization of the mid rounded
vowel in conversation, ikgu is another candidate.
The others are also producible, especially consider-
ing that the Ko corpus consists of children speech,
but they are definitely not canonical outputs from
the pertinent rules. Thus, if the input and the out-
put are hugely different from each other because
of other phonological processes, the tokens were
discarded. All the duplicated tokens were also re-
moved. Thus, 286 tokens were left from 336 tokens.
Lastly, morphological boundary and feature repre-
sentation were manually incorporated following
the style of the other data.

We also observed that there are inconsistencies
in transcription style between the two corpus data
and the experimental data. The following data
transformations were performed on the corpus data.
In the Production_R, the tense forms of the plo-
sives p*,t*,k* are replaced with b,d,g, and those
of the alveolar fricative and the alveolo-palatal af-
fricate S,c* are replaced with s*, J, respectively.
Moreover, there are several inconsistencies in tran-
scription style between the input (Morphology_R)
and the output (Production_R). First, the middle
yin diphthong yv or jv in Morphology_R is re-
placed with jv or yv in Production_R. Second, the
alveolar fricative S in Morphology_R is replaced
with s*, but the reverse transformation is conducted
in Production_R. Lastly, the tense stops in Korean
orthography P, T, K in Morphology_R are re-
placed with p, t, k, except when they occur in

the word-initial position.
As a result, the pre-processed data contained s*

as phone representation. That is, a single phone
is represented by two symbols. For triphones, this
would lead to unwanted consequences: Triphones
which contain information only on two phones,
i.e. s* and any other phone, and triphones which
contain only one of the two parts of s*. Therefore,
s* was replaced with S for the implementations of
LDL presented in the subsequent sections.

5.1.2 General Model Architecture
The form matrices C used for the present imple-
mentations of LDL consisted of triphones, i.e. se-
quences of three phones within a word form. Tri-
phones overlap and can be understood as proxies
for phonological transitions. In each word’s indi-
vidual form vector c, the presence of a triphone is
marked with 1, while the absence is marked with 0.
The form vectors of all words of a set of words con-
stitute its C matrix and each row in such a C matrix
represents a word form, while the columns of the
C matrix represent all triphones of its underlying
word set. Triphones were used as previous studies
found overall good performance for triphones (e.g.
Chuang et al. 2021; Schmitz et al. 2021).

The semantic matrices S used for the present im-
plementations of LDL deviate from those usually
found in studies using LDL. Commonly, seman-
tics are introduced via semantic vectors obtained
by methods of distributional semantics, e.g. via
fastText (Bojanowski et al., 2016) or naive discrim-
inative learning (Baayen et al., 2011). However,
with the small amount of language data provided,
the computation of such semantic vectors is barely
feasible. While creating semantic vectors based
on a larger corpus of Korean may be one option to
solve this issue, we decided against this solution
as it would mean using data that is not part of the
current challenge. Instead, semantic vectors were
created based on morphemes and in a binary fash-
ion. That is, similar to the form vectors, in each
word’s individual semantic vector s, the presence
of a morpheme is marked with 1, while the absence
is marked with 0. The semantic vectors of all words
of a set of words constitute its S matrix.

With C and S, one can straightforwardly map
forms onto meanings and meanings onto forms:

CF = S

SG = C
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If one wants to predict the forms or semantics for
words that are not yet part of the implementation,
additional steps are required. Predicting semantics
for newly introduced forms, one computes
with C ′ denoting the Moore-Penrose generalised
inverse. Using the transformation matrix F and a
combined form matrix for previously and newly
introduced forms Ccombined, then

S = CcombinedF

Using this method, previous studies have anal-
ysed the semantics of pseudowords (Cassani et al.,
2020; Chuang et al., 2021; Schmitz et al., 2021).
Adapting this method for the prediction of forms,
as for the present study, one computes

G = S′C

Then, using the transformation matrix G and
a combined semantic matrix for previously and
newly introduced words, the following is solved:

C = ScombinedG

Note that this method comes with an important
caveat: Newly introduced words must not contain
any triphones that are not part of the original C
matrix when predicting their meaning, and, in the
present case, they must not contain any morphemes
that are not part of the original S matrix.

5.1.3 Study 1
For a first implementation of LDL, the follow-
ing rationale was adopted. First, the combined
data of the NIKL and Ko corpora were taken to
represent the mental lexicon of a speaker of Ko-
rean. That is, we assumed that this knowledge is
shared by all participants. Second, based on this
shared prior knowledge, participants individually
produced word forms during the experiment. Pre-
dicting these forms, and in turn the phonological
processes underlying them, via prior knowledge
was the aim of this implementation.

The combined NIKL and Ko corpus data were
used as initial word set (n = 632 after duplicate
removal). Based on the corpus data, C and S ma-
trices were created following the specifications in
Section 5.1.2. After obtaining the required transfor-
mation matrix G via G = S′C, G was based on the
triphone to morpheme relations found in the corpus
data it was trained on. In a next step, one would
then use G to compute C = ScombinedG. However,

the experimental data contained 111 triphones (out
of 247) that were not part of the corpus data. As
G was not trained to predict these triphones, any
further computations were rendered meaningless.

5.1.4 Study 2
Instead, a second LDL network was implemented.
The rationale of this implementation was to first
create individual networks for all sixteen train and
dev participants. Each participant’s network was
trained on the combined corpus data and on their
experimental data. In a second step, each of the six-
teen participants and their networks were then used
to predict all other participants’ produced word
forms. This provided insight in how far pertinent
participants were able to predict other participant’s
productions, allowing the selection of a ‘best’ par-
ticipant to then predict the test participants’ pro-
duced word forms.

First, for each of the sixteen train and dev par-
ticipants a data set containing the combined NIKL
and Ko corpus data (n = 632 after duplicate re-
moval) as well as their experimental data was cre-
ated (n = 175 to n = 180). Based on this data set,
C and S matrices were created and comprehension
as well as production were modeled following the
specifications outlined in Section 5.1.2.

Second, each of the sixteen participants’ G ma-
trices was used to predict the forms produced by
all other train and dev participants in the experi-
ment. In contrast to Section 5.1.3, this computation
did not pose a problem as experiment items and
their triphones were already introduced during the
first step. As a result, we obtained prediction ac-
curacies for all sixteen participants by all sixteen
participants. Accuracy here refers to whether a
word form was predicted correctly. The overall and
individual accuracies for low-, high-frequency, and
pseudoword items are available on GitHub.

Across all sixteen train and dev participants, it
was found that participant 597515 clearly outper-
formed the other fifteen participants in terms of
prediction accuracy across all experimental items.
Their mean prediction accuracy across all exper-
imental items was 73%, with 76% for low fre-
quency, 71% for high frequency, and 73% for pseu-
doword items. Their overall Precision, Recall, and
F1 scores for the training data are given in Table 1.

In an attempt to understand why this particu-
lar participant showed the best prediction results
for the other fifteen train and dev participants and
to find out whether we could determine differ-
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Precision Recall F1
simplify_delete_obstruent 0.48 0.57 0.43
simplify_delete_lateral 0.60 0.69 0.60
nasalization 0.60 0.69 0.60
lateralization 0.72 0.58 0.46
tensification 0.64 0.77 0.67

Table 1: Precision, Recall, and F1 of participant 597515
for the five phonological processes in the training data

ent ‘best’ participants for different participants to
be predicted, we implemented three multiple re-
gression models for each of the sixteen train and
dev participants, i.e. one for high frequency, one
for low frequency, and one for pseudoword items.
For a given participant’s multiple regression mod-
els, the dependent variable was the set of predic-
tion accuracies reached by the other participants
for that participant. As predictors, the biograph-
ical background information, LANGUAGEPREF-
ERENCE and AGESTARTEDSPEAKING, were in-
troduced. Across the sixteen low frequency item
models, we found that one participant with a LAN-
GUAGEPREFERENCE of 3 showed an effect for
LANGUAGEPREFERENCE (p = 0.02). This pre-
sumably indicated that the other participant with a
LANGUAGEPREFERENCE of 3 was the ‘best’ pre-
diction candidate for this participant. Across the
sixteen high frequency item models, we found that
both participants with a LANGUAGEPREFERENCE

of 3 showed an effect for LANGUAGEPREFERENCE

(p = 0.02; p = 0.0002), indicating that they were
each other’s best prediction candidates. Another
participant showed a barely significant effect of
LANGUAGEPREFERENCE (p = 0.046), and yet
another participant showed a significant effect of
AGESTARTEDSPEAKING (p = 0.03) . Across the
pseudoword item models, no effects were found.
As these results were inconclusive, we decided to
drop this attempt and to use participant 597515’s
G matrix to predict the forms, and hence the un-
derlying phonological processes, for the seven test
participants.

The predicted forms and their underlying rep-
resentations were used to derive information on
which of the five phonological processes of interest
were predicted for a pertinent word form.

5.2 Neural Network

5.2.1 Data Preprocessing

See the data preprocessing steps in Section 5.1.1.

5.2.2 Model Architecture
Our model closely follows the formulation of
the encoder-decoder Transformer for character-
level transduction model proposed by Wu et al.
(2021). We use multi-headed Transformers with
self-attention and implement them with Fairseq
(Ott et al., 2019) tool, a PyTorch-based sequence
modeling toolkit. Both Encoder and Decoder have
four layers with four attention heads, an embedding
size of 256 and hidden layer size of 1,024. We use
Adam Optimizer (Kingma and Ba, 2015), with an
initial learning rate of 0.001, a batch size of 400,
0.1 label smoothing and 1.0 gradient clip thresh-
old. Models are trained for a maximum of 3,000
optimizer updates. Checkpoints are saved every 10
epochs. Beam search is used at the decoding time
with a beam width of 5.

The checkpoint with the smallest loss on the
development data is chosen as the best model.

For the evaluation, we consider the models’ se-
quence accuracy (henceforth, accuracy), where
only instances for which the entire output sequence
equals the target are considered correct.

5.2.3 Study 1
The inputs to each model are the individual charac-
ters of the romanized. For example, for the model
trained against the raw NIKL dataset, the input is J
a l p - k o and the output is J a l . g o

Model Training Three models were trained on i)
the raw NIKL dataset (with a total of 1485 tokens),
ii) the raw Ko corpus (with a total of, and iii) the
combined datasets (NIKL and Ko). The data in
each model were split into train (70%), dev (10%),
test (20%) sets. The sequence accuracies of the
three models are 71.7% (raw NIKL)1, 35.3% (raw
Ko) and 65.5% (the combined dataset). Further-
more, we trained a model on all experimental items
following the same train-test split as stated above
and the accuracy was found to be 69.4%.

While these models were evaluated on a differ-
ent set of test data, their accuracies can nonetheless
suggest how the different datasets should be used
in Study 2 (Section 5.2.4). Training on the Ko cor-
pus alone is unlikely to be sufficient as it yielded
the lowest accuracy. While combining NIKL with
Ko yielded a poorer model compared to just using

1We experimented with a model using the NIKL dataset
but without syllable boundaries, and it yielded an accuracy of
71.6% – a negligible difference compared to the model with
syllable boundaries 71.7%
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NIKL alone, the Ko corpus should not be excluded
given that it is arguably more ecologically valid
than NIKL and the amount of training data is al-
ready small in this challenge. Finally, training only
on experimental items resulted in a comparable
performance as the combined dataset. This model
was not used as it was explicitly discouraged by the
challenge.

To determine how well a model trained only on
corpus data would perform on the experimental
data, we evaluated the best model (trained on raw
NIKL) against the experimental data (and removed
the syllable boundaries in the predictions to match
the transcription style of the experimental data) and
it yielded a much lower accuracy of 29.9%, sug-
gesting that we should incorporate the experimental
data as part of training.

5.2.4 Study 2

In this study, we primarily used the pre-processed
dataset (using methods described in section 5.2.1)
that consists of both NIKL and child spontaneous
speech dataset. We then incorporate parts of ex-
perimental data along with the combined dataset
during both training and development phase. The
test data provided by the organizers is used during
the testing phase.

Model Training We first incorporated models
with training the combined dataset using i) pro-
ductions from best participant and ii) productions
from worst participant, as development data , that
yielded accuracy scores of 43.8% and 39.4%.

Next, we trained a model on the combined
dataset (NIKL, and the Ko corpus) with the produc-
tions from 4 best participants and using responses
from a random participant as development data
which produced an accuracy score of 68.1%.

Finally, a model was trained on all participants’
except the best participant’s responses with the
combined dataset (NIKL, and the Ko corpus) and
using the productions from best participant as de-
velopment data that yielded an accuracy of 69.2%.
The accuracies of this model for: i) low-frequency
ii) high-frequency and iii) pseudoword items are
64.4%, 77.7% and 65.38% respectively. The over-
all Precision, Recall and F1 scores for the five
phonological processes in the test data are given in
Appendix A.

Precision Recall F1
simplify_delete_obstruent 0.69 0.70 0.67
simplify_delete_lateral 0.79 0.75 0.75
nasalization 0.79 0.75 0.75
lateralization 0.44 0.53 0.41
tensification 0.98 0.98 0.98

Table 2: Precision, Recall, and F1 of participant 597515
for the five phonological processes in the test data

5.3 Results

Predicting the seven test participants’ productions
using the ‘best’ participant’s LDL network as de-
tailed in Section 5.1.4, an overall accuracy of
83.32% was reached. The accuracies of this
model for: i) low-frequency ii) high-frequency and
iii) pseudoword items are 83.56%, 83.58% and
82.84%. The overall Precision, Recall, and F1
scores for the test data are given in Table 2. The
model performed best on tensification (F1: 0.98),
and worst on lateralisation (F1: 0.41). The mean
perplexity scores for the train and dev as well as
for the test data are 2.11 and 1.97 respectively. The
performance of the model on the test data is sim-
ilar to that on the training data (Table 1) with the
exception of simplify delete obstruent being better
predicted than lateralization in the test data. Com-
paring to the best Transformer model, LDL per-
formed better in terms of the overall accuracies of
the model; however, the relative performances of
the five phonological processes (Precision, Recall
and F1 scores) are largely the same (Appendix A).

6 Variability: Items and Participants

To examine the variability of the phenomenon,
Shannon entropy (base 2) (Shannon, 1948) was
used to quantify how variable are the items in the
experimental data and how variable are the partici-
pants. In this study, we considered sixteen possible
combinations of the five phonological processes
(therefore sixteen events in entropy’s term) (See
Appendix C). With sixteen combinations, the high-
est possible entropy value is 4 which means each
combination has a probability of 1/16 indicating
a high level of variability, and the lowest possible
entropy is 0 which means there is only one attested
combination indicating no variability. For detailed
analyses, see Appendix B.

First, we computed the by-item entropy val-
ues by computing the proportion of the sixteen
response combinations using the sixteen partici-
pants (training and development). The 180 ex-
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perimental items have a mean entropy of 0.584.
Pseudoword items have the highest mean entropy
(0.612), followed by high-frequency items (0.596)
and low-frequency items (0.544). These entropy
values suggest that the experimental items in gen-
eral have low variability and unsurprisingly the
pseudoword items were particularly variable com-
pared to the real words. However, these differences
in entropy values were not statistically significant
(ps > 0.3842).

Second, we computed by-participant entropy val-
ues by computing the proportion of the sixteen re-
sponse combinations. Across all the experimental
items, the sixteen participants have a mean entropy
of 2.143. Participants show the lowest mean en-
tropy with the high-frequency items (2.049) , fol-
lowed by low-frequency items (2.111) and pseu-
doword items (2.112). However, these differences
in entropy values were not statistically significant
(ps > 0.2542). Our ‘best’ participant 597515 has
an entropy of 2.192 across all items, 2.176 for high-
frequency, 2.154 for low-frequency and 2.140 for
pseudoword items, with all values similar to their
means. Therefore, the participant’s superiority is
not purely due to their responses being more vari-
able.

7 Discussion and Conclusion

We demonstrated that LDL is capable of modelling
morphological inflection trained on limited corpus
and experimental data. Its performance is competi-
tive to that of the Transformer model that we exper-
imented with. Past SIGMORPHON shared tasks
(2017–2022) with a focus on morphological in-
flection have generally received more neural-based
systems than non-neural ones and found that neural-
based ones tend to be superior (Kodner and Khalifa,
2022; Kodner et al., 2022; Pimentel et al., 2021;
Vylomova et al., 2020; McCarthy et al., 2019; Cot-
terell et al., 2018, 2017, 2016). Amongst the sub-
mitted non-neural systems, LDL has never been
utilized. Our study cannot conclude that LDL is
superior to the transformer architecture as the latter
was not fully optimized. However, it has great po-
tential to serve as a non-neural baseline system for
future shared tasks as well as allowing researchers
to conduct rapid experiments, because of its archi-
tecture simplicity, performance (with accuracies
from 59% to 99% in a range of languages, e.g.
Heitmeier et al. 2021; Schmitz et al. 2021; Stein
and Plag 2021; Chuang et al. 2020; Baayen et al.

2019) and speed (in our study one model required
on average 35 seconds of CPU processing on an
i7-9750H 2.60 GHz system with 32 GB memory).

Our study found that training on the corpus data
alone was insufficient and that our models require
at least one participant’s experimental data in order
to inflect the experimental items well. However,
from an ecological perspective, a model should
only be trained on the corpus data (NIKL and Ko),
excluding the experimental data, as the corpus data
serve to represent the participants’ actual linguistic
input. The corpus data we have are likely unrepre-
sentative of the actual linguistic input of our par-
ticipants. Firstly, the verbs were not embedded in
an utterance, and even if the full utterances were
used the overall amount of data would still be small
with only 53,000 words from the Ko corpus, and
900,000 phrases from the NIKL corpus. Based on
spoken speech input alone, Brysbaert et al. (2016)
estimated that for American English, the total input
from social interactions (in a dialogue) would be
equal to 11.688 million word tokens per year and a
20-year-old would have been exposed to about 234
million word tokens. Using a much larger speech-
like or transcribed corpus such as SUBTLEX-KR
(Tang and de Chene, 2014) (90 million eojeols) is
a promising approach for examining morpholog-
ical inflection patterns (see de Chene (2014) on
regularisation in Korean noun inflection).

Our item variability analyses suggest that the
three item types (high-, low-frequency and pseu-
dowords) are not particularly different in their vari-
ability. This might be reflecting how the LDL
model reported in Section 5.3 performed similarly
with them (high: 83.58%, low: 83.56%, and pseu-
dowords: 82.84%). However, the best Transfomer
model was sensitive to item types yielding a higher
accuracy for the high-frequency items (77.7%),
than the low-frequency (64.4%) and pseudoword
(65.38%) items.

Our attempts in understanding why the ‘best’
participant was the best in predicting individual
participants’ productions were not successful. Re-
sponse variability was unable to explain why our
‘best’ participant was the best, as it has neither high
nor low in variability compared to the other 15 par-
ticipants. Our regression analyses predicting indi-
vidual participant accuracies using the participants’
demographics was inconclusive. While one may
assume that the LDL prediction results should im-
prove when one predicts speakers of similar back-
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grounds, the nonetheless satisfying LDL prediction
results suggest that demographics-matching was
not needed. Overall, our results suggest that LDL
is suitable for tasks such as the one at hand.

Limitations

The small amount of training data provided in this
shared task poses a challenge for models that need
large amounts of data to reliably learn linguistic
patterns. While we did not employ any data aug-
mentation techniques, we suggest future work to
train the models on all the possible feature com-
binations (weighted with the probabilities as the
experimental data) for the stems in the two corpora.

Owning to the lack of time and computing re-
sources, we did not fully optimize our transformer
models and we did not fully utilize and explore
i) speaker-specific information, especially for the
transformer models, ii) token frequency informa-
tion in the corpora, as we assumed extension of
morphological patterns is based on type, not token,
frequency (Bybee, 2001; Pierrehumbert, 2001).
Furthermore, we did not experiment with training
models with either high-frequency, low-frequency
and pseudoword items. It is possible that some
speakers’ high/low/pseudoword items would be bet-
ter served as part of the training set.

The LDL model in Section 5.1.3 was not able
to evaluate the experimental items due to the unat-
tested triphones. This shortcoming can be miti-
gated by using phonological features (Tang and
Baer-Henney, 2023).
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vić, Peter Hendrix, and Marco Marelli. 2011. An
amorphous model for morphological processing in
visual comprehension based on naive discriminative
learning. Psychological Review, 118:438–481.

Caleb Belth, Sarah Payne, Deniz Beser, Jordan Kodner,
and Charles Yang. 2021. The greedy and recursive
search for morphological productivity.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2016. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Gemma Boleda. 2020. Distributional semantics and lin-
guistic theory. Annual Review of Linguistics, 6:213–
234.

Marc Brysbaert, Michaël Stevens, Paweł Mandera, and
Emmanuel Keuleers. 2016. How many words do we
know? practical estimates of vocabulary size depen-
dent on word definition, the degree of language input
and the participant’s age. Frontiers in psychology,
7:1116.

Joan Bybee. 2001. Phonology and language use. Cam-
bridge University Press, Cambridge.

Basilio Calderone, Nabil Hathout, and Olivier Bonami.
2021. Not quite there yet: Combining analogical pat-
terns and encoder-decoder networks for cognitively
plausible inflection. In Proceedings of the 18th SIG-
MORPHON Workshop on Computational Research
in Phonetics, Phonology, and Morphology, pages
274–282, Online. ACL.

Giovanni Cassani, Yu-Ying Chuang, and R Harald
Baayen. 2020. On the semantics of nonwords
and their lexical category. Journal of Experimen-
tal Psychology: Learning, Memory, and Cognition,
46(4):621.

Noam Chomsky and Morris Halle. 1968. The sound
pattern of English. New York: Harper & Row.

Yu-Ying Chuang and R. Harald Baayen. 2021. Dis-
criminative learning and the lexicon: NDL and LDL.
Oxford Research Encyclopedia of Linguistics.

Yu-Ying Chuang, Kaidi Lõo, James P. Blevins, and
R. Harald Baayen. 2020. Estonian case inflection
made simple: A case study in word and paradigm
morphology with linear discriminative learning. In
Lívia Körtvélyessy and Pavol Štekauer, editors, Com-
plex Words: Advances in Morphology, page 119–141.
Cambridge University Press.

Yu-Ying Chuang, Marie Lenka Vollmer, Elnaz Shafaei-
Bajestan, Susanne Gahl, Peter Hendrix, and R Harald
Baayen. 2021. The processing of pseudoword form

and meaning in production and comprehension: A
computational modeling approach using linear dis-
criminative learning. Behavior research methods,
53:945–976.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
Géraldine Walther, Ekaterina Vylomova, Arya D Mc-
Carthy, Katharina Kann, Sabrina J Mielke, Garrett
Nicolai, Miikka Silfverberg, David Yarowsky, Ja-
son Eisner, and Mans Hulden. 2018. The CoNLL–
SIGMORPHON 2018 shared task: Universal mor-
phological reinflection. In Proceedings of the
CoNLL–SIGMORPHON 2018 Shared Task: Univer-
sal Morphological Reinflection, pages 1–27, Brussels,
Belgium. Association for Computational Linguistics.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
Géraldine Walther, Ekaterina Vylomova, Patrick Xia,
Manaal Faruqui, Sandra Kübler, David Yarowsky,
Jason Eisner, and Mans Hulden. 2017. CoNLL-
SIGMORPHON 2017 shared task: Universal mor-
phological reinflection in 52 languages. In Pro-
ceedings of the CoNLL-SIGMORPHON 2017 Shared
Task: Universal Morphological Reinflection, Vancou-
ver, Canada. Association for Computational Linguis-
tics.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
David Yarowsky, Jason Eisner, and Mans Hulden.
2016. The SIGMORPHON 2016 shared task—
morphological reinflection. In Proceedings of the
14th SIGMORPHON Workshop on Computational
Research in Phonetics, Phonology, and Morphology,
Berlin, Germany. Association for Computational Lin-
guistics.

Brent de Chene. 2014. Probability matching versus
probability maximization in morphophonology: The
case of Korean noun inflection. Theoretical and ap-
plied linguistics at Kobe Shoin, 17:1–13.

Maria Heitmeier and R. Harald Baayen. 2020. Simulat-
ing phonological and semantic impairment of english
tense inflection with linear discriminative learning.
The Mental Lexicon, 15(3):385–421.

Maria Heitmeier, Yu-Ying Chuang, and R. Harald
Baayen. 2021. Modeling morphology with linear
discriminative learning: Considerations and design
choices. Frontiers in Psychology, 12.

Jongho Jun. 2010. Stem-final obstruent variation in
Korean. Journal of East Asian Linguistics, 19:137–
179.

Akhilesh Kakolu Ramarao, Yulia Zinova, Kevin Tang,
and Ruben van de Vijver. 2022. HeiMorph at SIG-
MORPHON 2022 shared task on morphological ac-
quisition trajectories. In Proceedings of the 19th SIG-
MORPHON Workshop on Computational Research
in Phonetics, Phonology, and Morphology, pages
236–239, Seattle, Washington. Association for Com-
putational Linguistics.

147

https://doi.org/10.1155/2019/4895891
https://doi.org/10.1155/2019/4895891
https://doi.org/10.1155/2019/4895891
https://doi.org/10.1037/a0023851
https://doi.org/10.1037/a0023851
https://doi.org/10.1037/a0023851
https://doi.org/10.1037/a0023851
https://doi.org/10.48550/ARXIV.2105.05790
https://doi.org/10.48550/ARXIV.2105.05790
https://doi.org/10.48550/arxiv.1607.04606
https://doi.org/10.48550/arxiv.1607.04606
https://doi.org/10.1146/annurev-linguistics-011619-030303
https://doi.org/10.1146/annurev-linguistics-011619-030303
https://doi.org/10.3389/fpsyg.2016.01116
https://doi.org/10.3389/fpsyg.2016.01116
https://doi.org/10.3389/fpsyg.2016.01116
https://doi.org/10.3389/fpsyg.2016.01116
https://doi.org/10.18653/v1/2021.sigmorphon-1.28
https://doi.org/10.18653/v1/2021.sigmorphon-1.28
https://doi.org/10.18653/v1/2021.sigmorphon-1.28
https://doi.org/10.1037/xlm0000747
https://doi.org/10.1037/xlm0000747
https://doi.org/10.1093/ACREFORE/9780199384655.013.375
https://doi.org/10.1093/ACREFORE/9780199384655.013.375
https://doi.org/10.1017/9781108780643.008
https://doi.org/10.1017/9781108780643.008
https://doi.org/10.1017/9781108780643.008
https://doi.org/10.3758/s13428-020-01356-w
https://doi.org/10.3758/s13428-020-01356-w
https://doi.org/10.3758/s13428-020-01356-w
https://doi.org/10.3758/s13428-020-01356-w
https://doi.org/10.18653/v1/K18-3001
https://doi.org/10.18653/v1/K18-3001
https://doi.org/10.18653/v1/K18-3001
https://doi.org/10.18653/v1/K17-2001
https://doi.org/10.18653/v1/K17-2001
https://doi.org/10.18653/v1/K17-2001
https://doi.org/P10.18653/v1/W16-2002
https://doi.org/P10.18653/v1/W16-2002
https://doi.org/10.14946/00001418
https://doi.org/10.14946/00001418
https://doi.org/10.14946/00001418
https://doi.org/https://doi.org/10.1075/ml.20003.hei
https://doi.org/https://doi.org/10.1075/ml.20003.hei
https://doi.org/https://doi.org/10.1075/ml.20003.hei
https://doi.org/10.3389/fpsyg.2021.720713
https://doi.org/10.3389/fpsyg.2021.720713
https://doi.org/10.3389/fpsyg.2021.720713
https://doi.org/10.1007/s10831-010-9058-8
https://doi.org/10.1007/s10831-010-9058-8
https://doi.org/10.18653/v1/2022.sigmorphon-1.24
https://doi.org/10.18653/v1/2022.sigmorphon-1.24
https://doi.org/10.18653/v1/2022.sigmorphon-1.24


Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Christo Kirov and Ryan Cotterell. 2018. Recurrent neu-
ral networks in linguistic theory: Revisiting Pinker
and Prince (1988) and the past tense debate. Transac-
tions of the Association for Computational Linguis-
tics, 6:651–665.

Eon-Suk Ko, Jinyoung Jo, Kyung-Woon On, and
Byoung-Tak Zhang. 2020. Introducing the Ko cor-
pus of Korean mother–child interaction. Frontiers in
Psychology, 11:602623.

Jordan Kodner and Salam Khalifa. 2022.
SIGMORPHON–UniMorph 2022 shared task
0: Modeling inflection in language acquisition. In
Proceedings of the 19th SIGMORPHON Work-
shop on Computational Research in Phonetics,
Phonology, and Morphology, pages 157–175,
Seattle, Washington. Association for Computational
Linguistics.

Jordan Kodner, Salam Khalifa, Khuyagbaatar Bat-
suren, Hossep Dolatian, Ryan Cotterell, Faruk Akkus,
Antonios Anastasopoulos, Taras Andrushko, Arya-
man Arora, Nona Atanalov, Gábor Bella, Elena
Budianskaya, Yustinus Ghanggo Ate, Omer Gold-
man, David Guriel, Simon Guriel, Silvia Guriel-
Agiashvili, Witold Kieraś, Andrew Krizhanovsky,
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A Appendix: Evaluation metrics for the
Neural Network model

Precision Recall F1
simplify_delete_obstruent 0.70 0.71 0.68
simplify_delete_lateral 0.79 0.72 0.72
nasalization 0.79 0.72 0.72
lateralization 0.44 0.53 0.41
tensification 0.98 0.98 0.98

Table 3: Precision, Recall, and F1 for the five phono-
logical processes in the test data for the best performing
neural network model

B Appendix: Variability analyses

mean sd min. max.
All 0.58 0.52 0.00 1.68
High-frequency 0.60 0.54 0.00 1.68
Low-frequency 0.54 0.52 0.00 1.47
Pseudoword 0.61 0.50 0.00 1.65

Table 4: Summary statistics of by-item entropy: Mean,
standard deviation (sd), minimum (min.) and maximum
(max.) entropy values of all items computed over all
items, as well as subsets of items (high-frequency, low-
frequency and pseudoword items)

mean sd min. max.
All 2.14 0.14 1.83 2.33
High-frequency 2.05 0.16 1.67 2.25
Low-frequency 2.11 0.10 1.88 2.25
Pseudoword 2.11 0.15 1.85 2.33

Table 5: Summary statistics of by-participant entropy:
Mean, standard deviation (sd), minimum (min.) and
maximum (max.) entropy values of all participants
computed over all items, as well as subsets of items
(high-frequency, low-frequency and pseudoword items)
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participant all pseudoword low high
597515 2.19 2.14 2.15 2.18
592117 2.20 2.11 2.14 2.18
563118 2.19 2.13 2.15 2.10
556014 2.26 2.25 2.19 2.21
578085 2.16 2.04 2.23 2.03
559838 2.14 2.14 2.05 2.00
589028 2.03 2.01 2.04 1.99
594939 2.05 1.97 2.07 2.02
581952 2.22 2.25 2.19 2.02
565631 1.89 1.85 1.95 1.79
578698 2.24 2.25 2.19 2.18
556505 2.23 2.25 2.08 2.13
592166 2.26 2.22 2.25 2.18
556033 2.33 2.33 2.15 2.21
585660 1.84 1.87 1.88 1.67
575760 2.04 2.00 2.07 1.91

Table 6: Breakdown of by-participant entropy values:
Entropy values for all participants in the experimental
dataset (excluding the test set) computed over all items,
as well as subsets of items (pseudoword, low-frequency
(low) and high-frequency (high) items)

C Appendix: Feature combinations

Tens. Nasal. L del. C del. Lateral.
0 N/A 0 0 N/A

N/A 0 0 0 0
1 N/A 0 1 N/A

N/A 1 N/A N/A N/A
1 N/A N/A N/A N/A
0 N/A N/A N/A N/A

N/A 0 1 0 0
1 N/A 0 0 N/A

N/A 1 1 0 0
N/A 0 0 1 0
N/A 0 N/A N/A N/A

1 N/A 1 0 N/A
N/A 1 0 0 0

0 N/A 1 0 N/A
1 N/A 1 1 N/A
0 N/A 0 1 N/A

N/A 0 0 1 1

Table 7: Feature combinations used in the entropy cal-
culation. The features are tensification (Tens.), nasaliza-
tion (Nasal.), laterial deletion (L del.), obstruent deletion
(C del.) and lateralization (Lateral.). The combination
‘1, N/A, 1, 1, N/A’ was excluded as it had only one
attestation across the dev and train set.
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Abstract

This paper describes our systems participat-
ing in the 2023 SIGMORPHON Shared Task
on Morphological Inflection (Goldman et al.,
2023) and in the 2023 SIGMORPHON Shared
Task on Interlinear Glossing. We propose meth-
ods to enrich predictions from neural models
with discrete, i.e. interpretable, information.
For morphological inflection, our models learn
deterministic mappings from subsets of source
lemma characters and morphological tags to
individual target characters, which introduces
interpretability. For interlinear glossing, our
models learn a shallow morpheme segmenta-
tion in an unsupervised way jointly with pre-
dicting glossing lines. Estimated segmentation
may be useful when no ground-truth segmen-
tation is available. As both methods introduce
discreteness into neural models, our technical
contribution is to show that straight-through
gradient estimators are effective to train hard
attention models.

1 Introduction

This paper describes our systems participating in
the SIGMORPHON–UniMorph Shared Task on Ty-
pologically Diverse and Acquisition-Inspired Mor-
phological Inflection Generation (Goldman et al.,
2023) and the SIGMORPHON 2023 Shared Task
on Interlinear Glossing. For morphological inflec-
tion, we participate in part 1, and for interlinear
glossing we mainly target the closed track.

Morphological Inflection is the task of predicting
the correct inflected form given a lemma and set of
morphological tags. An example from the Italian
dataset in the shared task is

votare (“to vote”)
V;IND;FUT;NOM(1,PL)−−−−−−−−−−−−−→ voteremo.

The organisers of the shared task provide train, val-
idation and test splits for 26 languages. In the case
of Hebrew, 2 datasets are provided. Train splits
contain 10K (lemma, tags, form) triples, validation
and test splits contain 1K triples.

Interlinear glossing is the task of predicting
glossing lines, which is a sequence of morpholog-
ical tags, including lexical translations for each
token, on the sentence level given the surface text
and optionally a translation. An example of inter-
linear glossing taken from the train portion of the
Gitksan dataset in the shared task is:

(1) Iin
CCNJ-1.I

dip
1PL.I

gidax
ask

guhl
what-CN

wilt.
LVB-3.II

“And we asked what he did.”

The organisers of the shared task provide train, val-
idation and test splits for 7 typologically diverse
languages. Dataset sizes differ for each language.
Furthermore, the shared task features a closed track,
where only surface text and a translation is avail-
able for each sentence, and an open track, where
canonical morpheme segmentation and POS tags
are provided as additional information.

Especially when the main focus of training ma-
chine learning models is scientific discovery, even
the notoriously good performance of deep neural
models (Jiang et al., 2020) may not be satisfactory.
Instead, models should also yield insights into what
they learn about the data. However, clear and in-
terpretable explanations are often hard to derive
from models by post-hoc analysis, although many
methods exist (Holzinger et al., 2020; Burkart and
Huber, 2021; Rao et al., 2022). On the other hand,
self-interpretable models, i.e. models whose cal-
culations directly reveal discrete information, are
generally hard to train with gradient methods and
do not reach the same effectiveness as fully contin-
uous models (Niepert et al., 2021).

Therefore, in this work we aim at narrowing the
gap between inherently interpretable models and
fully continuous deep sequence-to-sequence mod-
els by demonstrating the effectiveness of straight-
through gradient estimators in optimising discrete
intermediate representations by gradient methods.
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As applications, we construct a model type for mor-
phological inflection that shows, without ambiguity,
which subset of lemma characters and tags causes
the prediction of a form character. Our proposed
model for interlinear glossing enriches the given
surface text with shallow morpheme segmentation.

Our main contributions are: (1) We show the
effectiveness of straight-through gradient estima-
tors for learning hard attention; (2) We present a
model for morphological inflection that unambigu-
ously shows which subset of lemma characters and
tags lead to the prediction of a form character; (3)
We present a model that learns shallow morpheme
segmentation jointly with interlinear glossing in an
unsupervised fashion.

2 ST Optimization of Hard Attention

We discuss hard attention as mappings of the fol-
lowing form: Let k ∈ N be the number of tar-
get positions (e.g. the number of decoder posi-
tions in a encoder-decoder sequence-to-sequence
model), and X ∈ Rn×d the matrix containing
d-dimensional feature vectors of n source ele-
ments (e.g. learned embedding vectors). Each
target element yi, i ∈ {1, . . . ,K} is calculated
as a sum of source element encodings, formally
yi =

∑
j∈→i

xj where xj is the jth row vector
in X and→i⊆ {1, . . . , n} is the set of source el-
ements aligned to target position i. Note that a
source element may be aligned to multiple target
elements, i.e. appear in→i for different i.

This mapping can be calculated by a matrix mul-
tiplication ξ ·X = Y ∈ Rk×d, where columns of
ξ ∈ {0, 1}k×n are the multi-hot encodings of index
sets (→i)i∈{1,...,K}. Formally, this means

ξi,j =

{
1 if j ∈→i

0 if j /∈→i

We assume ξ is a sample from a underlying cat-
egorical distribution where we can compute the
marginals ξ̂i,j that specify the probability

ξ̂i,j = Pr[j ∈→i]

of j being included in→i. For example, in the case
of dot-product attention, we have z ∈ Rk×n the
matrix product of decoder states and encoder states.
Then, we obtain ξ̂ by softmax over rows, and ξ by
sampling from the categorical distributions defined
by rows of ξ̂. At test time, argmax is used instead
of sampling.

The main problem is how to side-step sampling
during gradient-based optimization, because sam-
pling is not differentiable. One solution is the
so-called straight-through estimator (Bengio et al.,
2013; Jang et al., 2017; Cathcart and Wandl, 2020)
which means using ξ for the forward pass, i.e. when
computing model outputs, but using ξ̂ for backprop-
agation, i.e. when computing gradients of model
parameters w.r.t. the loss.

However, gradients of X are affected by the dis-
creteness of ξ as well, because ξi,j = 0 also means
xj does not receive gradients from yi. Therefore,
when using straight-through gradient estimation,
we should use ξ̂ when computing gradients of X.
Formally, for some differentiable function f that is
applied to Y, we set

∂f(ξ ·X)

∂ξ̂
= XT ∂f(Y)

∂Y

∂f(ξ ·X)

∂X
=

(
∂f(Y)

∂Y

)T

· ξ̂,

which can be implemented as

Y = ξ̂ ·X− sg
(
(ξ̂ − ξ) ·X

)
, (1)

where sg is the stop-gradient function (van den
Oord et al., 2017) which behaves like the identity
during forward pass, but has 0 partial derivatives
everywhere.

3 Applications

In this section, we describe how to apply the
method from Section 2 to sequence transduction
(Section 3.1) and sequence segmentation (Sec-
tion 3.2). We keep formulations more general than
necessary for the shared tasks, because we want to
highlight that the methods apply to similar prob-
lems as well.

3.1 Sequence Transduction

Sequence Transduction means transforming an in-
put or source sequence s1:n = s1, . . . , sn into
an output or target sequence t1:m = t1, . . . , tm.
Successful model types for this tasks are neu-
ral encoder-decoder networks with attention (Bah-
danau et al., 2015). These models use an encoder
which computes contextual source symbol repre-
sentations s1, . . . , sn and a decoder which com-
putes autoregressive target symbol representations
t1, . . . , tm. Entries of the attention matrix ξ̂ are
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dot products1 of source representations and target
representations, normalised to a categorical distri-
bution over source symbols for every target symbol.
Output symbols are predicted from the concatena-
tion of the respective previous autoregressive target
representation with the weighted sum of source
symbol representations, where weights correspond
to probabilities of the respective attention distribu-
tion. In terms of interpretability, this type of model
has two problems:

Soft Attention The role of soft attention (i.e. us-
ing ξ̂ directly) with regard to explaining model
predictions is not entirely understood (Jain and
Wallace, 2019; Wiegreffe and Pinter, 2019). There-
fore, we want to replace soft attention with hard
attention, whose interpretability is undisputed. We
replace soft attention with hard attention by sam-
pling source elements from rows of ξ̂ during train-
ing. The sampled index sets are used to discretise
ξ̂ into ξ. We enable end-to-end training through
Equation (1).

Contextual Representations Contextual symbol
encodings represent information about the whole
sequence, not just the encoded symbol. In deep
models, it is therefore not clear what information
actually is encoded (Meister et al., 2021). For this
reason, we want to use non-contextual symbol em-
beddings for prediction and use contextual symbol
encodings only for computing ξ̂.

However, only selecting one single source sym-
bol by hard attention and then not using any con-
textual information is not sufficient for successful
transduction. For example, in the case of mor-
phological inflection discussed here, predictions
have to take morphological tags and surrounding
characters into account when transducing a source
character. Therefore, we use two attention heads
computing different kinds of attention:

1. Softmax-normalised attention ξ̂symbol to select
a single symbol to transduce.

2. Sigmoid-normalised attention ξ̂cond to select
multiple symbols as conditions. In this case,
the sigmoid function σ is applied to every dot-
product of encoder states and decoder states
individually, yielding a Bernoulli distribution
for every combination. ξcond is the result of

1There are different ways to calculate unnormalised at-
tention scores (Luong et al., 2015; Brauwers and Frasincar,
2023), but without loss of generality we restrict the discussion
to dot-product attention.

sampling from each Bernoulli distribution. At
test time, we round to 0 or 1 instead of sam-
pling to ensure deterministic predictions.

Predictions are computed from the combined con-
text vectors, formally

Ysymbol = ξsymbol· Xembed

Ycond = ξcond· Xembed

pj(• | s1:n) = MLP([ Y
symbol
j ,Ycond

j ])

(2)

where • is a placeholder to indicate distributions
over the target alphabet, pj is the distribution for
the jth target symbol, and Xembed is the matrix con-
taining non-contextual source symbol embeddings.

In this formulation, the decoder is still autore-
gressive, but is only involved in computing atten-
tion scores, not predictions any more. Therefore,
it is entirely transparent which source symbols are
responsible for which predictions. Also, the con-
dition vector is a sum of equally weighted non-
contextual symbol embeddings. The only non-
transparent computation are the attention scores.
Formally, the model learns a mapping S×2S×N →
T where S is the source alphabet, N are the natural
numbers (to account for multiplicities of symbols),
and 2S×N indicates the power set. T is the target
alphabet. The attention mechanism selects the con-
textually appropriate arguments for this mapping.
A more detailed description of the concrete model
architecture is in Appendix B.

Of course, the increased transparency limits the
expressivity of the model. One problem is that
gradient signals for encoder and decoder are in-
sufficient, because their only remaining role is to
compute attention matrices. Therefore, we train
sequence transduction models in a multi-task set-
ting, using the interpretable mechanism described
above together with the typical mechanism, i.e. pre-
dicting the next target symbol from decoder state
and combined contextual source symbol encodings.
However, we use the same attention matrices in
both cases. Predictions of type one-to-many (e.g.
converting a single morphological tag to a suffix
consisting of multiple characters) are also prob-
lematic: For each single target symbol, a different
source symbol or condition is required. Possible
solutions are augmenting the target alphabet with
symbol ngrams (Liu et al., 2017) or allowing for lo-
cal non-autoregressive predictions (Libovický and
Helcl, 2018). However, we leave exploration of
such methods to future work. Finally, condition
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vectors Ycond are insensitive to order due to sum-
ming being a commutative operation. This problem
can be mitigated by positional encodings, but we
do not observe improvements in preliminary exper-
iments and do not explore this option here.

3.2 Sequence Segmentation

We combine hard attention with Structured Atten-
tion proposed by Kim et al. (2017). In particular,
we consider the case of sequence segmentation and
propose an end-to-end trainable interlinear glossing
model (for the closed tack, where this information
is not given) that first performs shallow morpholog-
ical segmentation2 on input words and then predicts
the gloss label for each morpheme. Note that the
method is also applicable to other tasks that require
sequence segmentation and further processing of
resulting segments, such as joint Sandhi segmen-
tation and morphological parsing in Sanskrit (Li
and Girrbach, 2022). In contrast to Kim et al., our
segment encodings respect a particular sampled
segmentation due to hard attention, and do not rep-
resent expected feature values.

Encoder Model Given a sentence as input to the
glossing model, we first apply a character level
encoder such as BiLSTM (Hochreiter and Schmid-
huber, 1997; Graves and Schmidhuber, 2005), to
compute contextual character representations on
the sentence level. Then, we continue process-
ing on the word level and denote a word w by its
characters w = s1, . . . , sn. Each word consists
of a sequence of characters that are represented
by contextual features computed in the previous
step. For each character at position i, we predict a
Bernoulli distribution parametrised by probability
p

seg
i ∈ (0; 1) that indicates whether the correspond-

ing character is the last character of a (shallow)
morpheme segment in our case. We also adopt
the method by Raffel et al. (2017) to add Gaussian
noise to unnormalised scores during training to en-
courage discreteness of segmentation probabilities.

Furthermore, each word is paired with the num-
ber of morphemes in the word. According to
Leipzig Glossing Conventions (Comrie et al., 2008,
Rule 2), the number of morphemes in a word is
given by the number of hyphen-separated labels
assigned to a word. During inference, the number

2Shallow morphological segmentation means only seg-
menting the surface string. Contrast this to canonical segmen-
tation, which also restores a latent canonical form of present
morphemes (Kann et al., 2016).

of labels and therefore morphemes is not given. In
this case, a straightforward solution is to start a new
morpheme whenever the segmentation probability
exceeds a certain threshold τ . However, we found
trivial solutions for τ like 1

2 not to work well, while
learning to predict the number of morphemes in
a word from the max-pooled character representa-
tions by a MLP works well in our case. Therefore,
we adopt the latter option and leave exploration of
the former method to future work. In cases where
we have no information about the number of seg-
ments during training, marginalising the number of
segments still remains as option.

Computing Marginals Character-level segmen-
tation scores pseg

i have to be converted to the atten-
tion matrix ξ̂ by marginalising all segmentations.
For each source element si, marginalisation com-
putes the marginal probability of having a mor-
pheme boundary at si. Adopting the terminology
of Section 2, morphemes correspond to target el-
ements and characters to source elements. Each
source element is aligned to exactly one target ele-
ment and the alignment is monotonic. This means
each source element can only be aligned to the
same target element as the immediately preceding
source element or alternatively it can be aligned
to the next target element. Accordingly, we com-
pute marginals, i.e. distributions over targets for
each source element, by the forward-backward al-
gorithm, same as Kim et al. (2017). The forward
recursion is given by α1,1 = 1 and

αi,j = αi−1,j · (1− p
seg
i−1) + αi−1,j−1 · pseg

i−1

for i > 1, j ≥ 1 where p
seg
i ∈ (0; 1) is the pre-

dicted segmentation probability of the ith source
element. Note that the first source element is al-
ways part of the first segment. Backward scores
are computed as βn,k = 1 and

βi,j = βi+1,j · (1− p
seg
i,j ) + βi+1,j+1 · pseg

i,j

for i < n and j ≤ k. Finally, marginals are given
by ξ̂i,j =

αi,j ·βi,j

αn,k
. In practise, computations are

performed in log-space.

Training For discretising segmentations, it is
most convenient to simply choose the maximum
likelihood segmentation, which corresponds to
starting new segments at the k − 1 indices with
maximum segmentation probabilities. The corre-
sponding target segment representations are com-
puted by Y = ξ · X, where X is the matrix of
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source element representations. Note that we use
the discrete assignments ξ for computing segment
representations and Equation (1) for training.

In the case of interlinear glossing, distributions
over labels for each morpheme are computed by a
MLP taking morpheme representations, i.e. rows
in Y, as input. Loss, then, is the cross-entropy
between predicted distributions over labels and
ground-truth labels. Note that in this case, and
in contrast to Section 3.1, we compute morpheme
representations from contextualised character rep-
resentations, and not from non-contextual embed-
dings, because we think that only sets of characters
of shallow morpheme segments are not sufficient
to compute the semantic information necessary for
glossing, especially the correct translations.

This has two consequences, first of all the model
is not transparent (i.e. interpretable), and character
encodings may be “fuzzy” in the sense that infor-
mation is locally spread across multiple characters
which may obscure precise morpheme boundaries.
A similar effect has been shown for sparse attention
by Meister et al. (2021). We leave exploring more
interpretable models similar to the model described
in Section 3.1 and biasing models towards more
precise morpheme segmentation to future work. In
this work, our main focus is to provide shallow mor-
pheme segmentation as additional predictions, not
to build an entirely interpretable glossing model.

4 Evaluation

Here, we evaluate the methods presented in Sec-
tion 3 by participating in the shared task on morpho-
logical inflection and in the shared task on interlin-
ear glossing. Technical details of the experimental
setup and hyperparameters are in Appendix A.

4.1 Baselines

For the morphological inflection shared task, the
organisers provide a neural and a non-neural base-
line. For the interlinear glossing shared task, the
organisers provide a transformer-based neural base-
line. Furthermore, we add a CTC-based sequence
labelling model (Graves et al., 2006) as baseline.
The CTC model encodes the source sentence on
the character level by a BiLSTM encoder and pre-
dicts a label or blank from each character. Here,
we exploit that the number of labels is the same as
the number of morphemes, and each word has at
least as many characters as morphemes.

4.2 Data Representation
For a detailed description of the shared task data,
refer to the respective shared task overview papers.
In the case of morphological inflection, we con-
vert (lemma, tags, form) triples to (source, target)
pairs by removing all punctuation from the tags and
prepending the remaining sequence of tags to the
lemma characters. Special pre- and postprocessing
is applied to Japanese in order to eliminate Kanji,
see Appendix C.

In the case of interlinear glossing, no modifica-
tion is necessary for the closed track. However,
for the open track, we replace the source text by
hyphen-separated morphemes. We assume they
contain more information than the original unseg-
mented text, and the unsegmented text does not add
any information when the segmented morphemes
are available. In this case, we also do not learn shal-
low segmentation, but predict a single label from
each morpheme. The CTC baseline flexibly learns
alignments of labels to characters in both cases. In
both cases, we approach interlinear glossing as a
sequence labelling problem.

4.3 Results
Morphological Inflection In Table 1, we report
macro-averaged test set accuracy and edit distance.
Full results for all languages achieved by our model
and the baselines are in Appendix D. For clarity,
we only report results of the best system for every
participating team. Results show that our inter-
pretable model loses on performance compared to
more flexible neural models, such as the Trans-
former baseline. On 22 of 27 languages, the neural
baseline beats our model. However, results also
show that introducing interpretability does not have
catastrophic consequences regarding performance.
With some advantages in macro-averaged scores,
our model performs roughly on par with the non-
neural baseline, beating it on 14 of 27 languages.
In summary, these results suggest that introduc-
ing interpretability to neural models causes some
decrease in performance, but having neural inter-
pretable models still gives better results than having
interpretable non-neural models.

To illustrate patterns learned by our models, we
show examples of the selected source symbols and
condition symbols. The first example in Figure 1 is
taken from the French (validation) dataset, namely
the target inflection is

juger “to judge”
V;COND;NOM(1,PL)−−−−−−−−−−−−→ “jugerions”.
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Accuracy ↑ ED ↓
Illinois 84.27 0.35
Baseline (Neural) 81.61 0.40
Ours 76.91 0.58
Arizona 72.45 0.75
Baseline (¬ Neural) 69.60 0.81

Table 1: Morphological Inflection: Best macro-averaged
test set results for accuracy and edit distance (ED) of
each team. Results of our model are highlighted in bold.

In this case, the prediction is correct. We can see
how the model first selects characters of the stem
to copy. Here, few if any other source symbols
are selected as conditions. Then, for predicting
the inflection suffix “-ions”, the model selects tag
symbols both to transduce and as conditions.

Next, we consider an example from the Italian
dataset, namely

estraniarsi “to alienate onself”
V;IND;PRS;NOM(1,PL)−−−−−−−−−−−−−→ “ci estranieremmo”.

The corresponding selected symbols and conditions
are shown in Figure 2. This example shows an in-
teresting non-monotonic pattern, namely moving
the reflexive pronoun “si” to the front and changing
it to the correct number and person, in this case
1st plural. The model correctly captures this, as
we can see from the selected transduction symbols
(left side). Also, the model learned which condi-
tions to select for changing the “s” in “si” to “c”.
After this transform, the model copies the stem
by selecting stem characters as transduction sym-
bols and conditions. Finally, the model generates
the inflectional suffix by selecting mainly tags as
transduction characters and conditions.

Interlinear Glossing In Table 2, we report
macro-averaged word level and morpheme level
test set accuracies. Both our additional CTC
baseline and our morpheme-segmentation model,
henceforth referred to as “morph”, compare
favourably to the transformer baseline. Further-
more, our morph model achieves better perfor-
mance than competing models on track 1, where
the unsupervised learning of morpheme segmen-
tation is relevant, which shows that learning addi-
tional linguistically relevant structures can improve
performance by injecting useful inductive biases in
the model. Furthermore, we again conclude that

using discrete structure as intermediate represen-
tations does not necessarily decrease performance
catastrophically. Instead, it seems helpful in this
case. Finally, we note that translations are not nec-
essary for current glossing models to achieve strong
performance, since we do not use them.

We also show examples of shallow segmentation
learned by the morph model. We focus only on the
segmentation, because this is the main contribution
of our model. Note that all segmentations were
learned in an unsupervised way for track 1 along-
side the main objective, i.e. predicting the glossing
line. For track 1, morphological segmentation is
not given, unlike for track 2.

Because our model learns shallow segmenta-
tions, while ground-truth segmentations provided
for track 2 are canonical segmentations, we can not
conduct a quantitative analysis. Therefore, we re-
strict the analysis to anecdotal qualitative analysis
of 2 example segmentions predicted by our models.

First, we consider a prediction for the following
Natugu example:

(2) Nedr
Ne-dr
ne-dr

rlilrdr
r-li-lr-dr
r-li-r-dr

doa
doa
doa

nzpwxng
nz-pwx-ng
nz-pwx-ngq

.

.

.

“The two of them had four children.”

Morphemes are separated by hyphens “-”. The pre-
dicted segmentation is in the second line, and the
ground-truth segmentation is in the third line. The
predicted segmentation differs from the ground-
truth, because it copies characters and therefore
can not change capitalisation, and two morphemes
(“lr”→ “r” and “ng”→ “ngq”) are normalised in
the ground-truth segmentation, so that they differ
from their surface form.

Next, we consider a Uspanteko example:

(3) i
i
i

tiyuq
t-iyuq
ti-yu’

sol
sol
sol

ji’
ji’
ji’

tren
t-r-en
t-r-en

tib’ek
t-ib’e-k
ti-b’e-k

“Y llega solo asi hace se va.”

Again, the predicted segmentation is in the sec-
ond line. In two cases the vowel “i” is assigned to
the wrong morpheme, but the predicted glossing
line (not shown) is still correct. In this case, in-
correct segmentation is apparently not a problem
for the subsequent classification of morphemes, but
in other cases this may cause problems. Here, we
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Figure 1: Example for French juger “to judge”. The target prediction is “juger”
V;COND;NOM(1,PL)−−−−−−−−−−−→ “jugerions”. The

prediction is correct in this case. On the left side, we show the single selected symbols for transduction, on the right
side we show the additionally selected condition symbols. Because we use hard attention, attention scores can only
be 0 or 1, and we can present them in a black-and-white style.

[SOS] VCONDNOM 1 PL e s t r a n i a r s i [EOS]

Source

[SOS]
c
i
 
e
s
t
r
a
n
i

e
r
e

m
m
o

[EOS]

Pr
ed

ict
io

n

[SOS] VCONDNOM 1 PL e s t r a n i a r s i [EOS]

Source

[SOS]
c
i
 
e
s
t
r
a
n
i

e
r
e

m
m
o

[EOS]

Pr
ed

ict
io

n

Figure 2: Example for Italian estraniarsi “to alienate onself”. The target prediction is “estraniarsi”
V;COND;NOM(1,PL)−−−−−−−−−−−→

“ci estranieremmo”. The prediction is correct in this case. On the left side, we show the single selected symbols for
transduction, on the right side we show the additionally selected condition symbols.
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Track 1 Track 2
Word Level Morph. Level Word Level Morph. Level

Ours (Morph) 71.30 62.55 76.56 84.21
Ours (CTC) 68.01 60.24 74.43 78.03
Baseline 47.31 33.60 59.14 67.69

Table 2: Interlinear Glossing: Macro-averaged test set accuracy for our models and the baseline. Higher is better.

can see that contextualised character encodings can
bypass the discrete morpheme segmentation step.

5 Related Work

Much recent work in character-level transduction
aims at making models both more interpretable and
stronger by using sparse (Peters and Martins, 2019,
2020) or hard attention (Aharoni and Goldberg,
2017; Wu et al., 2018; Wu and Cotterell, 2019;
Makarov and Clematide, 2018b,a). Modifying the
attention mechanism is necessary, because for soft
attention, which does not realise hard alignment de-
cisions, the relation of model outputs and attention
weights is not fully understood (Jain and Wallace,
2019; Wiegreffe and Pinter, 2019). Hard attention
does not suffer from this problem, because it re-
alises hard alignment decisions, so that we exactly
know which information influences the output of
attention. Especially if the main purpose of models
is to gain insights into the data and not mainly to
achieve better performance on modelling it, inter-
pretability of models is crucial.

However, working with hard attention is no-
toriously difficult, because it introduces non-
differentiability into models. This means that the
sophisticated machinery developed for gradient-
based optimisation of deep neural models fails in
this case. The most popular but also most ex-
pensive approach to train hard attention mecha-
nisms is marginalising all alignments (Yu et al.,
2016; Raffel et al., 2017; Wu et al., 2018; Wu and
Cotterell, 2019) or approximating the marginalisa-
tion (Shankar et al., 2018). Different approaches
to approximate gradients instead of having ex-
act gradients by marginalisation are using rein-
forcement learning (Xu et al., 2015; Makarov and
Clematide, 2018a), reparametrising discrete dis-
tributions or working with continuous relaxations
(Jang et al., 2017; Maddison et al., 2017), and per-
turbation based gradient approximators (Niepert
et al., 2021). While all methods to use hard atten-
tion with gradient-based optimisation come with

problems, we find straight-through gradient estima-
tors (Bengio et al., 2013) very effective to compute
informative discrete intermediate representations
even for complicated attention scenarios. Similar
results have been reported for other fields as well,
both practically (Sahoo et al., 2022) and in theo-
retical analysis (Yin et al., 2019). Therefore, we
propose two models, one for interpretable sequence
transduction and one for joint segmentation and
segment classification, based on straight-through
gradient estimators.

6 Conclusion

In this work, we propose to optimise hard attention
as building block in deep neural networks, which in
principle is non-differentiable, by straight-through
gradient estimation. In particular, we describe ap-
plications to interpretable sequence-to-sequence
models and sequence segmentation models. We
evaluate our approaches on two important tasks in
computational morphology, namely morphological
inflection and interlinear glossing which are shared
tasks of the ACL SIGMORPHON 2023 workshop.
Our approaches achieve good results in morpholog-
ical inflection despite of constrained expressivity
compared to fully differentiable models, and strong
results in interlinear glossing. These results provide
encouraging evidence that learning interpretable in-
termediate representations by deep neural network
does not necessarily lead to intolerable sacrifices
in performance. We hope that future work can ben-
efit from these insights by combining interpretable
representations and the generalisation abilities of
neural models for scientific discovery.

Acknowledgements

We thank the organisers of both shared tasks for
their efforts and for their help during training and
evaluation phases. Also, we thank Çağrı Çöltekin
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A Experimental Setup

Here, we describe our experimental setup, includ-
ing hyperparameters, in detail. Also note that our
code is available on GitHub. Code for morpho-
logical inflection is here: https://github.com/

LGirrbach/sigmorphon-2023-glossing. Code
for interlinear glossing is here: https://github.
com/LGirrbach/sigmorphon-2023-inflection.
All models are implemented in PyTorch (Paszke
et al., 2019) and pytorch_lightning.3

In all cases, models are optimised using the
AdamW optimizer (Loshchilov and Hutter, 2019)
without weight decay, learning rate is 0.001, and all
other parameters are the PyTorch defaults. We use

3https://github.com/Lightning-AI/
lightning/

an exponential decay learning rate scheduler which
multiplies the learning rate by factor γ after each
epoch. We tune γ for each combination of model
and language. Furthermore, we clip gradients with
absolute value greater than 1.

Models are trained exclusively on the training
splits provided by the shared task organisers. After
each training epoch, generalisation performance is
estimated by performance on the validation split.
In the case of Morphological Inflection, our main
metric is normalised edit distance (lower is better).
In the case of Interlinear Glossing, our main metric
is accuracy of correctly predicted glossing lines
(higher is better). If performance does not improve
for 3 epochs, training is stopped. Only the best
model checkpoint, i.e. the checkpoint 3 epochs
before ending training, is retained.

A.1 Hyperparameter Tuning
For each combination of language and model,
we optimise hyperparameters independently. The
tuned hyperparameters and their corresponding
value ranges are in Table 3. Note that other than
stated there, the minimum batch size for Morpho-
logical Inflection models is always 4. Also, min-
imum batch size for Arapaho and Uspanteko lan-
guages (Interlinear Glossing) is 16. The maximum
batch size for Arapaho and Uspanteko is 128. The
maximum batch size for Gitksan (Interlinear Gloss-
ing) is 16.

In each case, we sample 50 sets of hyperparame-
ters using the optuna library (Akiba et al., 2019).
For each sampled set, a model is trained and the
performance on the validation set is recorded. Af-
ter sampling 50 sets, the set that resulted in the
best performance on the validation set is saved. For
training models for submission of results to the
shared tasks and all other analyses, we exclusively
use hyperparameter that were found best in this
hyperparameter study. Since we tune parameters
for many models, we do not report the results here.
However, they are available in our GitHub reposi-
tories.

A.2 Main Evaluation
For submitting results to the shared tasks and fur-
ther analyses, we retrain 5 models for each com-
bination of model type and language. The mod-
els use the hyperparameters from the tuning study
described in Appendix A.1. However, they have
different initialisations and may therefore perform
differently. For submitting results, we select the
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Parameter Name Range

# LSTM Layers {1, 2}
Hidden Size [64; 512]
Dropout [0.0; 0.5]
Scheduler γ [0.9; 1.0]
Batch Size [2; 64]

Table 3: Ranges for values of tuned hyperparameters.
Note that batch size ranges differ in some cases.

model the model with best performance on the val-
idation set. Having multiple copies of the same
model type trained with the same hyperparameters
is useful, because especially in low-resource sce-
narios different initialisations can have a relevant
impact on the generalisation performance. On the
one hand, it is necessary to estimate this variance to
see how robust models are, on the other hand this
helps mitigating spurious effects in the analyses.

B Sequence Transduction Model:
Detailed Description

Here, we provide a more detailed description of the
sequence transduction model (see Section 3.1).

For training, we have two paired sequences s =
s1, . . . , sn and t = t1, . . . , tm, representing the
source and target sequence, respectively. The goal
is to maximise the likelihood of transducing the
source sequence s to the target sequence t.

The first step is to represent all symbols in both
sequences by high-dimensional non-contextual vec-
tors, i.e. embeddings. Thus, we arrive at embed-
ded sequences s = s1, . . . , sn and t = t1, . . . , tm,
with si, t ∈ Rd. Here, boldfaced lowercase vari-
ables represent vectors. Furthermore, we denote
the n×d matrix with source symbol embeddings as
rows as S ∈ Rn×d and we denote the m×d matrix
with all target symbol embeddings as T ∈ Rm×d.
Note, that embeddings of source symbols and tar-
get symbols are optimised independently of each
other, i.e. they are not paired.

In the next step, we encode the source sequence
by a bidirectional LSTM and arrive at a contex-
tual representation hs

i for each source symbol with
index i, 1 ≤ i ≤ n. Likewise, we encode the
target sequence using a unidirectional LSTM and
denote the autoregressive encoding of the symbol
with index j, 1 ≤ j,≤ m as ht

j . Formally, we can

write

hs
i = BiLSTM(si | s1, . . . , sn) (3)

ht
j = LSTM(tj | t1, . . . , tj−1) (4)

and representing all contextualised representations
as matrices:

Hs = BiLSTM(S) (5)

Ht = LSTM(T) (6)

So far, this formulation is the same as conventional
LSTM-based encoder-decoder models. However,
the attention mechanism is different. According to
the descriptions in Section 2 and Section 3.1, we
define attention matrices as follows:

Z = Hs · (Ht)T (7)

ξ̂symbol = softmax(Z) (8)

ξ̂cond = σ(Z) (9)

where Z ∈ Rn×m represents the unnormalised
dot-product attention scores, softmax is applied
to columns of Z and the sigmoid function σ is ap-
plied elementwise. In fact, it seems counterintuitive
to use the same unnormalised scores in both atten-
tion heads, but this works well in practise. From
these attention matrices, we obtain the discretised
alignment matrices ξsymbol and ξcond by sampling
columnwise one-hot vectors in the case of ξsymbol
and elementwise values ∈ {0, 1} for ξcond. Then,
we calculate context vectors as

Ysymbol = ξTsymbol · S (10)

Ycond = ξTcond · S (11)

Note, that here we use the discretised alignment ma-
trices ξsymbol and ξcond in place of the real-valued
matrices ξ̂symbol and ξ̂symbol. Because discretisa-
tion is non-differentiable, we instead use a way of
calculation that enables straight-through gradient
estimation, namely Equation (1):

Ysymbol = ξ̂Tsymbol · S
− sg

(
(ξ̂symbol − ξsymbol)

T · S
)

(12)

Ycond = ξ̂Tcond · S
− sg

(
(ξ̂cond − ξcond)

T · S
)

(13)
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Finally, we predict a distribution over target sym-
bols by a MLP from the concatenation of Ysymbol
and Ycond according to Equation (2):

pj(• | s1, . . . , sn) = MLP([Y
symbol
j ,Ycond

j ])
(14)

where pj(• | s1, . . . , sn) indicates the distribution
over target symbols at prediction position with in-
dex j. Here, the concrete ground truth target sym-
bol is tj .

To train the model, we use the typical supervised
objective, namely minimising the cross-entropy be-
tween predicted categorical distributions over tar-
get symbols and the one-hot encoded ground truth
target symbol at each prediction position. This
also means we use teacher forcing for sequential
predictions. During inference, t is predicted in a
step-wise fashion by greedy decoding.

However, note that in addition to the setup de-
scribed above, we also use the typical attention
mechanism in a multi-tasking fashion, but only dur-
ing training. We do not use contextualised source
symbol representations for inference. The reason
why we still use the typical loss as auxiliary loss
is that the gradient signal on Hs and Ht is weak
when their only role is to calculate Z. In this case,
we calculate

C =
(
softmax

(
Hs · (Ht)T

))T ·Hs (15)

where softmax is applied to columns, and then
predict distributions over target symbols as

paux
j (• | s1, . . . , sn) = MLP(C) (16)

so that we can also calculate the cross-entropy loss
on paux

j (• | s1, . . . , sn) and differentiate model pa-
rameter w.r.t. the sum of both losses during training.
Note, again, that this is only to stabilise training by
optimising the contextual representations, and does
not affect the model architecture for inference.

C Preprocessing of Japanese

The Japanese writing system includes 4 alphabets,
namely Latin characters (Romaji), Chinese char-
acters (Kanji), and two syllabic scripts (Katakana
and Hiragana) that were derived from Chinese char-
acters by simplification and standardisation. The
Japanese dataset provided with the shared task con-
tains Kanji, Hiragana, and Katakana. Kanji consti-
tute a problem for character-level models, because
they are effectively an open set. The number of
Kanji taught in Japanese schools is already≈ 2000,

to which variants, obsolete Kanji, and special Kanji
only used in names may be added. Therefore, a
model for Japanese language data should have the
possibility to process previously unseen Kanji.

In the case of morphological inflection, however,
this problem may be ignored, because Kanji are
never altered in inflection. Instead, inflectional
suffixes are expressed in Hiragana. Kanji may still
appear in stems, and have therefore be dealt with.

We apply the following preprocessing: We re-
place all Kanji by a special placeholder symbol K
that is the same for every Kanji. This applies to
both source lemmas and target forms. In the case
of successful prediction of target lemmas, the num-
ber of Kanji in the target form is the same as the
number of Kanji in the source lemma. Therefore,
we copy Kanji from the source by replacing the pre-
dicted placeholders. The order of Kanji in source
and target does not change. In case of predicting
fewer placeholders in the predicted form than there
are Kanji in the source lemma, which is an error,
we copy as many Kanji as there are placeholders
in the predicted form from left to right. In case of
predicting more placeholders in the predicted form
than there are Kanji in the source lemma, which
also is an error, we leave additional placeholders
unchanged, i.e. we do not change the predicted
placeholder symbol, but still copy as many Kanji
as possible from left to right.

D Full Results

Morphological Inflection In Table 5, we report
the official test set accuracies achieved by our
model for all languages. For comparison, we also
show results of the neural and the non-neural base-
line. Likewise, we report official test set edit dis-
tances in Table 6.

These results show some interesting patterns.
For example, the neural baseline performs worst on
Japanese, which we assume is an effect of the al-
phabet (see Appendix C). Therefore, our proposed
pre- and postprocessing for Japanese is important.
Alternatively, a copy mechanism could be used.

Another trend is that our model performs
strongly on semitic languages (e.g. afb, amh, arz,
heb, heb_unvoc), especially compared to the non-
neural baseline. Here, non-concatenative morphol-
ogy gives our model an advantage, because usually
individual transforms do not involve multiple char-
acters, such as suffix ngrams. Remember that our
model can only predict exactly one form character
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Track 1 Track 2

Word Level Morph. Level Word Level Morph. Level

CTC Morph CTC Morph CTC Morph CTC Morph

Arapaho 77.90 78.79 76.56 78.57 85.12 85.80 90.93 91.37
Tsez 80.96 80.94 70.29 73.95 85.68 85.79 91.16 92.01
Gitksan 04.69 21.09 09.26 11.72 13.80 26.56 17.08 50.22
Lezgi 78.10 78.78 62.03 62.10 85.44 83.41 83.45 87.61
Natugu 80.20 81.04 56.38 56.32 87.83 87.92 90.17 92.32
Nyangbo 85.34 85.05 86.74 85.24 85.90 87.98 89.96 91.40
Uspanteko 68.86 71.01 60.42 62.55 77.21 78.46 83.45 84.51

Table 4: Interlinear glossing: Official test set accuracies for all languages. Higher is better. CTC refers to our
CTC-based baseline model, “Morph” refers to our model that learns morphological segmentation in a unsupervised
way for track 1. In track 2, we simply use the provided representation.

from each combination of transduction lemma char-
acter and condition set. This shows that our model
is able to capture complex patterns, but may not be
optimal to generate extensive surface transforms.

Interlinear Glossing In Table 4, we report of-
ficial test set accuracies achieved by our models
for all languages. In most cases, our Morph model
is superior to the CTC model, which confirms the
benefit of morpheme segmentations for the task
of interlinear glossing. The same conclusion is
supported by the stark differences between track 1
and track 2. In track 2, performance is generally
much better, especially when looking at morpheme
level accuracies. Remember that we only use the
ground-truth morpheme segmentation as additional
information in track 2. We conclude that research
in morpheme segmentation will be useful for com-
putational models for interlinear glossing as well.

Ours Neural ¬ Neural

afb 75.8 80.1 30.8
amh 83.8 82.2 65.4
arz 87.6 89.6 77.9
bel 56.3 74.5 68.1
dan 85.7 88.8 89.5
deu 74.5 83.7 79.8
eng 96.0 95.1 96.6
fin 67.6 85.4 80.8
fra 67.9 73.3 77.7
grc 36.7 54.0 52.6
heb 82.7 92.0 30.9
heb(2) 81.3 83.2 64.5
hun 75.9 80.5 74.7
hye 85.9 91.0 86.3
ita 84.7 94.1 75.0
jap 95.3 26.3 64.1
kat 70.5 84.5 82.0
klr 96.4 99.5 54.5
mkd 86.7 93.8 91.6
nav 53.6 52.1 35.8
rus 82.1 90.5 86.0
san 54.5 66.3 62.2
sme 58.5 74.8 56.0
spa 88.7 93.6 87.8
sqi 71.5 85.9 83.4
swa 94.7 93.7 60.5
tur 81.8 95.0 64.6

Table 5: Official test set accuracies for all languages.
Higher is better. “Neural” and “¬ Neural” refer to the
neural and non-neural baseline, respectively. “heb(2)”
refers to the heb_unvoc dataset.
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Ours Neural ¬ Neural

afb 0.49 0.38 1.47
amh 0.22 0.24 0.59
arz 0.24 0.22 0.46
bel 1.31 0.64 0.90
dan 0.34 0.25 0.17
deu 1.00 0.48 0.80
eng 0.07 0.09 0.06
fin 0.63 0.21 0.26
fra 0.86 0.45 0.37
grc 1.43 1.00 1.04
heb 0.44 0.21 1.82
heb(2) 0.30 0.28 0.48
hun 0.57 0.44 0.47
hye 0.43 0.20 0.30
ita 0.43 0.12 0.75
jap 0.09 1.20 0.80
kat 0.79 0.35 0.51
klr 0.05 0.00 0.84
mkd 0.38 0.09 0.15
nav 1.37 1.55 1.88
rus 0.56 0.38 0.46
san 1.01 0.71 0.90
sme 0.88 0.65 0.89
spa 0.31 0.10 0.17
sqi 0.74 0.27 0.38
swa 0.06 0.06 4.10
tur 0.58 0.17 0.87

Table 6: Official test set edit distances for all languages.
Lower is better. “Neural” and “¬ Neural” refer to the
neural and non-neural baseline, respectively. “heb(2)”
refers to the heb_unvoc dataset.
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Abstract

This paper presents the submission
by the MeLeL team to the SIGMOR-
PHON–UniMorph Shared Task on Typo-
logically Diverse and Acquisition-Inspired
Morphological Inflection Generation Part 3:
Models of Acquisition of Inflectional Noun
Morphology in Polish, Estonian, and Finnish.
This task requires us to produce the word
form given a lemma and a grammatical case,
while trying to produce the same error-rate
as in children. We approach this task with
a reduced-size character-based transformer
model, multilingual training and an upsampling
method to introduce bias.

1 Background

The SIGMORPHON Shared Task proposed a cross-
linguistics modelling of child language acquisition
to mediate between the theories of the acquisition
of inflectional morphology. Here, unlike previous
shared tasks of morphology inflection, the goal is
to build a model that shows childlike item-by-item
error rates, instead of generating the well-formed
inflection.

1.1 Morphological Acquisition
The way that a child or an adult acquires a lan-
guage is different. Therefore, the way they make
mistakes is different. In the past decades there
were many studies about the way children acquire
a language, but most of the research focus only one
language. Granlund et al. (2019) performed a large-
scale cross-linguistics study of three languages—
Finnish, Estonian and Polish. The research’s goal
was to find the aspects that indicate what makes
children inflect words correctly.

The research found two such aspects: the first
is surface-form frequency, where the greater the
input frequency of the targeted inflectional form
(i.e., the exact surface form that the child is at-
tempting to produce in a given context; e.g., Polish

książki, ‘book-genitive’) is, the greater the speed
and accuracy of production or recognition. The sec-
ond is phonological neighborhood density (PND),
where the greater the number of “neighbours” or
“friends”—nouns that are similar in both the base
(nominative) form and the relevant target form (e.g.,
książka → książki; doniczka → doniczki; gruszka
→ gruszki)—the greater the speed and accuracy of
production or recognition.

They also describe how these aspects work to-
gether: the effect of phonological neighbourhood
density is greater for items with low surface-form
frequency. Since low-frequency items are less
likely to be successfully retrieved from memory,
they must be generated by phonological analogy.

1.2 Modeling Acquisition of Inflectional Noun
Morphology

The task of morphological inflection (Cotterell
et al., 2017; Kodner et al., 2022) is defined as find-
ing an inflected form for a given lemma and list of
morphosyntactic attributes. Most state-of-the-art
systems for the tasks to date center on character-
level transduction and representation, and naturally
attempt to predict the correct inflection with maxi-
mum performance. The current task, by contrast,
requires imperfect generation by design, and thus
solicits different approaches than state-of-the-art.

The data format in this task also differs from pre-
vious iteration in that it is more faithful to language
children are exposed to. Instances are limited to
single-feature inflection of lemmas into various
grammatical cases (e.g., accusative, nominative,
or genitive), and the lemma and the correct inflec-
tion are given in both orthographic and phonetic
form (using IPA). In addition, the surface-form fre-
quency of the lemma is provided, and the test set
also contains children’s error-rate of the inflection.
The dataset is split such that lemmas in the training
set do not appear in the test set (Goldman et al.,
2022). The task expects as system output a list of
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Figure 1: Wu et al. feature invariance (taken from the original paper)

top-10 inflections in IPA, alongside their probabili-
ties. As an example, the following is a training data
instance for the Polish lemma zdrowie “health”:

zdrowie GEN zdrowia zdrOvjE zdrOvja 6,
where the columns represent (in order): the lemma
in standard orthography, grammatical case, the
inflection in standard orthography, the lemma in
IPA, the inflection in IPA and the surface-form fre-
quency.

1.3 Evaluation
In addition to exact-match accuracy and edit dis-
tance, correlation-based evaluation was also used
for this task. In our development stage, we ex-
tracted the top 10 predictions for each instance with
their respective probabilities, using beam search.
We then calculated the correlation (both Spear-
man’s and Pearson’s) of the correct inflection’s
error rate and the model’s outputs’ probabilities.
Due to the data format, this evaluation could only
be done on the test set. When the correct form is
not in top 10 predictions, we assign it zero proba-
bility.

2 Model

The base model that we used is the current state-
of-the-art character-based transformer model (Wu
et al., 2021). We then modified it to fit the task.
The code from the model is forked from the pub-
lic repository1 with changes relevant to this task,
meaning that the learning rate scheduler, early stop-
ping and various training strategies are the same.
Our model accepts the lemma in its IPA form.

The purpose of the original base model was to
inflect a lemma form to the correct inflection mor-
phological properties given as input. Our settings
differ in that the model should inflect according
to the children’s behavior, and not to the correct

1https://github.com/shijie-wu/
neural-transducer

inflection. We can do that by modifying the model
to work with both of the features introduced above,
namely PND and surface-form frequency. We
select our model based on the best epoch according
to the overall best evaluation (see §1.3) on the test
sets.

2.1 Base Model
The transformer (Vaswani et al., 2017) is a
sequence-to-sequence model, used for tasks such as
machine translation. The transformer-based model
we use as a basis for our task (Wu et al., 2021)
is tailored for character-level transduction in or-
der to be applied to tasks such as morphological
inflection and grapheme-to-phoneme prediction,
illustrated in Figure 1 (taken from the original pa-
per). Crucially, the input provided to the model is
the concatenation of the characters of the lemma
with the morphosyntactic attributes, assigning em-
beddings to each character and attribute. Their
variant, dubbed feature-invariant transformer,
differs from the original transformer in two aspects:
a smaller model and a feature-invariant architec-
ture.

Feature invariance In morphological inflection
tasks, the lemma is a sequence of characters
mapped to the inflection which is a different se-
quence of characters, to be predicted according
to the list of morphological attributes. The trans-
former model deals with sequences as they are
ordered. However, the portion of the input con-
sisting of a list of morphological attributes is un-
ordered; moreover, the distance between attributes
and the characters within the input is irrelevant.
These properties may lead to inconsistencies in data
representation and generalization when training a
sequence model so sensitive to input order. The
feature-invariant transformer therefore receives the
positional encoding of features as zeroes, and only
begins incrementing position count for the lemma’s
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System Accuracy Edit Distance Pearson’s Spearman’s

Baseline (Wu et al.) 1.0000 0 −0.029 −0.061

Base + Smaller Model .8812 0.229 0.078 −0.047
Base + Upsample .9890 0.015 −0.015 −0.087
Base + Multilingual .9978 0.002 −0.106 −0.259

Base + Smaller Model + Upsample .8099 0.359 0.286 0.237
Base + Smaller Model + Multilingual .6864 0.548 0.379 0.334
Base + Multilingual + Upsample .9890 0.013 −0.023 −0.318

Base + Small + Upsample + Multiling .5526 0.814 0.467 0.438

Table 1: Model variants’ results on the test set. Results for models not specified as multilingual are reported are the
macro-average for the three languages. Multilinugal models’ correlations are calculated on the concatenated test
sets of all three languages. The correlations are the metrics of interest. The system in bold was submitted to the
shared task.

characters. Additionally, a special token is used to
indicate whether a symbol is a word character or a
morphosyntactic attribute.

2.2 Surface Form Frequency

According to Granlund et al. (2019), one of the
attributes that correlate with accuracy in children is
the frequency of the form in the heard corpus they
are exposed to. Therefore, we chose to incorporate
this information in our model, by a combination of
methods, namely upsampling and surface form
frequency embeddings.

Upsampling We manipulate the training dataset
synthetically by upsampling each form in direct
proportion to the form-frequency as annotated in
the dataset. The way we upsample is that when
reading the raw dataset, we add the same sample ac-
cording to the value in the surface-form-frequency
column, meaning that if a sample (a lemma, mor-
phological feature and an inflection) has the value
n in the surface-form-frequency column, then it
will appear n times in the training set.

Surface-form frequency embedding Since in
the test set we cannot upsample, we need to also
utilize the form-frequency value by itself. We do
that by feeding the value of the surface-form fre-
quency into a linear layer, with the layer’s output
size the same as the other inputs’ embedding dimen-
sion, and then concatenating it to the embedding’s
layer’s output. The linear layer has no activation
function, in order to act like the embedding layer
in the transformer. After concatenation, we apply
dropout to the new embedding tensor.

2.3 Multilingual

In order to generalize the modeling of language
acquisition, we trained the model multilingually.
We did that by adding a tag to the morphosyntac-
tic attributes, together with the grammatical case,
which indicates the language. The language tag
therefore acts like the rest of the morphosyntactic
attributes and provided as input to the embedding
layer.

2.4 An Even Smaller Model

As mentioned above, the transformer introduced
in Wu et al. (2021) is a smaller transformer than
the original. Early experiments led us to suspect
that further reducing the model size could better
approximate children’s performance. We use 4
encoder-decoder layers, 2 self-attention heads, a
feed-forward layer with hidden size dFF = 128,
embedding size dmodel = 256, dropout rate 0.5,
and a batch size of 100.

3 Results and Discussion

We present the results for our models in Table 1.
They show that our methods provide substantial
improvement over the baseline, which generates
perfect inflections, but correlates poorly with the
children’s error rates. The best improvement in
correlation given by a single method was from de-
creasing model size; the best overall performance
was obtained by using all three methods, indicating
that their improvement profiles are complemen-
tary. We note that multilingual training was mostly
beneficial to model performance, suggesting that
the language acquisition process is generalizable
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across languages.
As noted in the background section, there are

two aspects relevant to this task of modeling ac-
quisition which are different than normal, well-
formed inflection, namely surface-form frequency
and phonological neighborhood density (PND).
The model we designed captures the former by
the upsampling method and frequency embed-
dings, whereas PND could theoretically be imbued
through the transformer’s encoder, which embeds
the lemma into a hidden state vector given its IPA
representation. As such, it is capable of modeling
similarity on the phonetic level, so if two words
are pronounced similarly, their hidden states can
be similar and thus provide means for PND realiza-
tion.

4 Conclusion

This paper presents the approach taken by the
MeLeL team to solving the SIGMORPHON
2023 Shared Task on Typologically Diverse
and Acquisition-Inspired Morphological Inflection
Generation. To this end, we designed a model for
morphological inflection, based on current state
of the art. We adapted the model to the task ob-
jectives, modifying hyper-parameters to add “for-
getfulness”, incorporated surface-form frequency
information by adding upsampling and embedding
the frequency counts, and trained multilingually
to generalize cross-lingual features. Our final sys-
tem, which correlates with child-produced inflec-
tion substantially better than the base system, is
informed by two aspects previously shown to be rel-
evant to children’s inflectional competence, namely
surface-form frequency and neighborhood phonetic
distance.
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Language In top-10 Acc. Pear. Pear-0 Cosine Cosine-0

Polish 134/150 .73 −0.020 0.231 0.99 0.94
Estonian 121/144 .55 0.547 0.578 0.99 0.94
Finnish 134/162 .44 0.462 0.462 0.98 0.92

Table 2: Submitted model results for each language. “In
top-10” means the number of predictions from the test
set that were found in the model’s top-10 list. “Pear”
and “Cosine” are the Pearson’s correlation and Cosine
Similarity for the predicted probabilities, where the “-0”
denotes that when the correct form is not in top-10, the
probability assigned is 0.

A Results Per Language

In Table 2 we present the results for each language
on the submitted model, as reported in the official
task website as of May 18, 2023.
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Abstract

This paper describes our systems participat-
ing in the 2023 SIGMORPHON Shared Task
on Morphological Inflection (Goldman et al.,
2023) and in the 2023 SIGMORPHON Shared
Task on Interlinear Glossing. We propose meth-
ods to enrich predictions from neural models
with discrete, i.e. interpretable, information.
For morphological inflection, our models learn
deterministic mappings from subsets of source
lemma characters and morphological tags to
individual target characters, which introduces
interpretability. For interlinear glossing, our
models learn a shallow morpheme segmenta-
tion in an unsupervised way jointly with pre-
dicting glossing lines. Estimated segmentation
may be useful when no ground-truth segmen-
tation is available. As both methods introduce
discreteness into neural models, our technical
contribution is to show that straight-through
gradient estimators are effective to train hard
attention models.

1 Introduction

This paper describes our systems participating in
the SIGMORPHON–UniMorph Shared Task on Ty-
pologically Diverse and Acquisition-Inspired Mor-
phological Inflection Generation (Goldman et al.,
2023) and the SIGMORPHON 2023 Shared Task
on Interlinear Glossing. For morphological inflec-
tion, we participate in part 1, and for interlinear
glossing we mainly target the closed track.

Morphological Inflection is the task of predicting
the correct inflected form given a lemma and set of
morphological tags. An example from the Italian
dataset in the shared task is

votare (“to vote”)
V;IND;FUT;NOM(1,PL)−−−−−−−−−−−−−→ voteremo.

The organisers of the shared task provide train, val-
idation and test splits for 26 languages. In the case
of Hebrew, 2 datasets are provided. Train splits
contain 10K (lemma, tags, form) triples, validation
and test splits contain 1K triples.

Interlinear glossing is the task of predicting
glossing lines, which is a sequence of morpholog-
ical tags, including lexical translations for each
token, on the sentence level given the surface text
and optionally a translation. An example of inter-
linear glossing taken from the train portion of the
Gitksan dataset in the shared task is:

(1) Iin
CCNJ-1.I

dip
1PL.I

gidax
ask

guhl
what-CN

wilt.
LVB-3.II

“And we asked what he did.”

The organisers of the shared task provide train, val-
idation and test splits for 7 typologically diverse
languages. Dataset sizes differ for each language.
Furthermore, the shared task features a closed track,
where only surface text and a translation is avail-
able for each sentence, and an open track, where
canonical morpheme segmentation and POS tags
are provided as additional information.

Especially when the main focus of training ma-
chine learning models is scientific discovery, even
the notoriously good performance of deep neural
models (Jiang et al., 2020) may not be satisfactory.
Instead, models should also yield insights into what
they learn about the data. However, clear and in-
terpretable explanations are often hard to derive
from models by post-hoc analysis, although many
methods exist (Holzinger et al., 2020; Burkart and
Huber, 2021; Rao et al., 2022). On the other hand,
self-interpretable models, i.e. models whose cal-
culations directly reveal discrete information, are
generally hard to train with gradient methods and
do not reach the same effectiveness as fully contin-
uous models (Niepert et al., 2021).

Therefore, in this work we aim at narrowing the
gap between inherently interpretable models and
fully continuous deep sequence-to-sequence mod-
els by demonstrating the effectiveness of straight-
through gradient estimators in optimising discrete
intermediate representations by gradient methods.
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As applications, we construct a model type for mor-
phological inflection that shows, without ambiguity,
which subset of lemma characters and tags causes
the prediction of a form character. Our proposed
model for interlinear glossing enriches the given
surface text with shallow morpheme segmentation.

Our main contributions are: (1) We show the
effectiveness of straight-through gradient estima-
tors for learning hard attention; (2) We present a
model for morphological inflection that unambigu-
ously shows which subset of lemma characters and
tags lead to the prediction of a form character; (3)
We present a model that learns shallow morpheme
segmentation jointly with interlinear glossing in an
unsupervised fashion.

2 ST Optimization of Hard Attention

We discuss hard attention as mappings of the fol-
lowing form: Let k ∈ N be the number of tar-
get positions (e.g. the number of decoder posi-
tions in a encoder-decoder sequence-to-sequence
model), and X ∈ Rn×d the matrix containing
d-dimensional feature vectors of n source ele-
ments (e.g. learned embedding vectors). Each
target element yi, i ∈ {1, . . . ,K} is calculated
as a sum of source element encodings, formally
yi =

∑
j∈→i

xj where xj is the jth row vector
in X and→i⊆ {1, . . . , n} is the set of source el-
ements aligned to target position i. Note that a
source element may be aligned to multiple target
elements, i.e. appear in→i for different i.

This mapping can be calculated by a matrix mul-
tiplication ξ ·X = Y ∈ Rk×d, where columns of
ξ ∈ {0, 1}k×n are the multi-hot encodings of index
sets (→i)i∈{1,...,K}. Formally, this means

ξi,j =

{
1 if j ∈→i

0 if j /∈→i

We assume ξ is a sample from a underlying cat-
egorical distribution where we can compute the
marginals ξ̂i,j that specify the probability

ξ̂i,j = Pr[j ∈→i]

of j being included in→i. For example, in the case
of dot-product attention, we have z ∈ Rk×n the
matrix product of decoder states and encoder states.
Then, we obtain ξ̂ by softmax over rows, and ξ by
sampling from the categorical distributions defined
by rows of ξ̂. At test time, argmax is used instead
of sampling.

The main problem is how to side-step sampling
during gradient-based optimization, because sam-
pling is not differentiable. One solution is the
so-called straight-through estimator (Bengio et al.,
2013; Jang et al., 2017; Cathcart and Wandl, 2020)
which means using ξ for the forward pass, i.e. when
computing model outputs, but using ξ̂ for backprop-
agation, i.e. when computing gradients of model
parameters w.r.t. the loss.

However, gradients of X are affected by the dis-
creteness of ξ as well, because ξi,j = 0 also means
xj does not receive gradients from yi. Therefore,
when using straight-through gradient estimation,
we should use ξ̂ when computing gradients of X.
Formally, for some differentiable function f that is
applied to Y, we set

∂f(ξ ·X)

∂ξ̂
= XT ∂f(Y)

∂Y

∂f(ξ ·X)

∂X
=

(
∂f(Y)

∂Y

)T

· ξ̂,

which can be implemented as

Y = ξ̂ ·X− sg
(
(ξ̂ − ξ) ·X

)
, (1)

where sg is the stop-gradient function (van den
Oord et al., 2017) which behaves like the identity
during forward pass, but has 0 partial derivatives
everywhere.

3 Applications

In this section, we describe how to apply the
method from Section 2 to sequence transduction
(Section 3.1) and sequence segmentation (Sec-
tion 3.2). We keep formulations more general than
necessary for the shared tasks, because we want to
highlight that the methods apply to similar prob-
lems as well.

3.1 Sequence Transduction

Sequence Transduction means transforming an in-
put or source sequence s1:n = s1, . . . , sn into
an output or target sequence t1:m = t1, . . . , tm.
Successful model types for this tasks are neu-
ral encoder-decoder networks with attention (Bah-
danau et al., 2015). These models use an encoder
which computes contextual source symbol repre-
sentations s1, . . . , sn and a decoder which com-
putes autoregressive target symbol representations
t1, . . . , tm. Entries of the attention matrix ξ̂ are
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dot products1 of source representations and target
representations, normalised to a categorical distri-
bution over source symbols for every target symbol.
Output symbols are predicted from the concatena-
tion of the respective previous autoregressive target
representation with the weighted sum of source
symbol representations, where weights correspond
to probabilities of the respective attention distribu-
tion. In terms of interpretability, this type of model
has two problems:

Soft Attention The role of soft attention (i.e. us-
ing ξ̂ directly) with regard to explaining model
predictions is not entirely understood (Jain and
Wallace, 2019; Wiegreffe and Pinter, 2019). There-
fore, we want to replace soft attention with hard
attention, whose interpretability is undisputed. We
replace soft attention with hard attention by sam-
pling source elements from rows of ξ̂ during train-
ing. The sampled index sets are used to discretise
ξ̂ into ξ. We enable end-to-end training through
Equation (1).

Contextual Representations Contextual symbol
encodings represent information about the whole
sequence, not just the encoded symbol. In deep
models, it is therefore not clear what information
actually is encoded (Meister et al., 2021). For this
reason, we want to use non-contextual symbol em-
beddings for prediction and use contextual symbol
encodings only for computing ξ̂.

However, only selecting one single source sym-
bol by hard attention and then not using any con-
textual information is not sufficient for successful
transduction. For example, in the case of mor-
phological inflection discussed here, predictions
have to take morphological tags and surrounding
characters into account when transducing a source
character. Therefore, we use two attention heads
computing different kinds of attention:

1. Softmax-normalised attention ξ̂symbol to select
a single symbol to transduce.

2. Sigmoid-normalised attention ξ̂cond to select
multiple symbols as conditions. In this case,
the sigmoid function σ is applied to every dot-
product of encoder states and decoder states
individually, yielding a Bernoulli distribution
for every combination. ξcond is the result of

1There are different ways to calculate unnormalised at-
tention scores (Luong et al., 2015; Brauwers and Frasincar,
2023), but without loss of generality we restrict the discussion
to dot-product attention.

sampling from each Bernoulli distribution. At
test time, we round to 0 or 1 instead of sam-
pling to ensure deterministic predictions.

Predictions are computed from the combined con-
text vectors, formally

Ysymbol = ξsymbol· Xembed

Ycond = ξcond· Xembed

pj(• | s1:n) = MLP([ Y
symbol
j ,Ycond

j ])

(2)

where • is a placeholder to indicate distributions
over the target alphabet, pj is the distribution for
the jth target symbol, and Xembed is the matrix con-
taining non-contextual source symbol embeddings.

In this formulation, the decoder is still autore-
gressive, but is only involved in computing atten-
tion scores, not predictions any more. Therefore,
it is entirely transparent which source symbols are
responsible for which predictions. Also, the con-
dition vector is a sum of equally weighted non-
contextual symbol embeddings. The only non-
transparent computation are the attention scores.
Formally, the model learns a mapping S×2S×N →
T where S is the source alphabet, N are the natural
numbers (to account for multiplicities of symbols),
and 2S×N indicates the power set. T is the target
alphabet. The attention mechanism selects the con-
textually appropriate arguments for this mapping.
A more detailed description of the concrete model
architecture is in Appendix B.

Of course, the increased transparency limits the
expressivity of the model. One problem is that
gradient signals for encoder and decoder are in-
sufficient, because their only remaining role is to
compute attention matrices. Therefore, we train
sequence transduction models in a multi-task set-
ting, using the interpretable mechanism described
above together with the typical mechanism, i.e. pre-
dicting the next target symbol from decoder state
and combined contextual source symbol encodings.
However, we use the same attention matrices in
both cases. Predictions of type one-to-many (e.g.
converting a single morphological tag to a suffix
consisting of multiple characters) are also prob-
lematic: For each single target symbol, a different
source symbol or condition is required. Possible
solutions are augmenting the target alphabet with
symbol ngrams (Liu et al., 2017) or allowing for lo-
cal non-autoregressive predictions (Libovický and
Helcl, 2018). However, we leave exploration of
such methods to future work. Finally, condition
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vectors Ycond are insensitive to order due to sum-
ming being a commutative operation. This problem
can be mitigated by positional encodings, but we
do not observe improvements in preliminary exper-
iments and do not explore this option here.

3.2 Sequence Segmentation

We combine hard attention with Structured Atten-
tion proposed by Kim et al. (2017). In particular,
we consider the case of sequence segmentation and
propose an end-to-end trainable interlinear glossing
model (for the closed tack, where this information
is not given) that first performs shallow morpholog-
ical segmentation2 on input words and then predicts
the gloss label for each morpheme. Note that the
method is also applicable to other tasks that require
sequence segmentation and further processing of
resulting segments, such as joint Sandhi segmen-
tation and morphological parsing in Sanskrit (Li
and Girrbach, 2022). In contrast to Kim et al., our
segment encodings respect a particular sampled
segmentation due to hard attention, and do not rep-
resent expected feature values.

Encoder Model Given a sentence as input to the
glossing model, we first apply a character level
encoder such as BiLSTM (Hochreiter and Schmid-
huber, 1997; Graves and Schmidhuber, 2005), to
compute contextual character representations on
the sentence level. Then, we continue process-
ing on the word level and denote a word w by its
characters w = s1, . . . , sn. Each word consists
of a sequence of characters that are represented
by contextual features computed in the previous
step. For each character at position i, we predict a
Bernoulli distribution parametrised by probability
p

seg
i ∈ (0; 1) that indicates whether the correspond-

ing character is the last character of a (shallow)
morpheme segment in our case. We also adopt
the method by Raffel et al. (2017) to add Gaussian
noise to unnormalised scores during training to en-
courage discreteness of segmentation probabilities.

Furthermore, each word is paired with the num-
ber of morphemes in the word. According to
Leipzig Glossing Conventions (Comrie et al., 2008,
Rule 2), the number of morphemes in a word is
given by the number of hyphen-separated labels
assigned to a word. During inference, the number

2Shallow morphological segmentation means only seg-
menting the surface string. Contrast this to canonical segmen-
tation, which also restores a latent canonical form of present
morphemes (Kann et al., 2016).

of labels and therefore morphemes is not given. In
this case, a straightforward solution is to start a new
morpheme whenever the segmentation probability
exceeds a certain threshold τ . However, we found
trivial solutions for τ like 1

2 not to work well, while
learning to predict the number of morphemes in
a word from the max-pooled character representa-
tions by a MLP works well in our case. Therefore,
we adopt the latter option and leave exploration of
the former method to future work. In cases where
we have no information about the number of seg-
ments during training, marginalising the number of
segments still remains as option.

Computing Marginals Character-level segmen-
tation scores pseg

i have to be converted to the atten-
tion matrix ξ̂ by marginalising all segmentations.
For each source element si, marginalisation com-
putes the marginal probability of having a mor-
pheme boundary at si. Adopting the terminology
of Section 2, morphemes correspond to target el-
ements and characters to source elements. Each
source element is aligned to exactly one target ele-
ment and the alignment is monotonic. This means
each source element can only be aligned to the
same target element as the immediately preceding
source element or alternatively it can be aligned
to the next target element. Accordingly, we com-
pute marginals, i.e. distributions over targets for
each source element, by the forward-backward al-
gorithm, same as Kim et al. (2017). The forward
recursion is given by α1,1 = 1 and

αi,j = αi−1,j · (1− p
seg
i−1) + αi−1,j−1 · pseg

i−1

for i > 1, j ≥ 1 where p
seg
i ∈ (0; 1) is the pre-

dicted segmentation probability of the ith source
element. Note that the first source element is al-
ways part of the first segment. Backward scores
are computed as βn,k = 1 and

βi,j = βi+1,j · (1− p
seg
i,j ) + βi+1,j+1 · pseg

i,j

for i < n and j ≤ k. Finally, marginals are given
by ξ̂i,j =

αi,j ·βi,j

αn,k
. In practise, computations are

performed in log-space.

Training For discretising segmentations, it is
most convenient to simply choose the maximum
likelihood segmentation, which corresponds to
starting new segments at the k − 1 indices with
maximum segmentation probabilities. The corre-
sponding target segment representations are com-
puted by Y = ξ · X, where X is the matrix of
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source element representations. Note that we use
the discrete assignments ξ for computing segment
representations and Equation (1) for training.

In the case of interlinear glossing, distributions
over labels for each morpheme are computed by a
MLP taking morpheme representations, i.e. rows
in Y, as input. Loss, then, is the cross-entropy
between predicted distributions over labels and
ground-truth labels. Note that in this case, and
in contrast to Section 3.1, we compute morpheme
representations from contextualised character rep-
resentations, and not from non-contextual embed-
dings, because we think that only sets of characters
of shallow morpheme segments are not sufficient
to compute the semantic information necessary for
glossing, especially the correct translations.

This has two consequences, first of all the model
is not transparent (i.e. interpretable), and character
encodings may be “fuzzy” in the sense that infor-
mation is locally spread across multiple characters
which may obscure precise morpheme boundaries.
A similar effect has been shown for sparse attention
by Meister et al. (2021). We leave exploring more
interpretable models similar to the model described
in Section 3.1 and biasing models towards more
precise morpheme segmentation to future work. In
this work, our main focus is to provide shallow mor-
pheme segmentation as additional predictions, not
to build an entirely interpretable glossing model.

4 Evaluation

Here, we evaluate the methods presented in Sec-
tion 3 by participating in the shared task on morpho-
logical inflection and in the shared task on interlin-
ear glossing. Technical details of the experimental
setup and hyperparameters are in Appendix A.

4.1 Baselines

For the morphological inflection shared task, the
organisers provide a neural and a non-neural base-
line. For the interlinear glossing shared task, the
organisers provide a transformer-based neural base-
line. Furthermore, we add a CTC-based sequence
labelling model (Graves et al., 2006) as baseline.
The CTC model encodes the source sentence on
the character level by a BiLSTM encoder and pre-
dicts a label or blank from each character. Here,
we exploit that the number of labels is the same as
the number of morphemes, and each word has at
least as many characters as morphemes.

4.2 Data Representation
For a detailed description of the shared task data,
refer to the respective shared task overview papers.
In the case of morphological inflection, we con-
vert (lemma, tags, form) triples to (source, target)
pairs by removing all punctuation from the tags and
prepending the remaining sequence of tags to the
lemma characters. Special pre- and postprocessing
is applied to Japanese in order to eliminate Kanji,
see Appendix C.

In the case of interlinear glossing, no modifica-
tion is necessary for the closed track. However,
for the open track, we replace the source text by
hyphen-separated morphemes. We assume they
contain more information than the original unseg-
mented text, and the unsegmented text does not add
any information when the segmented morphemes
are available. In this case, we also do not learn shal-
low segmentation, but predict a single label from
each morpheme. The CTC baseline flexibly learns
alignments of labels to characters in both cases. In
both cases, we approach interlinear glossing as a
sequence labelling problem.

4.3 Results
Morphological Inflection In Table 1, we report
macro-averaged test set accuracy and edit distance.
Full results for all languages achieved by our model
and the baselines are in Appendix D. For clarity,
we only report results of the best system for every
participating team. Results show that our inter-
pretable model loses on performance compared to
more flexible neural models, such as the Trans-
former baseline. On 22 of 27 languages, the neural
baseline beats our model. However, results also
show that introducing interpretability does not have
catastrophic consequences regarding performance.
With some advantages in macro-averaged scores,
our model performs roughly on par with the non-
neural baseline, beating it on 14 of 27 languages.
In summary, these results suggest that introduc-
ing interpretability to neural models causes some
decrease in performance, but having neural inter-
pretable models still gives better results than having
interpretable non-neural models.

To illustrate patterns learned by our models, we
show examples of the selected source symbols and
condition symbols. The first example in Figure 1 is
taken from the French (validation) dataset, namely
the target inflection is

juger “to judge”
V;COND;NOM(1,PL)−−−−−−−−−−−−→ “jugerions”.
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Accuracy ↑ ED ↓
Illinois 84.27 0.35
Baseline (Neural) 81.61 0.40
Ours 76.91 0.58
Arizona 72.45 0.75
Baseline (¬ Neural) 69.60 0.81

Table 1: Morphological Inflection: Best macro-averaged
test set results for accuracy and edit distance (ED) of
each team. Results of our model are highlighted in bold.

In this case, the prediction is correct. We can see
how the model first selects characters of the stem
to copy. Here, few if any other source symbols
are selected as conditions. Then, for predicting
the inflection suffix “-ions”, the model selects tag
symbols both to transduce and as conditions.

Next, we consider an example from the Italian
dataset, namely

estraniarsi “to alienate onself”
V;IND;PRS;NOM(1,PL)−−−−−−−−−−−−−→ “ci estranieremmo”.

The corresponding selected symbols and conditions
are shown in Figure 2. This example shows an in-
teresting non-monotonic pattern, namely moving
the reflexive pronoun “si” to the front and changing
it to the correct number and person, in this case
1st plural. The model correctly captures this, as
we can see from the selected transduction symbols
(left side). Also, the model learned which condi-
tions to select for changing the “s” in “si” to “c”.
After this transform, the model copies the stem
by selecting stem characters as transduction sym-
bols and conditions. Finally, the model generates
the inflectional suffix by selecting mainly tags as
transduction characters and conditions.

Interlinear Glossing In Table 2, we report
macro-averaged word level and morpheme level
test set accuracies. Both our additional CTC
baseline and our morpheme-segmentation model,
henceforth referred to as “morph”, compare
favourably to the transformer baseline. Further-
more, our morph model achieves better perfor-
mance than competing models on track 1, where
the unsupervised learning of morpheme segmen-
tation is relevant, which shows that learning addi-
tional linguistically relevant structures can improve
performance by injecting useful inductive biases in
the model. Furthermore, we again conclude that

using discrete structure as intermediate represen-
tations does not necessarily decrease performance
catastrophically. Instead, it seems helpful in this
case. Finally, we note that translations are not nec-
essary for current glossing models to achieve strong
performance, since we do not use them.

We also show examples of shallow segmentation
learned by the morph model. We focus only on the
segmentation, because this is the main contribution
of our model. Note that all segmentations were
learned in an unsupervised way for track 1 along-
side the main objective, i.e. predicting the glossing
line. For track 1, morphological segmentation is
not given, unlike for track 2.

Because our model learns shallow segmenta-
tions, while ground-truth segmentations provided
for track 2 are canonical segmentations, we can not
conduct a quantitative analysis. Therefore, we re-
strict the analysis to anecdotal qualitative analysis
of 2 example segmentions predicted by our models.

First, we consider a prediction for the following
Natugu example:

(2) Nedr
Ne-dr
ne-dr

rlilrdr
r-li-lr-dr
r-li-r-dr

doa
doa
doa

nzpwxng
nz-pwx-ng
nz-pwx-ngq

.

.

.

“The two of them had four children.”

Morphemes are separated by hyphens “-”. The pre-
dicted segmentation is in the second line, and the
ground-truth segmentation is in the third line. The
predicted segmentation differs from the ground-
truth, because it copies characters and therefore
can not change capitalisation, and two morphemes
(“lr”→ “r” and “ng”→ “ngq”) are normalised in
the ground-truth segmentation, so that they differ
from their surface form.

Next, we consider a Uspanteko example:

(3) i
i
i

tiyuq
t-iyuq
ti-yu’

sol
sol
sol

ji’
ji’
ji’

tren
t-r-en
t-r-en

tib’ek
t-ib’e-k
ti-b’e-k

“Y llega solo asi hace se va.”

Again, the predicted segmentation is in the sec-
ond line. In two cases the vowel “i” is assigned to
the wrong morpheme, but the predicted glossing
line (not shown) is still correct. In this case, in-
correct segmentation is apparently not a problem
for the subsequent classification of morphemes, but
in other cases this may cause problems. Here, we
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Figure 1: Example for French juger “to judge”. The target prediction is “juger”
V;COND;NOM(1,PL)−−−−−−−−−−−→ “jugerions”. The

prediction is correct in this case. On the left side, we show the single selected symbols for transduction, on the right
side we show the additionally selected condition symbols. Because we use hard attention, attention scores can only
be 0 or 1, and we can present them in a black-and-white style.
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Figure 2: Example for Italian estraniarsi “to alienate onself”. The target prediction is “estraniarsi”
V;COND;NOM(1,PL)−−−−−−−−−−−→

“ci estranieremmo”. The prediction is correct in this case. On the left side, we show the single selected symbols for
transduction, on the right side we show the additionally selected condition symbols.
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Track 1 Track 2
Word Level Morph. Level Word Level Morph. Level

Ours (Morph) 71.30 62.55 76.56 84.21
Ours (CTC) 68.01 60.24 74.43 78.03
Baseline 47.31 33.60 59.14 67.69

Table 2: Interlinear Glossing: Macro-averaged test set accuracy for our models and the baseline. Higher is better.

can see that contextualised character encodings can
bypass the discrete morpheme segmentation step.

5 Related Work

Much recent work in character-level transduction
aims at making models both more interpretable and
stronger by using sparse (Peters and Martins, 2019,
2020) or hard attention (Aharoni and Goldberg,
2017; Wu et al., 2018; Wu and Cotterell, 2019;
Makarov and Clematide, 2018b,a). Modifying the
attention mechanism is necessary, because for soft
attention, which does not realise hard alignment de-
cisions, the relation of model outputs and attention
weights is not fully understood (Jain and Wallace,
2019; Wiegreffe and Pinter, 2019). Hard attention
does not suffer from this problem, because it re-
alises hard alignment decisions, so that we exactly
know which information influences the output of
attention. Especially if the main purpose of models
is to gain insights into the data and not mainly to
achieve better performance on modelling it, inter-
pretability of models is crucial.

However, working with hard attention is no-
toriously difficult, because it introduces non-
differentiability into models. This means that the
sophisticated machinery developed for gradient-
based optimisation of deep neural models fails in
this case. The most popular but also most ex-
pensive approach to train hard attention mecha-
nisms is marginalising all alignments (Yu et al.,
2016; Raffel et al., 2017; Wu et al., 2018; Wu and
Cotterell, 2019) or approximating the marginalisa-
tion (Shankar et al., 2018). Different approaches
to approximate gradients instead of having ex-
act gradients by marginalisation are using rein-
forcement learning (Xu et al., 2015; Makarov and
Clematide, 2018a), reparametrising discrete dis-
tributions or working with continuous relaxations
(Jang et al., 2017; Maddison et al., 2017), and per-
turbation based gradient approximators (Niepert
et al., 2021). While all methods to use hard atten-
tion with gradient-based optimisation come with

problems, we find straight-through gradient estima-
tors (Bengio et al., 2013) very effective to compute
informative discrete intermediate representations
even for complicated attention scenarios. Similar
results have been reported for other fields as well,
both practically (Sahoo et al., 2022) and in theo-
retical analysis (Yin et al., 2019). Therefore, we
propose two models, one for interpretable sequence
transduction and one for joint segmentation and
segment classification, based on straight-through
gradient estimators.

6 Conclusion

In this work, we propose to optimise hard attention
as building block in deep neural networks, which in
principle is non-differentiable, by straight-through
gradient estimation. In particular, we describe ap-
plications to interpretable sequence-to-sequence
models and sequence segmentation models. We
evaluate our approaches on two important tasks in
computational morphology, namely morphological
inflection and interlinear glossing which are shared
tasks of the ACL SIGMORPHON 2023 workshop.
Our approaches achieve good results in morpholog-
ical inflection despite of constrained expressivity
compared to fully differentiable models, and strong
results in interlinear glossing. These results provide
encouraging evidence that learning interpretable in-
termediate representations by deep neural network
does not necessarily lead to intolerable sacrifices
in performance. We hope that future work can ben-
efit from these insights by combining interpretable
representations and the generalisation abilities of
neural models for scientific discovery.
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A Experimental Setup

Here, we describe our experimental setup, includ-
ing hyperparameters, in detail. Also note that our
code is available on GitHub. Code for morpho-
logical inflection is here: https://github.com/

LGirrbach/sigmorphon-2023-glossing. Code
for interlinear glossing is here: https://github.
com/LGirrbach/sigmorphon-2023-inflection.
All models are implemented in PyTorch (Paszke
et al., 2019) and pytorch_lightning.3

In all cases, models are optimised using the
AdamW optimizer (Loshchilov and Hutter, 2019)
without weight decay, learning rate is 0.001, and all
other parameters are the PyTorch defaults. We use

3https://github.com/Lightning-AI/
lightning/

an exponential decay learning rate scheduler which
multiplies the learning rate by factor γ after each
epoch. We tune γ for each combination of model
and language. Furthermore, we clip gradients with
absolute value greater than 1.

Models are trained exclusively on the training
splits provided by the shared task organisers. After
each training epoch, generalisation performance is
estimated by performance on the validation split.
In the case of Morphological Inflection, our main
metric is normalised edit distance (lower is better).
In the case of Interlinear Glossing, our main metric
is accuracy of correctly predicted glossing lines
(higher is better). If performance does not improve
for 3 epochs, training is stopped. Only the best
model checkpoint, i.e. the checkpoint 3 epochs
before ending training, is retained.

A.1 Hyperparameter Tuning
For each combination of language and model,
we optimise hyperparameters independently. The
tuned hyperparameters and their corresponding
value ranges are in Table 3. Note that other than
stated there, the minimum batch size for Morpho-
logical Inflection models is always 4. Also, min-
imum batch size for Arapaho and Uspanteko lan-
guages (Interlinear Glossing) is 16. The maximum
batch size for Arapaho and Uspanteko is 128. The
maximum batch size for Gitksan (Interlinear Gloss-
ing) is 16.

In each case, we sample 50 sets of hyperparame-
ters using the optuna library (Akiba et al., 2019).
For each sampled set, a model is trained and the
performance on the validation set is recorded. Af-
ter sampling 50 sets, the set that resulted in the
best performance on the validation set is saved. For
training models for submission of results to the
shared tasks and all other analyses, we exclusively
use hyperparameter that were found best in this
hyperparameter study. Since we tune parameters
for many models, we do not report the results here.
However, they are available in our GitHub reposi-
tories.

A.2 Main Evaluation
For submitting results to the shared tasks and fur-
ther analyses, we retrain 5 models for each com-
bination of model type and language. The mod-
els use the hyperparameters from the tuning study
described in Appendix A.1. However, they have
different initialisations and may therefore perform
differently. For submitting results, we select the
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Parameter Name Range

# LSTM Layers {1, 2}
Hidden Size [64; 512]
Dropout [0.0; 0.5]
Scheduler γ [0.9; 1.0]
Batch Size [2; 64]

Table 3: Ranges for values of tuned hyperparameters.
Note that batch size ranges differ in some cases.

model the model with best performance on the val-
idation set. Having multiple copies of the same
model type trained with the same hyperparameters
is useful, because especially in low-resource sce-
narios different initialisations can have a relevant
impact on the generalisation performance. On the
one hand, it is necessary to estimate this variance to
see how robust models are, on the other hand this
helps mitigating spurious effects in the analyses.

B Sequence Transduction Model:
Detailed Description

Here, we provide a more detailed description of the
sequence transduction model (see Section 3.1).

For training, we have two paired sequences s =
s1, . . . , sn and t = t1, . . . , tm, representing the
source and target sequence, respectively. The goal
is to maximise the likelihood of transducing the
source sequence s to the target sequence t.

The first step is to represent all symbols in both
sequences by high-dimensional non-contextual vec-
tors, i.e. embeddings. Thus, we arrive at embed-
ded sequences s = s1, . . . , sn and t = t1, . . . , tm,
with si, t ∈ Rd. Here, boldfaced lowercase vari-
ables represent vectors. Furthermore, we denote
the n×d matrix with source symbol embeddings as
rows as S ∈ Rn×d and we denote the m×d matrix
with all target symbol embeddings as T ∈ Rm×d.
Note, that embeddings of source symbols and tar-
get symbols are optimised independently of each
other, i.e. they are not paired.

In the next step, we encode the source sequence
by a bidirectional LSTM and arrive at a contex-
tual representation hs

i for each source symbol with
index i, 1 ≤ i ≤ n. Likewise, we encode the
target sequence using a unidirectional LSTM and
denote the autoregressive encoding of the symbol
with index j, 1 ≤ j,≤ m as ht

j . Formally, we can

write

hs
i = BiLSTM(si | s1, . . . , sn) (3)

ht
j = LSTM(tj | t1, . . . , tj−1) (4)

and representing all contextualised representations
as matrices:

Hs = BiLSTM(S) (5)

Ht = LSTM(T) (6)

So far, this formulation is the same as conventional
LSTM-based encoder-decoder models. However,
the attention mechanism is different. According to
the descriptions in Section 2 and Section 3.1, we
define attention matrices as follows:

Z = Hs · (Ht)T (7)

ξ̂symbol = softmax(Z) (8)

ξ̂cond = σ(Z) (9)

where Z ∈ Rn×m represents the unnormalised
dot-product attention scores, softmax is applied
to columns of Z and the sigmoid function σ is ap-
plied elementwise. In fact, it seems counterintuitive
to use the same unnormalised scores in both atten-
tion heads, but this works well in practise. From
these attention matrices, we obtain the discretised
alignment matrices ξsymbol and ξcond by sampling
columnwise one-hot vectors in the case of ξsymbol
and elementwise values ∈ {0, 1} for ξcond. Then,
we calculate context vectors as

Ysymbol = ξTsymbol · S (10)

Ycond = ξTcond · S (11)

Note, that here we use the discretised alignment ma-
trices ξsymbol and ξcond in place of the real-valued
matrices ξ̂symbol and ξ̂symbol. Because discretisa-
tion is non-differentiable, we instead use a way of
calculation that enables straight-through gradient
estimation, namely Equation (1):

Ysymbol = ξ̂Tsymbol · S
− sg

(
(ξ̂symbol − ξsymbol)

T · S
)

(12)

Ycond = ξ̂Tcond · S
− sg

(
(ξ̂cond − ξcond)

T · S
)

(13)
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Finally, we predict a distribution over target sym-
bols by a MLP from the concatenation of Ysymbol
and Ycond according to Equation (2):

pj(• | s1, . . . , sn) = MLP([Y
symbol
j ,Ycond

j ])
(14)

where pj(• | s1, . . . , sn) indicates the distribution
over target symbols at prediction position with in-
dex j. Here, the concrete ground truth target sym-
bol is tj .

To train the model, we use the typical supervised
objective, namely minimising the cross-entropy be-
tween predicted categorical distributions over tar-
get symbols and the one-hot encoded ground truth
target symbol at each prediction position. This
also means we use teacher forcing for sequential
predictions. During inference, t is predicted in a
step-wise fashion by greedy decoding.

However, note that in addition to the setup de-
scribed above, we also use the typical attention
mechanism in a multi-tasking fashion, but only dur-
ing training. We do not use contextualised source
symbol representations for inference. The reason
why we still use the typical loss as auxiliary loss
is that the gradient signal on Hs and Ht is weak
when their only role is to calculate Z. In this case,
we calculate

C =
(
softmax

(
Hs · (Ht)T

))T ·Hs (15)

where softmax is applied to columns, and then
predict distributions over target symbols as

paux
j (• | s1, . . . , sn) = MLP(C) (16)

so that we can also calculate the cross-entropy loss
on paux

j (• | s1, . . . , sn) and differentiate model pa-
rameter w.r.t. the sum of both losses during training.
Note, again, that this is only to stabilise training by
optimising the contextual representations, and does
not affect the model architecture for inference.

C Preprocessing of Japanese

The Japanese writing system includes 4 alphabets,
namely Latin characters (Romaji), Chinese char-
acters (Kanji), and two syllabic scripts (Katakana
and Hiragana) that were derived from Chinese char-
acters by simplification and standardisation. The
Japanese dataset provided with the shared task con-
tains Kanji, Hiragana, and Katakana. Kanji consti-
tute a problem for character-level models, because
they are effectively an open set. The number of
Kanji taught in Japanese schools is already≈ 2000,

to which variants, obsolete Kanji, and special Kanji
only used in names may be added. Therefore, a
model for Japanese language data should have the
possibility to process previously unseen Kanji.

In the case of morphological inflection, however,
this problem may be ignored, because Kanji are
never altered in inflection. Instead, inflectional
suffixes are expressed in Hiragana. Kanji may still
appear in stems, and have therefore be dealt with.

We apply the following preprocessing: We re-
place all Kanji by a special placeholder symbol K
that is the same for every Kanji. This applies to
both source lemmas and target forms. In the case
of successful prediction of target lemmas, the num-
ber of Kanji in the target form is the same as the
number of Kanji in the source lemma. Therefore,
we copy Kanji from the source by replacing the pre-
dicted placeholders. The order of Kanji in source
and target does not change. In case of predicting
fewer placeholders in the predicted form than there
are Kanji in the source lemma, which is an error,
we copy as many Kanji as there are placeholders
in the predicted form from left to right. In case of
predicting more placeholders in the predicted form
than there are Kanji in the source lemma, which
also is an error, we leave additional placeholders
unchanged, i.e. we do not change the predicted
placeholder symbol, but still copy as many Kanji
as possible from left to right.

D Full Results

Morphological Inflection In Table 5, we report
the official test set accuracies achieved by our
model for all languages. For comparison, we also
show results of the neural and the non-neural base-
line. Likewise, we report official test set edit dis-
tances in Table 6.

These results show some interesting patterns.
For example, the neural baseline performs worst on
Japanese, which we assume is an effect of the al-
phabet (see Appendix C). Therefore, our proposed
pre- and postprocessing for Japanese is important.
Alternatively, a copy mechanism could be used.

Another trend is that our model performs
strongly on semitic languages (e.g. afb, amh, arz,
heb, heb_unvoc), especially compared to the non-
neural baseline. Here, non-concatenative morphol-
ogy gives our model an advantage, because usually
individual transforms do not involve multiple char-
acters, such as suffix ngrams. Remember that our
model can only predict exactly one form character
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Track 1 Track 2

Word Level Morph. Level Word Level Morph. Level

CTC Morph CTC Morph CTC Morph CTC Morph

Arapaho 77.90 78.79 76.56 78.57 85.12 85.80 90.93 91.37
Tsez 80.96 80.94 70.29 73.95 85.68 85.79 91.16 92.01
Gitksan 04.69 21.09 09.26 11.72 13.80 26.56 17.08 50.22
Lezgi 78.10 78.78 62.03 62.10 85.44 83.41 83.45 87.61
Natugu 80.20 81.04 56.38 56.32 87.83 87.92 90.17 92.32
Nyangbo 85.34 85.05 86.74 85.24 85.90 87.98 89.96 91.40
Uspanteko 68.86 71.01 60.42 62.55 77.21 78.46 83.45 84.51

Table 4: Interlinear glossing: Official test set accuracies for all languages. Higher is better. CTC refers to our
CTC-based baseline model, “Morph” refers to our model that learns morphological segmentation in a unsupervised
way for track 1. In track 2, we simply use the provided representation.

from each combination of transduction lemma char-
acter and condition set. This shows that our model
is able to capture complex patterns, but may not be
optimal to generate extensive surface transforms.

Interlinear Glossing In Table 4, we report of-
ficial test set accuracies achieved by our models
for all languages. In most cases, our Morph model
is superior to the CTC model, which confirms the
benefit of morpheme segmentations for the task
of interlinear glossing. The same conclusion is
supported by the stark differences between track 1
and track 2. In track 2, performance is generally
much better, especially when looking at morpheme
level accuracies. Remember that we only use the
ground-truth morpheme segmentation as additional
information in track 2. We conclude that research
in morpheme segmentation will be useful for com-
putational models for interlinear glossing as well.

Ours Neural ¬ Neural

afb 75.8 80.1 30.8
amh 83.8 82.2 65.4
arz 87.6 89.6 77.9
bel 56.3 74.5 68.1
dan 85.7 88.8 89.5
deu 74.5 83.7 79.8
eng 96.0 95.1 96.6
fin 67.6 85.4 80.8
fra 67.9 73.3 77.7
grc 36.7 54.0 52.6
heb 82.7 92.0 30.9
heb(2) 81.3 83.2 64.5
hun 75.9 80.5 74.7
hye 85.9 91.0 86.3
ita 84.7 94.1 75.0
jap 95.3 26.3 64.1
kat 70.5 84.5 82.0
klr 96.4 99.5 54.5
mkd 86.7 93.8 91.6
nav 53.6 52.1 35.8
rus 82.1 90.5 86.0
san 54.5 66.3 62.2
sme 58.5 74.8 56.0
spa 88.7 93.6 87.8
sqi 71.5 85.9 83.4
swa 94.7 93.7 60.5
tur 81.8 95.0 64.6

Table 5: Official test set accuracies for all languages.
Higher is better. “Neural” and “¬ Neural” refer to the
neural and non-neural baseline, respectively. “heb(2)”
refers to the heb_unvoc dataset.
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Ours Neural ¬ Neural

afb 0.49 0.38 1.47
amh 0.22 0.24 0.59
arz 0.24 0.22 0.46
bel 1.31 0.64 0.90
dan 0.34 0.25 0.17
deu 1.00 0.48 0.80
eng 0.07 0.09 0.06
fin 0.63 0.21 0.26
fra 0.86 0.45 0.37
grc 1.43 1.00 1.04
heb 0.44 0.21 1.82
heb(2) 0.30 0.28 0.48
hun 0.57 0.44 0.47
hye 0.43 0.20 0.30
ita 0.43 0.12 0.75
jap 0.09 1.20 0.80
kat 0.79 0.35 0.51
klr 0.05 0.00 0.84
mkd 0.38 0.09 0.15
nav 1.37 1.55 1.88
rus 0.56 0.38 0.46
san 1.01 0.71 0.90
sme 0.88 0.65 0.89
spa 0.31 0.10 0.17
sqi 0.74 0.27 0.38
swa 0.06 0.06 4.10
tur 0.58 0.17 0.87

Table 6: Official test set edit distances for all languages.
Lower is better. “Neural” and “¬ Neural” refer to the
neural and non-neural baseline, respectively. “heb(2)”
refers to the heb_unvoc dataset.
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Abstract

This paper presents the findings of the SIG-
MORPHON 2023 Shared Task on Interlinear
Glossing. This first iteration of the shared task
explores glossing of a set of six typologically
diverse languages: Arapaho, Gitksan, Lezgi,
Natügu, Tsez and Uspanteko. The shared task
encompasses two tracks: a resource-scarce
closed track and an open track, where partic-
ipants are allowed to utilize external data re-
sources. Five teams participated in the shared
task. The winning team Tü-CL achieved a
23.99%-point improvement over a baseline
RoBERTa system in the closed track and a
17.42%-point improvement in the open track.

1 Introduction

Roughly half of the world’s languages are currently
endangered (Seifart et al., 2018). As a result, lan-
guage preservation and revitalization have become
significant areas of focus in linguistic research.
Both of these endeavors require thorough documen-
tation of the language, which is crucial for creating
grammatical descriptions, dictionaries, and educa-
tional materials that aid in language revitalization.
However, traditional manual language documen-
tation is a time-consuming and resource-intensive
process due to the costs associated with collecting,
transcribing, and annotating linguistic data. There-
fore, there is a need to expedite the documenta-
tion process through the use of automated methods.
While these methods can never fully replace the
expertise of a dedicated documentary linguist, they
have the potential to greatly facilitate and acceler-
ate the annotation of linguistic data (Palmer et al.,
2009).

Linguistic annotation involves several intercon-
nected subtasks, including: (1) transcription of
speech recordings, (2) morphological segmenta-
tion of transcribed speech, (3) glossing of seg-
mented morphemes, and (4) translation of the tran-
scriptions into a matrix language, such as English.

These processes result in a semi-structured output
known as an interlinear gloss, as demonstrated in
the Natügu example below:

(1) ma
house

yrkr-tx-o-kz-Ø
finish-INTS-GDIR.DOWN-also-3MINIS

.

.
Houses were gone too.

This paper presents the findings of the SIGMOR-
PHON 2023 Shared Task on Interlinear Glossing1,
which focuses on automating step (3) of the lan-
guage documentation pipeline. Notably, this shared
task represents the first initiative specifically ded-
icated to interlinear glossing. Despite the preva-
lence of interlinear glossed text as a data format in
language documentation, the automatic generation
of glossed text remains relatively underexplored in
the field of natural language processing (NLP). We
hope that this shared task can help stimulate further
work in automated glossing.

2 Background

Existing work in data driven automated gloss-
ing has utilized both traditional feature-based
approaches like maximum entropy classifiers
(MEMM) (Ratnaparkhi, 1996) and conditional ran-
dom fields (CRF) (Lafferty et al., 2001) as well
as more recent neural models like LSTM encoder-
decoders (Sutskever et al., 2014) and transformers
(Vaswani et al., 2017). Palmer et al. (2009) investi-
gate active learning for interlinear glossing using
the MEMM architecture. McMillan-Major (2020)
incorporated translations as auxiliary supervision
in a CRF glossing model. Moeller and Hulden
(2018) and Barriga Martínez et al. (2021) com-
pare traditional feature-based models and LSTM
encoder-decoder models. Zhao et al. (2020) present
a modified multi-source transformer model which
incorporates translations as auxiliary supervision.

The current literature on automatic glossing ex-
hibits notable gaps, as several techniques that have

1https://github.com/sigmorphon/2023glossingST
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proven valuable for other morphology tasks have
yet to be explored for glossing. There are several
intriguing directions for future research, including:

1. Crosslingual training (Çöltekin, 2019; Anas-
tasopoulos and Neubig, 2019) has shown
promise for morphological inflection and
could be investigated for its potential in gloss-
ing.

2. Incorporating additional noisy training data
(Wiemerslage et al., 2023) can improve ac-
curacy for low-resource inflection and could
help improve the performance of glossing
models as well. In the context of interlinear
glossing, this data could come from large mul-
tilingual databases like ODIN (Lewis and Xia,
2010) which is automatically created with the
aid of web crawling and is known to be noisy.

3. Data augmentation techniques (Liu and
Hulden, 2021; Anastasopoulos and Neubig,
2019; Silfverberg et al., 2017) are now a well-
established technique in morphological inflec-
tion and could enhance the training process
for glossing models.

4. Hard attention models (Aharoni and Goldberg,
2017; Makarov et al., 2017) have delivered
strong performance for several morphology
tasks in low-resource settings and could also
be applied to interlinear glossing.

5. Multitask training (Rama and Çöltekin, 2018)
and meta-learning (Kann et al., 2020) tech-
niques could be leveraged to enhance glossing
performance.

6. Finally, pretrained language models like ByT5
(Xue et al., 2022) have demonstrated strong
performance in various morphology tasks, yet
their potential for interlinear glossing remains
unexplored.

The submissions in this shared task explore several
of these techniques, including the use of pretrained
language models, data augmentation, utilization of
external data, and the application of hard attention
models.

3 Tasks and Evaluation

3.1 Interlinear Glossed Text
Interlinear Glossed Text (IGT) serves as a means
to capture the syntactic and morphological charac-

teristics of words within a corpus. It is a semi-
structured format which lacks strict annotation
standards, leading to variations in annotation prac-
tices among different annotators. These variations
can be influenced by documentation requirements,
adopted theoretical frameworks, and other factors
(Palmer et al., 2009).

For this shared task, the data adheres to the
Leipzig glossing conventions (Lehmann, 1982).
The Leipzig format follows a three-line documen-
tation style, including morphological segmenta-
tion of the input tokens, glosses of individual mor-
phemes, and translations. Below is an example
from Arapaho, one of the languages used in the
shared task:

(2) nih-bii3ihi-noo
2S.PAST-eat-1S

nohkuseic
morning

I ate this morning.

In this example, the first line represents the mor-
phological segmentation, the second line provides
glosses for each morpheme, and the third line
presents the corresponding translation.

The transcription line (nih-bii3ihi-noo nohku-
seic in Example 2) gives the orthographic transcrip-
tion of a sentence, phrase or utterance in the source
language. The transcription may be segmented
with dashes to indicate morpheme boundaries.

The gloss line ("2S.PAST-eat-1S morning" in
Example 2) provides a linguistic gloss for each mor-
pheme in the transcription line. For glossing, mor-
phemes are grouped into two distinct categories:

1. Functional morphemes or grams include af-
fixes and functional words which do not carry
their own lexical meaning. Functional mor-
phemes are glossed using uppercase labels
like 1S (first-person singular affix) which in-
dicate grammatical category and/or syntactic
function. Portmanteau morphs, which denote
multiple functions, can be glossed using com-
pound labels like 2S.PAST. Gloss labels typ-
ically come from a fixed inventory like Uni-
Morph (Sylak-Glassman, 2016; Kirov et al.,
2018; Batsuren et al., 2022b), although con-
ventions are not standardized and are often
varied to fit the needs of the language.

2. In contrast to functional morphemes, lexical
morphemes or stems are open-class words and
stems which carry semantic meaning. These
are glossed in lowercase using their translation
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in a matrix language like English or Spanish;
thus, for example, bii3ihi is glossed as eat.

The translation line (’I ate this morning.’ in
Example 2) of an IGT entry provides a transla-
tion in a high-resource language such as English.
The tokens in the translation are not necessarily
aligned with specific words in the source language,
as languages often express equivalent concepts in
differing numbers of words.

3.2 The Interlinear Glossing Task

The objective of the shared task is to develop au-
tomated systems capable of predicting the gloss
of a given input utterance, using its orthographic
transcription and translation as input. The glossing
task presents several key challenges, such as disam-
biguation of ambiguous morphemes and accurate
translation of word stems. The shared task explores
two distinct resource settings, referred to as tracks,
which differ in terms of the supervision provided
during model training and at test-time.

The Closed Track (Track 1) In the closed track,
the input consists of the orthographic transcription
of the target utterance, for example, nihbii3ihinoo
nohkuseic (Arapaho), and its translation to a matrix
language like English: ’I ate this morning’ (note the
lack of morpheme boundaries in the transcription).
The aim is to generate a gloss 2S.PAST-eat-1S
morning. This setting poses a significant challenge
since the glossing model does not have access to a
morphological segmentation of the input utterance.
Therefore, it must infer the number of morphemes
and the identity of the component morphemes for
each input word without any supervision. The
closed setting draws inspiration from the work of
Zhao et al. (2020), which utilizes a similar setup.

The Open Track (Track 2) In a practical lan-
guage documentation setting, various types of re-
sources can be available as auxiliary supervision
when training glossing systems. These resources
may include manually glossed text, morphological
segmentations, dictionaries, raw text in the target
language, and more. The open track aims to ex-
plore the extent of glossing performance achiev-
able when participants are allowed to utilize aux-
iliary resources. In addition to the data provided
in the closed track, morphological segmentations
are provided in the open track. For instance, for
the Arapaho example mentioned earlier, a mor-
phological segmentation nih-bii3ihi-noo nohkuseic

would be included. Gold standard segmentations
are provided both for model training and at test-
time. Moreover, participants are encouraged to
make use of external data resources except for ad-
ditional glossed text in the target language.

3.3 Evaluation of Glossing Performance
We evaluate glossing performance with regard
to two metrics: word-level and morpheme-level
glossing accuracy. Word-level glossing accuracy
is defined as the fraction of words in the test
data which received a fully correct gloss like
2S.PAST-eat-1S:

wacc =
Count(correctly glossed tokens)

Count(all tokens)
(1)

Note that all the individual morphemes in the
word have to be correctly glossed. In contrast,
morpheme-level glossing accuracy is defined as
the fraction of morphemes in the test data which
received the correct gloss:

macc =
Count(correctly glossed morphemes)

Count(all morphemes)
(2)

In the closed track, where gold standard mor-
phological segmentations are not provided, it may
happen that the system predicts too few or too many
glosses for an input word. This complicates compu-
tation of morpheme-level glossing accuracy. When
too few morphemes are predicted, we pad the pre-
dictions with NULL morphemes until the number
of morphemes corresponds to the gold standard
gloss (e.g. 2S.PAST-eat→ 2S.PAST-eat-NULL).
When too many morphemes are predicted, we dis-
card extra morphemes at the end of the output (e.g.
2S.PAST-eat-1S-PL→ 2S.PAST-eat-1S).

For the official shared task results, we compute
accuracy over multiple languages. We then report
micro average glossing accuracy across the differ-
ent languages. Micro average word-level glossing
accuracy is used for the official ranking of the par-
ticipating submissions.

3.4 Comparison to Other NLP Tasks
While interlinear glossing forms a distinct and inter-
esting NLP task in its own right, it has connections
to many commonly explored NLP tasks, particu-
larly part-of-speech (POS) tagging, lemmatization,
morphological tagging2, and morphological seg-
mentation (McCarthy et al., 2019; Cotterell and

2Also known as morphological analysis in context.
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Heigold, 2017; Müller et al., 2015; Batsuren et al.,
2022a). All of these tasks involve varying degrees
of grammatical analysis.

Interlinear glossing is particularly strongly con-
nected to morphological tagging as both involve
morphological annotation in context. However,
there are two major differences between the tasks:

1. In interlinear glossing, a morpheme-level an-
notation of the input sentence is generated.
The output of a glossing model provides the
order of various morphological elements in
the input tokens, indicating the position of
different affixal elements. In contrast, mor-
phological tagging provides a more abstracted
representation where the order of morphemes
is lost.

2. Another difference between morphological
tagging and interlinear glossing is related to
the treatment of lexical elements. In morpho-
logical tagging, it is common to return the
lemma of input words along with the associ-
ated grammatical information of the inflected
input word. In glossing, on the other hand,
it is common to annotate word forms with
a translation of the input lexeme in a matrix
language like English. This substantial differ-
ence between the tasks introduces elements of
machine translation into the morphology task.

Following the approaches of McMillan-Major
(2020) and Zhao et al. (2020), the shared task
datasets provide gold standard translations of the
input sentences as additional supervision during
both training and test time. Thus, the task of lex-
eme translation involves retrieving the lemma of
the correct lexemes from the provided translation.

4 Data

4.1 Languages and Glossed Data

Arapaho [arp] is an Algonquian language with
a few hundred speakers in Wyoming, USA. It
is highly agglutinating and polysynthetic, with
the verb carrying the heaviest morphological load
(Cowell and Moss, 2008). Polysynthesis in Ara-
paho includes noun incorporation, where special
forms of certain nouns become part of the verb.
The corpus used in this shared task contains narra-
tives and conversation that have been documented
starting in the 1880s until the present day, includ-
ing a few religious texts that are translations from

English. It is written in the popular Arapaho or-
thography. Much of the data is available through
the Endangered Languages Archive3 or the Cen-
ter for the Study of Indigenous Languages of the
West4.

Gitksan [git] The Gitksan are one of the Indige-
nous peoples of the northern interior region of
British Columbia, Canada. Today, Gitksan is the
most vital Tsimshianic language, but is still criti-
cally endangered with an estimated 300-850 speak-
ers (Dunlop et al., 2018). The language has an
“analytic to synthetic” morphology (Rigsby, 1986,
1989) and, unlike many Canadian Indigenous lan-
guages, it is not polysynthetic. It has a rich assort-
ment of derivational morphemes and substantial ca-
pacity for compounding; consequently, its degree
of word-complexity has been described as similar
to German (Tarpent, 1987). The data used for the
shared task were extracted from a paper containing
three stories by the Gitksan elders Barbara Sen-
not, Hector Hill and Vincent Gogag (Forbes et al.,
2017).

Lezgi [lez] (aka Lezgian) is a Nakh-
Daghestanian (Northeast Caucasian) language
spoken by over 500,000 speakers in Russia and
Azerbaijan (Eberhard et al., 2023). The corpus
used is from the Qusar dialect in Azerbaijan
(Donet, 2014). It is a highly agglutinative language
with overwhelmingly suffixing morphology
(Haspelmath, 1993). Noun cases are formed by
case-stacking which is a unique characteristic of
Nakh-Daghestanian languages. Instead of a unique
morpheme for each case, case-stacking composes
case inflections by “stacking” sequences of case
suffixes as illustrated in Table 1.

Natügu [ntu] belongs to the Reefs-Santa Cruz
group in the Austronesian family. It is spoken by
about 4,000 people in the Temotu Province of the
Solomon Islands. It has primarily agglutinative
morphology with complex verb structures (Åshild
Næss and Boerger, 2008). The corpus used for the
shared task contains transcribed narratives and a
large written text.5

Tsez [ddo] (aka Dido) belongs to the Tsez-
Hinukh branch of the Nakh-Daghestanian family.

3https://elar.soas.ac.uk/Collection/MPI189644
4https://www.colorado.edu/center/csilw/

arapaho-language-archives
5Natqgu grammar and large text available at https://www.

langlxmelanesia.com/tilp
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\t heetne'ii'P woowooyoo'ohk heet-ne'ii'cencei'soo'
\m heet-ne'ii'-P woo-wooyoo'-ohk heet-ne'ii'-cen-cei'soo-'
\g FUT-that's.when-pause REDUP-new-SUBJ FUT-that's.when-very-different-0S
\l It will be , pretty soon it will all be different [ from how it is now ].

Figure 1: A glossed Arapaho sentence in the official shared task format for the open track (i.e. track 2).

WORD FORM GLOSS

itim SG.ABS ‘man’
itim-ar PL.ABS ‘men’
itim-ar-di PL-ERG ‘men’
itim-di-k OBL-AD.ESS ‘near a man’
itim-di-k-di OBL-AD-DIR ‘toward a man’
itim-ar-di-k-ay PL-OBL-AD-EL ‘from men’

Table 1: A simplified example of Lezgi case-stacking on
the noun root itim ‘man’. Absolutive (ABS) and essive
(ESS) cases and singular number (SG) are marked by
null morphemes. The plural suffix (PL) attaches directly
to the noun stem. The ergative (ERG) and the oblique
(OBL) suffixes attach after the number. The adessive
case (AD.ESS) attaches to the oblique suffix. The elative
(EL) and directive (DIR) cases are added in the fourth
slot after the root.

It has about 14,000 speakers in Daghestan, Russia.
It has a rich agglutinative, suffixing morphology.
The corpus is part of the Tsez Annotated Corpus
Project (Comrie et al., 2022; Abdulaev and Abdul-
laev, 2010).6

Tutrugbu [nyb] (aka Nyagbo, Nyangbo) is a
Niger-Congo language with a few thousand esti-
mated speakers in Ghana (Eberhard et al., 2023).
It is a highly agglutinative language that features
some reduplication (Essegbey, 2019). The corpus
from which the shared task data was extracted con-
tains a variety of spontaneous data supplemented
with elicited data collected with a range of docu-
mentary techniques.7

Uspanteko [usp] (aka Uspantek) belongs to the
K’ichean branch of the Mayan language family spo-
ken by as many as 6000 speakers in the Guatemalan
highlands and in diaspora communities (Bennett
et al., 2016). Uspanteko is a lightly agglutinative
language with complex verbal morphology and
ergative-absolutive alignment (Coon, 2016). Us-
panteko is unusual among Mayan languages for

6https://tsezacp.clld.org/
7‘Unpublished Nyangbo (Tutrugbu) texts’ compiled by Dr.

James Essegby

its use of contrastive lexical tone (Bennett et al.,
2022).8 The texts were collected, transcribed, trans-
lated and annotated as part of an OKMA Mayan lan-
guage documentation project (Pixabaj et al., 2007)
and are currently accessible via the Archive of In-
digenous Languages of Latin America.9 The cor-
pus includes oral histories, personal experience
texts, and stories; preprocessing of the corpus is
described in Palmer et al. (2010).

4.2 Shared Task Data

Shared task datasets were generated from origi-
nal glossed source data in various formats (LaTeX,
CLDF10 and Flex11) using dedicated conversion
scripts. We aimed to make minimal changes to the
original glossed data while ensuring consistent an-
notation practices across languages. All morpheme
boundaries were converted to a unified format using
hyphens ("-"), all glossed word stems were lower-
cased (or titlecased in the case of proper nouns)
and all affix glosses were uppercased. Apart from
potential changes to casing, gloss symbols were not
modified. Portmanteau morphs, where morpheme-
boundaries cannot be identified, were glossed using
a period syntax (".") as in the examples here.it.is
and 2S.PAST.

An example of a glossed Arapaho sentence in
the official shared task format is given in Figure
1. This entry comes from the open track (track 2),
where morphological segmentations are provided.
The following lines are included in the gloss:

\t the orthographic representation,

\m the morphological segmentation of the ortho-
graphic representation,

\g the gloss of the orthographic representation
and

\t the English or Spanish translation.

8Tone is not, however, marked in the shared task dataset.
9https://ailla.utexas.edu

10https://cldf.clld.org/
11https://software.sil.org/fieldworks/
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The token counts in the transcription, segmenta-
tion and gloss of a given example have to match.
However, the token count in the translation line
is allowed to differ. Examples in the source data
which did not follow this restriction were filtered
out.

We split the datsets into non-overlapping train-
ing, development and test data. For languages
where there was a clear division into separate texts,
we aimed to use one complete text for development
and testing, respectively, and the rest of the data
for training. This was the case for Gitksan and
Arapaho.12 For the rest of the languages, we used
80% of the sentences for training, and 10% for de-
velopment and testing, respectively. Statistics on
data sizes are provided in Table 2. Note that the
table gives token counts, not sentence counts, and
the counts do not, therefore, exactly correspond to
an 80-10-10 split.

Data characteristics The shared task datasets
encompass a range of diverse data conditions. The
training data size, as shown in Table 2, varies from
approximately 140k tokens for Arapaho to a mere
261 tokens for Gitksan, with most languages hav-
ing between 2k and 15k tokens of training data.
With the potential exception of Arapaho and Us-
panteko, all the languages qualify as low-resourced
datasets. Additional characteristics of the datasets
are presented in Table 3:

1. Type-token-ratio (TTR) for most languages
falls within the 20-30% range with the notable
exception of Gitksan where TTR is 61.3%
which is likely to be related to the very small
size of the training set.

2. We compute out-of-vocabulary (OOV) rates
on the test set. For most languages, OOV rates
are below 30% with Gitksan once again being
a notable exception with OOV rate of 79.9%.
In general, these rates are high compared to
typical OOV rates for English text.

3. As a further analysis, we also report
morpheme-level OOV rates on the test set,
which can be more illuminating for morpho-
logically complex languages. These fall below
10% for most languages with the exception
of Gitksan, where morpheme-level OOV is

12For Arapaho, text 56 is used for development and text
63 for testing. For Gitksan, we used Hector Hill’s story for
development and Vincent Gogag’s story for testing.

TRAIN DEV TEST

ARAPAHO 139714 17573 17597
GITKSAN 261 388 384
LEZGI 7029 992 886
NATÜGU 10140 1280 1076
NYANGBO 8669 1093 1057
TSEZ 37458 4761 4701
USPANTEKO 41923 928 2405

Table 2: Token counts for shared task train, development
and test data. The counts are the same for both the open
and closed track.

41.2%, again due to the very small training
set.

In Table 3, we also report statistics related to the
morphological characteristics of the languages:

1. The average number of morphemes per word
can be computed based on the morphologi-
cal segmentations provided for track 2. For
training data, this ranges from 1.4, for Us-
panteko, to 2.0 for Tsez, meaning that many
multimorphemic words can be found in all of
the datasets.

2. Finally, we also compute the gloss ambiguity,
that is, the average number of distinct glosses
that a morpheme receives in the training data.
For example, the English suffix -s is ambigu-
ous between two readings because it can be
both a number and tense marker. Glossing
ambiguity can be seen as one indicator of the
difficulty of a glossing task. For most of the
shared task languages, it is very close to 1.
The only exceptions are Gitksan (1.3) and Us-
panteko (1.2), both of which contain frequent
and ambiguous affixes.

The shared task datasets also provide English or
Spanish translations, which can be valuable when
glossing word stems. Table 4 presents statistics on
how often the correct stem translation can be found
in the utterance translation.13. We present sepa-
rate statistics for in-vocabulary tokens, which have
been observed in the training set, and for out-of-
vocabulary (OOV) tokens, which are absent from
the training set. The coverage ranges from 37%
for Uspanteko (40% for OOV tokens) to 71% for

13To compute these statistics, the translations in the test
set were first lemmatized using the Stanza toolkit (Qi et al.,
2020).
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Tsez (72% for OOV tokens). This demonstrates
that translations are likely to contain valuable infor-
mation for the glossing task, particularly for OOV
tokens, which can be challenging to gloss without
access to stem translations.

5 Glossing Systems

5.1 The Baseline System

The baseline system utilizes the RoBERTa architec-
ture with default hyperparameters (Liu et al., 2019).
The glossing task is treated as a token classification
task, where words or morphemes form the input,
and the IGT gloss (or gloss compound) forms the
output label. In the closed track, we train word-
level models; in the open track, where morphologi-
cal segmentations are provided, morphemes form
the input units to the glossing model. The base-
line model is trained on the shared task training
data without pretraining. We train one model for
each language. For a detailed presentation of the
baseline system, please see Ginn (2023).14

A transformer-based architecture is an effective
choice for this task, as interlinear glossing often
involves disambiguating homonymous morphemes
based on context. For example, the English plural
morpheme -s is spelled the same as the present-
tense third-person singular verb morpheme, and the
correct label must be determined from the lexical
and sentence context. We decided to use a masked
architecture rather than a sequence-to-sequence
setup. During initial development, we also experi-
mented with a sequence-to-sequence architecture,
but this required more data to converge, and deliev-
ered inferior performance. Error analysis revealed
this to be due to isolated insertions and deletions
of morphemes. This is difficult to fix because there
exists no a priori restriction on the morpheme count
generated by the model.

The baseline system includes a number of known
limitations which leave room for improvement;
particularly, it can not effectively handle out-of-
vocabulary words or morphemes, does not perform
any segmentation in the closed track, and does not
make use of part-of-speech tags or other resources
in the open track. The system also does not utilize
translations.

14Code for the baeline system can be found in the
shared task repository https://github.com/sigmorphon/
2023glossingST/tree/main

5.2 Participant Systems
Here we describe the participating systems. Table
5 provides an overview of the strategies employed
by the different teams.

COATES (Coates, 2023) This system is based on
the LSTM encoder-decoder architecture (Sutskever
et al., 2014) and participated in the closed track of
the shared task. The input to the glossing system
consists of short context windows centered at the
target word. Windows of width 1 and 2 are used to
generate candidate predictions and the final output
prediction of the model is generated using weighted
voting among the output candidates.

LISNTEAM (Okabe and Yvon, 2023) This sub-
mission is a hybrid CRF-neural system and par-
ticipated in the open track of the shared task. The
system is a combination of two components: (1) An
unsupervised neural alignment system SimAlign
(Sabet et al., 2020) originally intended for machine
translation, and (2) A CRF sequence labeling sys-
tem Lost (Lavergne et al., 2011). The alignment
system is used during training to associate word
stems with lexemes in the translations. It uses co-
sine similarity of BERT representations (Devlin
et al., 2019) to score the association between lex-
emes in the translation and the word stems in the
gloss. Alignment allows the system to learn to
pick lexemes from the translation line for stems
which do not occur in the training data and thus
to gloss unseen word forms. The CRF model is
used to gloss the morphemes in the input sentence.
The team submitted two systems LISNTEAM1 and
LISNTEAM2 which differ with regard to the fea-
turization of the CRF model.

SIGMOREFUN (He et al., 2023) This team sub-
mitted transformer-based systems and participated
in the open track of the shared task. The authors ex-
periment with the pretrained byte-level transformer
model ByT5 (Xue et al., 2022) and the multilingual
pretrained transformer XLM-RoBERTa (Conneau
et al., 2020) fine-tuned for glossing. Interestingly,
the ByT5 model falls behind the XLM-RoBERTa
model in terms of glossing accuracy. To boost per-
formance, the team incorporate additional glossed
data from the ODIN database and, for Gitksan,
lexemes from a Gitksan morphological analyzer
(Forbes et al., 2021). The team also experiment
augmenting the gold standard training sets with ar-
tificially generated glossing data. This team incor-
porated both translations and segmentations into
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ARAPAHO GITKSAN LEZGI NATÜGU NYANGBO TSEZ USPANTEKO

(1) TTR 31.9% 61.3% 27.0% 27.5% 22.3% 29.4% 21.9%
(2) OOV 25.8% 79.9% 15.2% 21.4% 8.4% 18.1% 20.5%
(3) MORPH OOV 3.6% 41.2% 4.9% 2.8% 1.1% 0.5% 5.3%
(4) MORPHS PER WORD 1.8 1.6 1.5 1.6 1.6 2.0 1.4
(5) GLOSSES PER MORPH 1.0 1.3 1.0 1.0 1.0 1.0 1.2

Table 3: Statistics concerning the shared task datasets: (1) TTR type-token-ratio in training data, (2) Amount of
OOV, or out-of-vocabulary, tokens in the test set, (3) Amount of OOV morphemes in the test set, (4) average number
of morphemes per word in the training data, and (5) Average number of possible glosses per morpheme in the
training data.

TOK. RECALL OOV TOK. RECALL

ARAPAHO 51.32 49.87
GITKSAN 44.29 44.13
LEZGI 42.98 44.89
NATÜGU 58.72 58.21
TSEZ 71.17 71.66
USPANTEKO 36.49 40.14

Table 4: Amount of stem glosses which are found in
the translation of the sentence. We present figures sep-
arately for all tokens and OOV tokens which are not
found in the training data. Nyangbo is missing from this
table because translations are not provided.

the model input using specialized prompts. The
team made four submissions to the shared task SIG-
MOREFUN1 – SIGMORFUN4 displaying different
combinations of model and data augmentation strat-
egy.

TEAMSIGGYMORPH (Cross et al., 2023) This
team participate both in the open and closed track.
They investigate the performance of different input
and output representations: character-based, byte-
based and subword-based. For the closed track,
the team used a vanilla transformer model. For
the open track, they applied a BiLSTM encoder-
decoder model and the ByT5 byte-level transformer
model. The team accomplished stem-translation
using a heuristic approach which combines transla-
tion statistics computed from the training set and
copying of unseen stems, which often represent
proper names. Like team SIGMOREFUN, this team
also found that ByT5 underperformed compared to
other model architectures.

TÜ-CL (Girrbach, 2023) This team participated
both in the open and closed track of the shared task
(in fact, the team also participated in this year’s
SIGMORPHON inflection shared task using the
same model). The system uses straight-through

gradient estimation (Bengio et al., 2013) to train
a hard-attentional neural glossing model. For the
closed track submission, the system induces a shal-
low morphological segmentation of the input text.
This happens without any segmented training data
which is not available in the closed track. Mor-
pheme boundaries are assigned using the hard at-
tention weights learned by the model. For the open
track, gold standard segmentations are used. For
both tracks, gloss tags and stems are then predicted
for each morpheme using an MLP. This model de-
livers very strong performance while, surprisingly,
not utilizing translations in any way.

6 Results and Discussion

6.1 Closed track (track 1)

The official shared task results for the closed track
are presented in Table 6. Three teams participated
in the closed track and two of these teams presented
a complete submission for all shared task languages
and beat the baseline system. Only teams with a
complete submission (TÜ-CL and COATES) were
eligible to participate in the official shared task
evaluation. Of these two teams, TÜ-CL achieved
the best micro average word-level glossing accu-
racy 71.30% with their second submission TÜ-CL2.
Team TÜ-CL also delivering the best performance
for all individual languages in track 1.

It is noteworthy that both teams TÜ-CL and
COATES beat the shared task baseline by wide
margins: 23.99%-points for TÜ-CL and 12.24%-
points for COATES. This demonstrates that even
in the resource-scarce closed track setting, large
improvements in glossing accuracy are possible
over a baseline transformer system. All track 1
submissions strongly outperform the baseline for
Nyangbo. Likewise, we see great improvements
over the baseline for Lezgi and Natügu.

Results for morpheme-level glossing accuracy
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HA TRANSFORMER BYT5 LSTM CRF-HYBRID USE TRANSL. EXT. DATA DATA AUG.
COATES X
LISNTEAM1 X X
LISNTEAM2 X X
SIGMOREFUN1 X X X X X
SIGMOREFUN2 X X X X X
SIGMOREFUN3 X X X X X
TEAMSIGGYMORPH1 X
TEAMSIGGYMORPH2 X X X X
TÜ-CL1 X
TÜ-CL2 X

Table 5: Summary of design features in the shared task systems: Hard attention (HA), use of transformer architecture
TRANSFORMER, use of the BYT5 pretrained model, use of LSTM encoder-decoder architecture, use of a hybrid
CRF and neural model (CRF-HYBRID), use of the provided translations (USE TRANSL.), use of external data (EXT.
DATA), and use of data augmentation techniques (DATA AUG.).

WORD-LEVEL ACCURACY

Submission Arp Ddo Git Lez Ntu Nyb Usp AVG Complete?

TÜ-CL2 78.79 80.94 21.09 78.78 81.04 85.05 73.39 71.30 YES
TÜ-CL1 77.90 80.96 4.69 78.10 80.20 85.34 68.86 68.01 YES
COATES1 55.56 74.45 6.51 65.69 70.63 77.01 66.99 59.55 YES
BASELINE 71.14 73.41 16.93 49.66 42.01 5.96 72.06 47.31 YES
TEAMSIGGYMORPH1 - 52.46 - 22.91 41.82 59.22 57.26 46.73

MORPHEME-LEVEL ACCURACY

Submission Arp Ddo Git Lez Ntu Nyb Usp AVG Complete?

TÜ-CL2 78.47 73.95 11.72 62.10 56.32 85.24 70.05 62.55 YES
TÜ-CL1 76.56 70.29 9.26 62.03 56.38 86.74 60.42 60.24 YES
TEAMSIGGYMORPH1 - 53.19 - 28.13 31.86 66.25 59.73 47.83
COATES1 45.42 64.43 9.84 40.74 37.55 72.82 56.02 46.69 YES
BASELINE 44.19 51.23 8.54 41.62 18.17 14.22 57.24 33.60 YES

Table 6: Word-level accuracy (above) and morpheme-level accuracy (below) for track 1. The AVG column gives the
micro average accuracy across languages. Averages are not comparable for partial submissions, where results for
some languages are missing.

largely mirror those of word-level accuracy. Again
TÜ-CL delivers the best performance for all lan-
guages. A general observation is that morpheme-
level accuracies in track 1 are lower than word-
level accuracies. This can be attributed to the fact
that multi-morphemic words are often difficult to
gloss correctly when the morphological segmen-
tation is not give. A single incorrectly identified
morpheme boundary will often result in several in-
correctly glossed morphemes. To see why this is
the case, consider the English past tense verb form
walked. If the word is incorrectly analyzed as a
monolithic adjective, both the stem walk and past
tense marker -ed will be incorrectly glossed. This
effect weighs down morpheme-level accuracy for
the closed track.

6.2 Open track (track 2)

The official shared task results for the open track
are presented in Table 7. In the open track, we
got submissions from four teams, two of which
presented complete submissions for all shared task
languages. Both of these teams beat the baseline
with regard to micro averaged word-level glossing
accuracy. Similarly as in the closed track, TÜ-CL
achieved the best overall performance and the best
performance for most languages. For Arapaho, the
SIGMORFUN team achieved the best performance
and, for Natügu and Gitksan, LISNTEAM achieved
the best performance. TÜ-CL beat the baseline
system with regard to micro average word-level
glossing accuracy by a wide margin of 17.42%-
points.

Overall performance in the open track is, un-
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WORD-LEVEL ACCURACY

Submission Arp Ddo Git Lez Ntu Nyb Usp AVG Complete?

TÜ-CL2 85.80 85.79 26.56 83.41 87.92 87.98 78.46 76.56 YES
TÜ-CL1 85.12 85.68 13.80 85.44 87.83 85.90 77.21 74.43 YES
SIGMOREFUN2 82.92 80.07 31.25 77.77 78.72 85.53 77.51 73.39 YES
LISNTEAM1 - 84.85 28.39 83.41 88.85 - 76.30 72.36
SIGMOREFUN1 85.87 73.77 27.86 74.15 82.99 80.61 73.47 71.25 YES
TEAMSIGGYMORPH2 - 79.28 26.56 81.72 87.73 76.25 75.84 71.23
SIGMOREFUN4 80.56 82.79 20.57 63.77 77.97 82.59 75.72 69.14 YES
LISNTEAM2 - - 31.51 82.73 89.31 - - 67.85
BASELINE 85.44 75.71 16.41 34.54 41.08 84.30 76.55 59.14 YES
SIGMOREFUN3 73.27 62.37 4.17 38.60 55.11 69.25 70.85 53.38 YES

MORPHEME-LEVEL ACCURACY

Submission Arp Ddo Git Lez Ntu Nyb Usp AVG Complete?

TÜ-CL2 91.37 92.01 50.22 87.61 92.32 91.40 84.51 84.21 YES
SIGMOREFUN2 89.34 88.15 52.39 82.36 85.53 89.49 83.08 81.48 YES
LISNTEAM1 - 91.39 50.80 87.17 92.60 - 82.42 80.88
TEAMSIGGYMORPH2 - 88.36 47.76 86.59 92.10 82.74 82.22 79.96
SIGMOREFUN1 91.36 84.35 47.47 80.17 88.35 85.84 80.08 79.66 YES
TÜ-CL1 90.93 91.16 17.08 83.45 90.17 89.96 83.45 78.03 YES
LISNTEAM2 - - 51.09 86.52 92.77 - - 76.79
BASELINE 91.11 85.34 25.33 51.82 49.03 88.71 82.48 67.69 YES
SIGMOREFUN4 80.81 78.24 12.74 50.00 63.39 85.30 73.25 63.39 YES
SIGMOREFUN3 72.10 57.93 2.60 26.24 35.62 70.01 67.73 47.46 YES

Table 7: Word-level accuracy (above) and morpheme-level accuracy (below) for track 2. The AVG column gives the
micro average accuracy across languages. Averages are not comparable for partial submissions, where results for
some languages are missing.
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derstandably, higher than in the closed track due
to the fact that gold standard morphological seg-
mentations were provided during training and test
time, and additional resources were allowed, which
some of the participants utilized. However, abso-
lute improvement over the baseline is lower in the
open track than the closed track. This may be a
consequence of the fact that the learning problem
in the open track is easier. It is also noteworthy that
morpheme-level performance is higher than word-
level performance for the open track, whereas the
opposite is true for the closed track. This is un-
derstandable because gold standard morphological
segmentations are provided and a single isolated
glossing error is less likely to ruin the gloss for the
complete word form in the open track.

6.3 Analysis of performance
We now present a more detailed analysis of the
shared task results. This analysis is related to
Figure 2 which presents average performance of
shared task systems on the different languages and
their relationship with training data size, out-of-
vocabulary (OOV) rate and type-token-ratio (TTR).

Impact of training data size The size of the
training set is one of the most influential factors
determining the performance of natural language
processing systems. This observation also holds
true for the shared task results. The training data
sizes vary from 261 tokens for Gitksan (git) to
139,714 tokens for Arapaho (arp). It is evident
that the highest micro average word-level gloss-
ing performance in the open track is achieved for
Arapaho, which benefits from the largest training
set. In the closed track, Arapaho stands among
the top three languages in terms of glossing accu-
racy, but the best performance is observed for Tsez
(ddo), which has approximately 37,000 training to-
kens. This places it among the higher-resourced
languages in the shared task. Conversely, Gitksan,
with the smallest training set, consistently exhibits
the lowest glossing performance. Overall, a clear
trend emerges, demonstrating an improvement in
glossing performance as the training data size in-
creases.

Impact of OOV rate While out-of-vocabulary
(OOV) rate computed on the test set is an important
predictor of performance in tasks like morphologi-
cal tagging (Müller et al., 2015), it does not seem
to have a clear impact on system performance in
this shared task. While the highest OOV rate and

lowest performance are attained for Gitksan, this
is largely an artefact of its very small training data
size. If we disregard Gitksan, the impact of OOV
rate both for the open and closed track is unclear.
In fact, in the open track, the best average gloss-
ing performance is attained for Arapaho which has
the second-highest OOV rate. Nevertheless, Ara-
paho also has the largest training set. This might
seem like a surprising coincidence but we must
remember that Arapaho is highly morphologically
complex which tends to lead to higher OOV rates.

Impact of TTR Similarly to OOV, Type-token-
ratio in the training set can be seen a measure of
the diversity of the training data. We would expect
a higher TTR to improve glossing performance.
However, according to the statistics presented in
Figure 2, the trend is not very clear. While the
best performance in the closed track is attained for
Tsez, which has moderately high TTR, the second-
best performance is attained for Uspanteko with
the lowest TTR.

7 Future Directions

The submissions in this shared task have explored
several novel techniques that have not been previ-
ously applied to automatic interlinear glossing. Sur-
prisingly, pretrained language models like ByT5
did not perform as well as one might expect based
on their strong performance on other morphology
tasks. This unexpected outcome raises the need for
further investigation.

One interesting observation is that the winning
submission, TÜ-CL, completely disregards the pro-
vided translations. While this could suggest that
translations may not be as useful for the glossing
task, we believe there is still room for improvement
in this area. Incorporating large pretrained English
models as a reliable source of translated text could
potentially lead to additional enhancements.

Considering the availability of extensive mor-
phological resources for many languages, such as
those provided by UniMorph and similar projects,
multi-task learning holds promise for interlinear
glossing. Additionally, we encourage further explo-
ration of crosslingual approaches, leveraging the
ODIN database of interlinear glossed text, which
despite being noisy, offers a highly multilingual
resource for research purposes.
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Figure 2: Impact of different data characteristics (training data size, out-of-vocabulary rate and type-token-ratio) on
average word-level glossing accuracy. In addition to the average performance, we also plot the performance of each
individual system. Only complete complete submissions, for all shared task languages, are included in these plots.
Abbreviations refer to languages: Arapaho (arp), Tsez (ddo), Gitksan (git), Lezgi (lez), Natügu (ntu), Nyangbo
(nyb) and Uspanteko (usp).

8 Conclusion

The 2023 SIGMORPHON Shared Task on Interlin-
ear Glossing received submissions from five teams
which presented a wealth of interesting techniques
greatly expanding the field of automated interlinear
glossing. The submissions achieved substantial im-

provements over a baseline RoBERTa system. The
winning team TÜ-CL achieved a 23.99%-point im-
provement over the baseline in the closed track
and a 17.42%-point improvement in the open track
using a hard attention model.
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Abstract
This paper describes LISN’s submission to the
second track (open track) of the shared task on
Interlinear Glossing for SIGMORPHON 2023.
Our systems are based on Lost, a variation of
linear Conditional Random Fields initially de-
veloped as a probabilistic translation model and
then adapted to the glossing task. This model
allows us to handle one of the main challenges
posed by glossing, i.e. the fact that the list of
potential labels for lexical morphemes is not
fixed in advance and needs to be extended dy-
namically when labelling units are not seen in
training. In such situations, we show how to
make use of candidate lexical glosses found in
the translation and discuss how such extension
affects the training and inference procedures.
The resulting automatic glossing systems prove
to yield very competitive results, especially in
low-resource settings.

1 Introduction

LISN participated in the ‘open track’ of the shared
task on interlinear glossing of SIGMORPHON
2023 (Ginn et al., 2023) with two submissions. Fig-
ure 1 presents the format of the sentences for this
shared task. In this track, the source sentence T
is overtly segmented into morphemes (M), which
yields an explicit one-to-one correspondence be-
tween each source morpheme and the correspond-
ing gloss (G), thanks to the Leipzig Glossing Rules
convention (Bickel et al., 2008). A translation L
in a more-resourced language (English or Spanish)
is also provided, except for Nyangbo. An obvious
formalisation of the task that we mostly adopt, is
thus to view glossing as a sequence labelling task
performed at the morpheme level.

As can be seen in Figure 1, there are roughly
two categories of glosses: grammatical glosses in-
dicating the grammatical function of the morpheme
(e.g., GEN1) and lexical glosses expressing a mean-
ing (e.g., son).1 While the grammatical glosses

1We consider ‘compound’ glosses such as ‘he.OBL’ as

T Nesis łQono uži zown.
M nesi–s łQono uži zow–n
G he.OBL–GEN1 three son be.NPRS–PST.UNW

L He had three sons.

Figure 1: A sample entry in Tsez: source sentence (T),
and its morpheme-segmented version (M), glossed line
(G), and target translation (L)

of a language constitute a finite set of labels, the
variety of lexical glosses is unknown, which is one
of the main challenges of the task, especially in
small training data conditions.

To accommodate such cases, we assume that
lexical glosses can be directly inferred from the
translation tier. Recent works on automatic gloss
generation, such as (McMillan-Major, 2020; Zhao
et al., 2020), also rely on a similar assumption
and leverage the available translations. In our
model, we will thus consider that the set of possi-
ble labels for the morphemes in any given sentence
consists of the union of (a) all the grammatical
glosses, (b) lemmas occurring in the target transla-
tion, (c) frequently-associated labels from the train-
ing data. By using a variant of Conditional Ran-
dom Fields (CRFs) (Lafferty et al., 2001), which
enables such local restriction of the set of possi-
ble labels, our glossing model can be viewed as
an extension of previous sequence labelling sys-
tems based on CRFs such as (Moeller and Hulden,
2018; McMillan-Major, 2020; Barriga Martínez
et al., 2021). In our approach, using translations as
labels during training raises the issue of aligning
the translation and the source sentence, which we
handle with the neural word alignment model of
Jalili Sabet et al. (2020). As alignments are com-
puted at the morpheme level, this technique does
not apply for the ‘closed track’, where the source
segmentation is not part of the training annotations.

Our participation is motivated by two factors:

lexical glosses in our submission.
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to evaluate the model performance across varying
training data sizes (from a few dozen to thousands
of sentences) and to challenge its ability to handle
a variety of high-resource languages in the target
translation. Section 2 describes our system, while
Section 3 presents our experimental settings. Sec-
tion 4 reports the complete set of results obtained
with our models.

G {LAT GEN1 ... III PST.UNW}

M nesi s łQono uži zow n

T he had three sons

D (orR) ... he.OBL be.NPRS ...

Figure 2: Illustration of our approach to label the exam-
ple source sentence M of Figure 1. G represents the set
of all grammatical glosses in the training data, T the
set of words occuring in the translation L, D the set of
lexical labels from the training dictionary, and R the
reference lexical labels seen in training. During training,
automatic alignments between M and T are used.

2 System description

Our glossing system uses two main technological
components: we (a) rely on an automatic alignment
model between the lexical glosses and the target
translation during training, which also allows us
to exploit additional information regarding target
words, such as their Part-of-Speech (PoS) tag or
their position; (b) use an extended version of CRFs
which allows us to locally restrict the set of possi-
ble labels to carry out the glossing task. Figure 2
summarises the main ideas behind our approach.

2.1 Aligning lexical glosses with target words

To align the lexical glosses with the target trans-
lation, we use the multilingual aligner SimAlign
(Jalili Sabet et al., 2020), which relies on the cosine
similarity of the source and target unit embeddings.
Three heuristics are available to extract the align-
ments from a similarity matrix; we use the Match
method in our submission, since it gave the best
results in preliminary experiments. This method
considers the alignment task as a maximal match-
ing problem in the bipartite weighted graph con-
taining all possible alignment links between lexical
glosses and target words. This heuristic notably

ensures that all lexical glosses are aligned with a
target word.2

one home two khan place become be

in one home there is no place for two kings

Figure 3: Example of SimAlign alignment between lex-
ical glosses and an English translation (Tsez sentence).

Figure 3 displays an example of alignment com-
puted with the Match method. We can note that
most alignments are trivial because both units are
either identical (e.g. ‘one’) or have the same lemma
(e.g. son/sons). The remaining links are also of
great interest in our case. For the alignment pair
(khan/’kings’), although the gloss itself is not in
the translation, they are synonyms and share valu-
able properties such as their PoS tag. Besides, the
alignment of be with ‘for’ is obviously wrong and
only exists because of the constraint of aligning
every lexical gloss. Nevertheless, frequent lem-
mas such as be occur in multiple sentences, and
their possible labels are observed in the training
reference annotations.

2.2 Label and label features

Our approach views glossing as a sequence la-
belling task, meaning that the basic output label
for each morpheme is the gloss itself. Our im-
plementation of the CRF model (see below) also
enables us to simultaneously predict label features,
which are arbitrary linguistic properties that can
be derived from the label. In our experiments, we
chose to incorporate such additional information,
which will yield more general, hence more robust,
feature functions. In all systems, we thus predict
three properties of the label: (a) the actual gloss g,
(b) a binary category b about its nature (GRAM for
grammatical glosses, or LEX for lexical glosses),
and (c) its projected PoS tag p that we collect from
the aligned target word.3

2.3 Probabilistic sequence labelling model

Our system reuses Lost (Lavergne et al., 2011), a
probabilistic model initially devised for statistical
machine translation. With Lost, it is possible to
label arbitrary segments of a source sentence with

2Unless there are more lexical glosses than words in the
translation.

3As grammatical morphemes have no aligned target words,
we use the generic label GRAM for all grammatical glosses.
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‘phrases’ from a large bilingual dictionary and to
effectively search for the best possible labelling
given a set of trained feature weights. Compared
to the original translation task, using Lost for au-
tomatic glossing brings several simplifications. In
particular, there is no need to consider multiple
segmentations of the source as the segmentation in
morphemes is observed, nor to consider multiple
source reorderings, as the translation is also always
observed. We thus only focus below on the features
of Lost that are relevant for the glossing task.

Lost uses a discriminative model based on the
theory of Conditional Random Fields (Lafferty
et al., 2001). In a standard CRF, for a sequence x of
T observations, the probability of the correspond-
ing label sequence y ∈ YT is computed as:

pθ(y|x) =
1

Zθ(x)
exp

{
K∑

k=1

θkGk(x,y)

}
, (1)

where Gk are the feature functions with associated
weights θk and Zθ(x) is the partition function sum-
ming over all possible label sequences. In practice,
the features usually test local properties (unigram
or bigram). Training is performed by maximising
the penalised conditional log-likelihood on a set of
fully labelled instances.

Implementing this model for machine transla-
tion or for our glossing task is challenging. This is
because the set of all possible labels is significantly
larger than for most sequence labelling tasks, which
means that the computational cost of computing
Zθ(x) can get prohibitive, even for sequences of
moderate sizes. The implementation we use, Lost
(Lavergne et al., 2011), enables us to specify a lo-
cal (i.e. for a sentence-specific) set of labels, which
defines a restricted search space both in training
and inference: this means that the normaliser in (1)
will only consider a restricted number of possible
labellings. Using this implementation, the forward-
backward computations performed during training
remain tractable, even when the number of possible
labels gets extremely large. This feature of Lost is
also useful here, as we can restrict the set of pos-
sible lexical glosses by defining a specific search
space for each sentence, as we explain below.

2.4 Defining the search space

During training, we define the search space associ-
ated with the source x made of T morphemes as
comprising all sequences of T labels from either:

the set of known grammatical glosses (G), the lem-
mas of the words in the translation (T ), the most
frequent lexical glosses associated with the source
morphemes in the training set (this can be viewed
as a dictionary D), and the gold glosses (R) for
reference reachability (Liang et al., 2006). This
‘simple’ label set comprises two parts: one (G) is
common to all sentences, while the remaining la-
bels are defined on a per-sentence basis. In formal
terms, the search space is thus (G ∪ T ∪ D ∪R)T .
As explained in Section 2.2, we also consider label
features, where the basic labels are augmented with
various additional information.

Training the CRF model also requires supervi-
sion information, provided here by the reference
glosses, from which we readily derive the reference
sequence of labels in the search space (an exam-
ple of reference output labels can be seen on the
right-hand part of Figure 4).

During inference, since we have no access to the
reference labels, the test search space only com-
prises the union of the grammatical glosses, the
lemmas from the translation, and the labels from
the dictionary (G ∪ T ∪ D).4 Table 1 displays an
example output label from each label set for the S1
setting.

set g b p

G GEN1 GRAM GRAM

T king LEX NOUN

D khan LEX NOUN

R khan LEX NOUN

Table 1: Example of output labels extracted from each
label set (S1 setting), using the example of Figure 3.
The reference label setR is only used during training.

2.5 Feature set

Our two submissions, S1 and S2, use the same
model and share most features computed on the
source morpheme input. However, the latter ex-
tends the former system with additional features.

The input to Lost is the source morpheme s,
from which we also deduce the following features:
its position p within the word coded as a numeri-
cal value (from 0 to n) for complex words, or as
‘F’ for free morphemes, its length l in characters,

4When a lemma is both in the translation and dictionary or
repeated in the translation, we still create distinct paths in the
search space, as these can be associated with different features
(e.g. their PoS and position). The search algorithm will then
pick the most likely option.
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input S1 features S2 features outputs S2 features
i source

morph. m
position

(in word) t
length

l
first 3

letters d
last 3

letters e
copy
src cs

position
src ps

reference
gloss g

GRAM or
LEX b

PoS
tag p

copy
trg ct

position
trg pt

0 nesi 0 4 nes esi 0 1/4 he.OBL LEX PRON 0 1/4
1 s 1 1 s s 0 1/4 GEN1 GRAM GRAM -1 -2
2 łQono F 5 łQo ono 0 2/4 three LEX NUM 0 3/4
3 uži F 3 uži uži 0 2/4 son LEX NOUN 0 4/4
4 zow 0 3 zow zow 0 3/4 be.NPRS LEX VERB 0 2/4
5 n 1 1 n n 0 4/4 PST.UNW GRAM GRAM -1 -2

Figure 4: Example of input, outputs, and associated features to Lost for the Tsez reference sentence of Figure 1.

and its first and last three letters (d and e respec-
tively). Figure 4 displays an example of input and
the associated features.

With all these inputs, we compute unigram and
bigram feature functions, detailed in Table 2. On
top of the basic unigram and bigram features involv-
ing the gloss (top of the table), we also consider
the binary category b and PoS tag p to compute
more general feature functions (middle of the ta-
ble). The idea is to capture associations between
specific grammatical labels occurring after a given
PoS tag (e.g. (VERB, PST.UNW) with the bi-pos-
gloss feature).

In the S2 system, we add two more features:
first, a binary variable (uni-copy-trg-src), which is
True only for lexical glosses that occur letter-for-
letter in the source sentence, to account notably
for copied words (e.g. proper nouns). Second, we
add a categorical feature (uni-pos-src-trg) encoding
information about the relative position of the cur-
rent morpheme with each target word in the trans-
lation, to lower the probability of high-distortion
source-target associations. This categorical encod-
ing is computed by chunking each sequence into
four parts and reporting the chunk numbers: for
instance, the value ‘(1/4, 3/4)’ is used when match-
ing a morpheme in the first quarter of the source
sentence with a target word in the third quarter of
the target sentence. For any unaligned target word,
we use −1 as the corresponding position; for gram-
matical glosses, we assign the value −2 for the
corresponding target word.

3 Experimental conditions

3.1 Languages

Our (partial) official submission for S1 considers
the following five (out of seven) languages: Tsez
(ddo), Gitksan (git), Lezgi (lez), Natugu (ntu; sur-
prise language), and Uspanteko (usp; target transla-
tion in Spanish). For our second submission (S2),

we could only consider three languages (Tsez, Gitk-
san, and Lezgi). Since our system relies on the
translation to get the lexical glosses, we could not
run our models on Nyangbo (nyb), although the
corpus has a similar size to other languages we
studied. For all submissions, we rely solely on
the provided training datasets; no external resource
was used.

We have run S2 on Tsez and Uspanteko subse-
quently and will also report these results below.

3.2 Pre-processing

The PoS tags and lemmas are obtained with spaCy,5

using the en_core_web_sm and es_core_news_sm
pipelines for English and Spanish translations re-
spectively.

All lemmas from the translation are lowercased
except when the associated PoS tag is a proper
noun (‘PROPN’).

3.3 SimAlign settings

Since the glosses and the translation are in the
same language, we use the embeddings from the
English BERT (bert-base-uncased) (Devlin et al.,
2019) when the target language is English and
mBERT (‘bert-base-multilingual-uncased’) when
it is in Spanish (for Uspanteko). We can note here
that our model is compatible with multiple target
languages, SimAlign being an off-the-shelf multi-
lingual (neural) aligner.

Our preliminary experiments showed that the em-
beddings from the 0-th layer yielded the best align-
ments, especially compared to the 8-th layer, which
seems to work best in most alignment tasks. A plau-
sible explanation is that contextualised embeddings
are unnecessary here because lexical glosses do not
constitute a standard English sentence (for instance,
they do not contain stop words, and their word or-
der reflects the source language word order).

5https://spacy.io/.
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Feature Test Example (cf. Figure 4 i = 5)

uni-gloss 1(gi = g) PST.UNW

bi-gloss 1(gi = g) ∧ 1(gi−1 = g′) (be.NPRS, PST.UNW)
uni-gloss-morph 1(gi = g) ∧ 1(mi = m) (PST.UNW, n)
uni-gloss-position 1(gi = g) ∧ 1(ti = t) (PST.UNW, 1)
uni-gloss-length 1(gi = g) ∧ 1(li = l) (PST.UNW, 1)
bi-gloss-morph 1(gi = g) ∧ 1(gi−1 = g′) ∧ 1(mi = m) (be.NPRS, PST.UNW, n)
uni-gloss-start 1(gi = g) ∧ 1(di = d) (PST.UNW, n)
uni-gloss-end 1(gi = g) ∧ 1(ei = e) (PST.UNW, n)

uni/bi-bin 1(bi = b) (∧1(bi−1 = b′)) GRAM ((LEX, GRAM))
uni/bi-pos 1(pi = p) (∧1(pi−1 = p′)) GRAM ((VERB, GRAM))
uni-bin-morph/position/length 1(bi = b) ∧ 1(mi = m)/1(ti = t)/1(li = l) (GRAM, n) / (GRAM, 1) / (GRAM, 1)
uni-bin-start/end 1(bi = b) ∧ 1(di = d)/1(ei = e) (GRAM, n) / (GRAM, n)
bi-position-bin 1(ti = t) ∧ 1(ti−1 = t′) ∧ 1(bi = b) (0, 1, GRAM)
bi-bin-gloss 1(gi = g) ∧ 1(bi−1 = b′) (LEX, PST.UNW)
bi-gloss-bin 1(bi = b) ∧ 1(gi−1 = g′) (be.NPRS, GRAM)
uni-pos-morph 1(pi = p) ∧ 1(mi = m) (GRAM, n)
bi-pos-gloss 1(gi = g) ∧ 1(pi−1 = p′) (VERB, PST.UNW)
bi-gloss-pos 1(pi = p) ∧ 1(gi−1 = g′) (be.NPRS, GRAM)
uni-pos-start/end 1(pi = p) ∧ 1(di = d)/1(ei = e) (GRAM, n) / (GRAM, n)

uni-copy-trg 1(cti = ct) -1
uni-copy-trg-src 1(cti = ct) ∧ 1(csi = cs) (-1, 0)
uni-posi-ts 1(pti = pt) ∧ 1(psi = ps) (-2, 4/4)
uni-gloss-morph-pts 1(gi = g) ∧ 1(pti = pt) (PST.UNW, -2, n, 4/4)

∧1(mi = m) ∧ 1(psi = ps)

Table 2: Unigram and bigram features for our submissions: S1 features about the main gloss label on top, S1 features
involving the two other general outputs, and S2 additional features at the bottom.

3.4 Parameter settings

We always use Lost with the default setting, using
only the l1 regularisation penalty ρ1 = 0.5 and
keeping the l2 penalty term to ρ2 = 0. This setting
gave the best results on average in our preliminary
experiments.

3.5 Metrics

We use the same evaluation metrics as in the Shared
Task: morpheme accuracy, word accuracy, BLEU,
and differentiated precision, recall, and F1-score
for grammatical (gram) and lexical (stem) glosses.

4 Results

Table 3 reports the results for the organiser’s base-
line6 and our systems on the development dataset,
while Table 4 gives the corresponding test numbers.
We only present the word- and morpheme-level
(overall) accuracy, which are the two official met-
rics of the Shared Task results.7 We also report the

6https://github.com/sigmorphon/2023glossingST/
tree/main/baseline.

7https://github.com/sigmorphon/2023glossingST/
blob/main/results.md.

results of S2 for Tsez and Uspanteko, which were
not available at the time of submission.

model ddo git lez ntu usp

baseline 74.2 25.0 32.6 - 75.9
S1 83.6 40.2 84.4 88.2 76.5
S2 84.5* 43.8 85.1 88.5 77.3

baseline 85.0 30.0 50.1 - 81.3
S1 91.0 55.5 87.3 92.1 82.7
S2 91.5* 58.8 88.2 92.4 83.4*

Table 3: Accuracy (overall) at the word (top) and mor-
pheme (bottom) levels for the baseline and our two
systems on the development dataset. Star-marked values
correspond to runs that were not available at the time of
submission.

Our systems are consistently better than the base-
line, with larger gaps when few training sentences
are available (cf. Gitksan or Lezgi). Our second
system slightly improves the accuracy on the devel-
opment set; a similar trend can also be observed on
the test set.

Compared to other submitted systems, we
reached the best word accuracy for Gitksan and
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model ddo git lez ntu usp

baseline 75.7 16.4 34.5 41.1 76.6
S1 84.9 28.4 83.4 88.8 76.3
S2 85.5* 31.5 83.0 89.3 76.7*

baseline 85.3 25.3 51.8 49.0 82.5
S1 91.4 50.8 87.2 92.6 82.4
S2 91.8* 51.1 87.0 92.8 82.7*

Table 4: Accuracy (overall) at the word (top) and mor-
pheme (bottom) levels for the baseline and our two sys-
tems on the test dataset. Star-marked values correspond
to runs that were not available at the time of submission.

Natugu and the best morpheme accuracy for
Natugu.

5 Discussion

5.1 Impact of training data size

Table 5 displays the evolution of the F1-scores at
the morpheme levelCheck this ? broken down by
gloss type (lexical and grammatical) for three sizes
of the training dataset in Natugu (200, 500, and
all 791 sentences). For both settings, the model
reaches better scores for grammatical glosses, and,
unsurprisingly, lexical glosses benefit more from
the increase in training data. While the additional
features in S2 were mostly introduced to improve
the lexical gloss prediction in the small resource
condition, it is noteworthy that they also help im-
prove the prediction of grammatical labels. Simi-
lar observations were made for the other test lan-
guages.

S1 S2

gram lex gram lex

200 93.3 80.5 93.6 81.3
500 95.3 88.5 95.2 88.3
full 95.7 89.5 95.9 89.6

Table 5: F1-scores for grammatical and lexical glosses
with an increasing number of training data in Natugu.

5.2 Number of selected features

Table 6 presents the number of active features (in
thousands) selected among all features (in millions)
by S1 and S2. We note here that thanks to the
l1-regularisation, most feature weights are set to
0 since less than 1% of the features are actually

active. For illustrative purposes, Appendix A lists
the features with the largest weight for the Lezgi
system.

ddo git lez ntu usp

S1 167k (170M) 3k (0.8M) 43k (24M) 60k (39M) 132k (34M)

S2 174k (172M) 3k (0.8M) 46k (24M) 64k (40M) 137k (35M)

Table 6: Number of active features (out of the total num-
ber of computed features) for each setting and language.

6 Conclusion

Assuming the lexical glosses can be aligned with
words in the target translation, we repurposed a
statistical machine translation system based on a
globally-normalised model, akin to CRFs, that al-
lows us to dynamically define a local set of labels
for the automatic gloss generation task. Using two
sets of features, our systems are compatible in low-
and very low-resource settings and outperformed
the baseline models according to several evaluation
metrics.

We plan on further exploring feature functions
on both source and target sides. Besides, since
our systems rely on automatic alignments, which
may contain and project some noise, we will try
to remove this dependency modelling alignment as
an unobserved variable in a latent variable model.
Furthermore, as our submission focused on low-
resource data conditions, we did not consider neu-
ral methods, which are notably data-intensive; fu-
ture work would be to integrate word embeddings
for better-resourced languages such as Arapaho.

Our code is available at: https://github.com/
shuokabe/gloss_lost.
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A Feature weights

Type Feature Weight

uni-gloss-start say ∧ lug 3.22
bi-gloss-morph say ∧ AOR ∧ lag~a 3.22
bi-gloss-morph talking ∧ AOC ∧ gafarun 2.80

uni-gloss-morph-pts . ∧ -1 ∧ . ∧ 4/4 2.75
bi-gloss-morph fortress ∧ OBL ∧ k�ele 2.65
uni-gloss-end now ∧ ila 2.65
uni-gloss-start dog ∧ kic 2.65
bi-gloss-morph newspaper ∧ OBL ∧ gazet 2.49
uni-gloss-start girl ∧ rux 2.49
bi-gloss-morph SBST ∧ PST ∧ di 2.49

Table 7: Top 10 (positive) features of S2 for Lezgi.

Table 7 displays the features with the largest
weight in the S2 system trained on the Lezgi cor-
pus. We can notice here that some (initial or final)
character trigram features (uni-gloss-start and uni-
gloss-end) are relevant, corresponding to lexemes
that either typically occur with an inflexion mark:
‘lug~u’ and ‘lug~un’ for ‘say’, occurring approx-
imately 200 times together or that combine with
a prefix, as ‘gila’ and ‘igila’ for ‘now’ (around
20 co-occurrences).
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Abstract

In our submission to the SIGMORPHON 2023
Shared Task on interlinear glossing (IGT), we
explore approaches to data augmentation and
modeling across seven low-resource languages.
For data augmentation, we explore two ap-
proaches: creating artificial data from the pro-
vided training data and utilizing existing IGT
resources in other languages. On the modeling
side, we test an enhanced version of the pro-
vided token classification baseline as well as a
pretrained multilingual seq2seq model. Ad-
ditionally, we apply post-correction using a
dictionary for Gitksan, the language with the
smallest amount of data. We find that our token
classification models are the best performing,
with the highest word-level accuracy for Ara-
paho and highest morpheme-level accuracy for
Gitksan out of all submissions. We also show
that data augmentation is an effective strategy,
though applying artificial data pretraining has
very different effects across both models tested.

1 Introduction

This paper describes the SigMoreFun submission to
the SIGMORPHON 2023 Shared Task on interlin-
ear glossing. Given input text in a target language,
the task is to predict the corresponding interlinear
gloss (using Leipzig glossing conventions). IGT
is an important form of linguistic annotation for
the morphological analysis of languages, and also
serves as an extremely valuable resource for lan-
guage documentation and education for speakers
of low-resource languages.

There were two tracks for this shared task, Track
1 (closed) and Track 2 (open). For Track 1, sys-
tems could only be trained on input sentences and
glosses; in Track 2, systems could make use of the
morphological segmentation of the input as well
as any (non-IGT) external resources. Since the
Track 2 setting better matches the long-term re-

∗These authors contributed equally

search goals of our team, we only participate in
this open track.

In our submission, we investigate two different
approaches. First, we attempt data augmentation
by either creating our own artificial gloss data by
manipulating the existing training data, or by uti-
lizing existing resources containing IGT in other
languages (§2). Second, we explore two different
models for gloss generation (§3). The first builds
off the token classification baseline, while the sec-
ond uses a pretrained multilingual seq2seq model.

Finally, we also attempt to post-correct model
outputs with a dictionary. We apply this to Gitk-
san and find that this, combined with our other
approaches, results in the highest morpheme-level
accuracy for Gitksan in Track 2.

2 Data Augmentation

One major challenge for this shared task is the scale
of data provided. All of the languages have less
than 40k lines of training data, and all but Arapaho
have less than 10k. The smallest dataset (Gitk-
san) has only 31 lines of data. Thus, one obvious
method to try is data augmentation. More specif-
ically, we try pretraining our models on different
forms of augmented data before training them on
the original target language data.

We explored two forms of data augmentation.
First, we generated artificial gloss data in the tar-
get language by swapping words in the existing
training data. Second, we utilized data from ODIN
(Lewis and Xia, 2010; Xia et al., 2014) to see if
transfer learning from data in other languages can
help improve performance.

2.1 Artificial Data

A challenge our team faced with respect to data
augmentation is figuring out how to obtain addi-
tional data when we do not have much knowledge
of the languages’ grammatical systems, along with
the fact that these languages are generally from
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digitally under-resourced language families. Fur-
thermore, we wanted our solution to be easily im-
plemented and relatively language agnostic due
to time constraints and practical usability for re-
searchers working on a variety of languages.

Thus, one avenue of data augmentation we tried
was by creating artificial data from the provided
training data. This requires no rule-writing or
knowledge of the grammar of the language, and
thus could be applied quickly and easily to all of
the languages in the shared task.

We used a naive word-swapping method to ran-
domly swap morphemes that occur in similar con-
texts to create new sentences. To do this, for each
gloss line, we replace each word stem (that has a
gloss label affix) with “STEM” to create a skeleton
gloss. We naively determine if a label is a stem
by checking if it is in lowercase. We do not do
this to words that do not have affixes as (with the
exception of Uspanteko) we do not have access to
parts of speech, and do not want to swap words that
would create an ungrammatical sequence.

We create a dictionary mapping each skeleton
word gloss to possible actual glosses, and map each
actual gloss to possible surface forms (we make
no assumptions that these mappings are one-to-
one). We then randomly sample k random skeleton
glosses (in this case, we used k equal to roughly
three times the amount of training data) and ran-
domly fill in words that match the format of skele-
ton words present in the line.

(1) to (3) below illustrate an example in this
process. We create a skeleton gloss (2) from the
Gitksan sentence in (1) by replacing the all word
stems that have an affix with “STEM” in both the
segmentation and gloss tiers—in this case, only

’witxw-it applies to this step. Then to create the
artificial data in (3), we replace the skeleton word
and corresponding gloss with another word from
the training data that has the same skeleton form,
in this case hahla’lst-it.

(1) ii
CCNJ

nee-dii-t
NEG-FOC-3.I

naa
who

dim
PROSP

’witxw-it
come-SX

(2) ii
CCNJ

nee-dii-t
NEG-FOC-3.I

naa
who

dim
PROSP

STEM-it
STEM-SX

(3) ii
CCNJ

nee-dii-t
NEG-FOC-3.I

naa
who

dim
PROSP

hahla’lst-it
work-SX

While this method may create a somewhat un-
natural input surface sequence (as we are unable to
capture phonological changes in the surface form

and corresponding translations may be nonsensi-
cal), this method guarantees that the structure of
the gloss is a naturally occurring sequence (as we
only use gloss skeletons that are present in the in-
put). However, a limitation of this method is that
it does not extend to out-of-vocabulary tokens or
unseen gloss structures. Furthermore, as we cannot
generate a gold-standard translation for the artifi-
cial data, we do not make use of a translation in
training.

2.2 ODIN

Another potential avenue for data augmentation
is transfer learning from data in other languages,
which has been shown to be an effective method
to improve performance in low-resource settings
(Ruder et al., 2019).

The available resource we utilize is ODIN, or
the Online Database for Interlinear Text (Lewis
and Xia, 2010; Xia et al., 2014). ODIN contains
158,007 lines of IGT, covering 1,496 languages.

We use the 2.1 version of ODIN data and convert
the dataset to the shared task format, and filter out
languages with fewer than five glossed sentences.
However, there remains significant noise in the
dataset that could cause significant alignment is-
sues for the token classification models. Therefore
we opt to only train the ByT5 models on ODIN, in
the hope that this model is less sensitive to align-
ment errors. Indeed, we find that the ByT5 model
finetuned first on ODIN receives a performance
boost when finetuned again on the shared task data.

3 Models

We explore two models for gloss generation. The
first one is built upon the token classification base-
line with some improvements, and we treat this
model as our internal baseline. The second model
we deploy tests whether we can achieve competi-
tive performance by finetuning a pretrained charac-
ter based multilingual and multitask model, ByT5.
For this model, we perform minimal preprocess-
ing and use raw segmented morphemes and free
translations if available.

3.1 Token Classification Transformer

We use the baseline Track 2 model provided by the
organizers as a starting point. The original imple-
mentation randomly initializes a transformer model
from the default Huggingface RoBERTa base con-
figuration, and uses a token classification objective
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with cross-entropy loss, where each gloss is treated
as a distinct token. The morphemes and free trans-
lations are tokenized by space and dashes, with
punctuations pre-separated. They are concatenated
and separated by the SEP token and are used as
the inputs to the model. We modify the original
Track 2 baseline model to obtain a better baseline.
We use pretrained weights from XLM-RoBERTa
base (Conneau et al., 2020), instead of randomly
initializing the weights. We also slightly modify
the morpheme tokenizer to enforce that the number
of morpheme tokens matches the number of output
gloss tokens exactly.

Additionally, we introduce the COPY token to
replace the gloss if it matches the corresponding
morpheme exactly. An example from Natugu is
shown in gloss (4):

(4) 67
COPY

.
COPY

mnc-x
be-1MINI

Mzlo
COPY

Skul
COPY

We believe this would improve performance by
removing the need to memorize glossed code-
switching and proper nouns, though it is only ef-
fective if the code-switched language is the same
as the matrix language (e.g. Arapaho), and would
have no effect if the source language uses a dif-
ferent orthography or is code-switched to another
language, where the gloss would not matched the
morpheme form exactly. This method also com-
presses all punctuation markers into one token, but
the usefulness of this side effect is less clear.

Since we are using pretrained weights, it is then
natural to explore integrating the pretrained tok-
enizer. Since XLM-RoBERTa was not trained on
any of the source languages, it makes the most
sense to only use the pretrained tokenizer to tok-
enize free translations, if they are available, and
extend the vocabulary to include morphemes.

3.2 Finetuned ByT5

Multi-task and multi-lingual pretrained large lan-
guage models have been shown to be effective for
many tasks. We explore whether such models can
be used effectively for glossing. We conduct ex-
periments with both mT5 (Xue et al., 2021) and
ByT5 (Xue et al., 2022), but ByT5 is preferred
because it takes raw texts (bytes or characters) as
inputs and in theory should be more effective for
unseen languages. We use a prompt based multilin-
gual sequence to sequence objective for both mod-
els. The prompt template is: “Generate interlin-
ear gloss from [source language]: [segmented

morphemes] with its [matrix language] trans-
lation: [free translation] Answer: ”. Data
from all languages are mixed together and shuffled,
with no up or down sampling. After initial experi-
ments, we find ByT5 outperforms mT5 across all
languages, and therefore we only conduct subse-
quent experiments on ByT5 and report those re-
sults.

Upon initial experiments, we also find the results
for Lezgi to be lower than expected. We hypothe-
size that the fact that the data are in Cyrillic script
causes this deficiency, since ByT5 was trained on
far less Cyrillic data than data in the Latin script.
Therefore we create an automatic romanization
tool, sourced from Wikipedia1 and integrated in
the Epitran package (Mortensen et al., 2018), and
convert all Lezgi data to Latin script for ByT5 fine-
tuning.

After inspecting the outputs of the ByT5 models,
we find cases where punctuations are attached to
the previous glosses, instead of being separated by
a space as is standard in the training sets. This is
probably due to the fact that the model was pre-
trained on untokenized data and this behavior is
preserved despite finetuning on tokenized data. We
therefore use a simple regular expression based tok-
enizer to fix the inconsistencies. We notice that the
procedure only gives performance boost on Gitk-
san, Lezgi, Uspanteko, and Natugu, and so we only
apply the procedure to those languages, leaving the
rest of the outputs unchanged.

4 Dictionary Post-correction: Gitksan

One of the key challenges for extremely low re-
source languages is the integration of structured
linguistic data in other forms, such as a dictionary,
into machine learning pipelines. We test a simple
post-correction method from a pre-existing dictio-
nary on Gitksan only, due to its unique combination
of low resource and easily obtainable dictionary in
machine readable form. We use the dictionary com-
piled by Forbes et al. (2021), without consulting the
morphological analyzers that they also provided.
At inference time, if a morpheme is unseen dur-
ing training, we search for the exact form in the
dictionary. We also expand the search to all sub se-
quences of morphemes within the enclosing word,
plus the previous whole word in cases where a par-
ticle is included in the dictionary form. The first

1https://en.wikipedia.org/wiki/Lezgin_
alphabets
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matched definition is used as the gloss and if none
of the search yields an exact match, we fall back to
the model prediction. We only apply this method to
the token classification models because the align-
ment between morphemes and glosses is directly
established, whereas the seq2seq models do not
guarantee that the number of glosses matches the
number of morphemes.

5 Results and Discussion

Tables 1 and 2 show our systems’ performance (as
well as the original baseline) on the test data with re-
spect to word- and morpheme-level micro-averaged
accuracy, respectively. Overall, the token classifica-
tion model trained first on the artificially generated
augmented data perform the best, with the model
trained on the shared task data only not far behind.
Meanwhile, ByT5 models perform worse, with the
model finetuned first on ODIN trailing our best
model by a few percentage points, while the model
finetuned first on augmented data performs worse
than the baseline.

5.1 Data Augmentation
Overall, we find data augmentation to be useful.
With artificially generated data, we see the effects
are perhaps greatest for the mid-resource languages
(ddo, lez, ntu, nyb, usp), while the highest and
lowest resourced languages did not receive much
benefit from pretraining on the artificial data. We
think this is perhaps because there is a “sweet spot”
with respect to the amount of data that is required to
train a model. If there is enough data already, in the
case of Arapaho, then the noisiness of artificial data
would out-weight the benefit of training on them.
On the other end of the scale, Gitksan perhaps
needs more synthetic data for data augmentation to
yield meaningful improvements.

For ByT5 models, artificially generated data
seem to have the opposite effect, where perfor-
mance is significantly degraded. A speculation for
this effect is the fact the pretrained model is more
semantically aware, and since the artificially gen-
erated sentences could be nonsensical, the model
could become confused. On the other hand, pre-
training on ODIN yields improvements for the ma-
jority of the languages2. This is encouraging since
we did not perform much preprocessing for ODIN,

2Tsez is the only language that appeared in ODIN (68
sentences). We did not remove it from the corpus but this
should have little influence on the performance because the
size of the dataset is very small.

and there is definitely still room to make the data
cleaner and more internally consistent, which in
turn should result in a better model.

5.2 Choice of Hyperparameters
We find the choice of hyperparameters of the token
classification models to be necessarily language
and dataset specific. Arapaho and Gitksan in par-
ticular need special attention, where the number
of training epochs need to be adjusted for the very
high and low data size. We also developed most of
the optimization on the token classification model
on Arapaho. However, we did not have time to
propagate the changes (using pretrained tokenizer,
saving the last model instead of the model with the
lowest validation loss) to the rest of languages since
initial experiment showed that pretrained tokeniz-
ers did not improve on the other languages. How-
ever, after the submission deadline is concluded, we
ran more experiments and discovered that adding
pretrained tokenizers requires more training steps,
and the training is better controlled by specifying
the training steps instead of epochs. We do not in-
clude those latest experiments in this paper, but our
token classification models have the potential to
perform better with more hyperparameter tuning.

5.3 In- Versus Out-of-Vocabulary Errors
One dimension of error analysis we investigated
was what proportion of our systems’ errors come
from morphemes or words that are either in or out
of the training data vocabulary. We count a mor-
pheme or word as in-vocabulary if the surface form
and its corresponding gloss co-occur in the pro-
vided training data (not including the development
data, as our models are only trained on the train
set). Note that there is a much larger proportion
of OOV words as opposed to morphemes due to
the fact that an unseen word can be composed of
different combinations of seen morphemes.

Table 3 shows the proportion of morphemes and
words that are out-of-vocab (OOV) within the test
set. While nearly all the languages have less than
10% of their morphemes classified as OOV, Gitksan
notably has a relatively large portion of OOV test
data, with ≈ 45% of morphemes and ≈ 78% of
words being OOV.

Tables 4 and 5 show our models’ performances
on in- verses out-of-vocab tokens at the morpheme
and word levels, respectively. While we would
intuitively expect that word-level OOV accuracy be
about the same or worse than morpheme-level OOV
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Model arp ddo git lez ntu nyb usp AVG

xlmr-base 85.87 73.77 27.86 / 34.11a 74.15 82.99 80.61 73.47 72.14
xlmr-aug 82.92 80.07 24.74 / 31.25 77.77 78.72 85.53 77.51 73.39

byt5-base 78.86 80.32 14.84 60.72b 76.67 76.73 77.21 66.48
byt5-aug 73.27 62.37 4.17 38.60 55.11 69.25 70.85 53.38
byt5-odin 80.56 82.79 20.57 63.77 77.97 82.59 75.72 69.14

baseline 85.44 75.71 16.41 34.54 41.08 84.30 76.55 59.14

aWe report before / after dictionary based post-correction for Gitksan.
bWe trained this model without romanizing Lezgi.

Table 1: Word-level accuracy of our submitted systems. Best performance per language in the table is bolded. The
XLMR baseline is the highest Arapaho accuracy reported out of all shared task submissions.

Model arp ddo git lez ntu nyb usp AVG

xlmr-base 91.36 84.35 47.47 / 52.82 80.17 88.35 85.84 80.08 80.42
xlmr-aug 89.34 88.15 46.89 / 52.39 82.36 85.53 89.49 83.08 81.48

byt5-base 78.82 75.77 12.59 44.10 62.40 78.97 74.25 60.99
byt5-aug 72.10 57.93 2.60 26.24 35.62 70.01 67.73 47.46
byt5-odin 80.81 78.24 12.74 50.00 63.39 85.30 73.25 63.39

baseline 91.11 85.34 25.33 51.82 49.03 88.71 82.48 67.69

Table 2: Morpheme-level accuracy of our submitted systems. Best performance per language in the table is bolded.
The XLMR baseline with artificial pretraining and dictionary post-correction is the highest Gitksan accuracy
reported out of all shared task submissions.

arp ddo git lez ntu nyb usp

Morph 0.043 0.009 0.450 0.056 0.034 0.019 0.070

Word 0.242 0.155 0.781 0.169 0.214 0.084 0.200

Table 3: Proportion of morphemes and words that are
OOV within the test set.

accuracy, this is not the case due to the fact that
a large portion of out-of-vocab words are formed
with in-vocab morphemes. For most languages,
with the exception of Gitksan, there appears to
be a trade-off between better in-vocab morpheme
performance with XLMR and performance out-of-
vocab with ByT5.

6 Related Work

There have been a variety of approaches to the prob-
lem of (semi-) automatically generating interlinear
gloss. Baldridge and Palmer (2009) investigate the
efficacy of active learning for the task of interlinear
glossing, using annotation time required by expert
and non-expert annotators as their metric. The sys-
tem they use to generate gloss label suggestions is

a standard maximum entropy classifier.

A rule-based approach by Snoek et al. (2014)
utilizes an FST to generate glosses for Plains Cree,
focusing on nouns. Samardžić et al. (2015) view
the task of glossing segmented text as a two-step
process, first treating it as a standard POS tagging
task and then adding lexical glosses from a dictio-
nary. They demonstrate this method on a Chintang
corpus of about 1.2 million words.

A number of other works focusing on interlinear
glossing utilize conditional random field (CRF)
models. Moeller and Hulden (2018) test three
different models on a very small Lezgi dataset
(< 3000 words): a CRF (that outputs BIO labels
with the corresponding gloss per character in the in-
put), a segmentation and labelling pipeline that uti-
lizes a CRF (for BIO labels) and SVM (for gloss la-
bels), and an LSTM seq2seq model. They find that
the CRF that jointly produces the BIO labels and
tags produced the best results. McMillan-Major
(2020) utilizes translations in their training data by
creating two CRF models, one that predicts gloss
from the segmented input and another than pre-
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Model arp ddo git lez ntu nyb usp

xlmr-base
95.20 85.12 82.89 84.79 90.87 87.46 86.05
4.97 0.00 16.08 2.60 14.52 0.00 0.82

xlmr-aug
92.98 88.94 84.74 87.10 87.88 91.17 89.31
7.49 0.00 12.86 2.60 19.35 0.00 0.41

byt5-aug
74.76 58.24 3.42 40.27 36.54 71.27 70.56
12.31 24.10 1.61 23.54 9.68 3.23 30.20

byt5-odin
83.47 78.55 18.42 62.90 64.38 86.85 75.23
21.14 43.37 5.79 47.52 35.48 3.23 46.94

Table 4: Morpheme-level accuracy over all tokens of our submitted systems, split by in- versus out-of-vocab. Cells
highlighted in gray indicate OOV accuracy.

Model arp ddo git lez ntu nyb usp

xlmr-base
95.93 78.18 95.23 84.24 93.14 85.85 86.27
54.44 49.79 17.00 24.67 45.65 23.60 22.41

xlmr-aug
93.72 83.85 94.05 87.64 89.24 90.81 91.11
49.17 59.51 13.67 29.33 40.00 23.24 28.09

byt5-aug
87.22 68.69 10.71 46.06 65.13 74.59 81.44
29.69 28.04 2.33 2.00 18.26 11.24 28.63

byt5-odin
91.93 87.66 63.10 73.78 85.93 87.60 83.46
45.07 56.36 8.67 14.67 48.70 28.09 44.81

Table 5: Word-level accuracy of our submitted systems, split by in- versus out-of-vocab. Cells highlighted in gray
indicate OOV accuracy.

dicts from the translation, and then uses heuristics
to determine which model to select from for each
morpheme. Barriga Martínez et al. (2021) used a
CRF model to achieve > 90% accuracy for gloss-
ing Otomi and find that it works better than an
RNN, which is computationally more expensive.

Other works, including our systems, have turned
to neural methods. Kondratyuk (2019) leverages
pretrained multilingual BERT to encode input
sentences, then apply additional word-level and
character-level LSTM layers before jointly decod-
ing lemmas and morphology tags using simple se-
quence tagging layers. Furthermore, they show
that two-stage training by first training on all lan-
guages followed by training on the target language
is more effective than training the system on the
target language alone. An approach by Zhao et al.
(2020), like McMillan-Major (2020), makes use of
translations available in parallel corpora, but do so
by using a multi-source transformer model. They
also incorporate length control and alignment dur-
ing inference to enhance their model, and test their

system on Arapaho, Tsez, and Lezgi.

7 Conclusion

In our shared task submission, we explore data aug-
mentation methods and modeling strategies for the
task of interlinear glossing in seven low-resource
languages. Our best performing models are to-
ken classification models using XLMR. We demon-
strate that pretraining on artificial data with XLMR
is an effective technique for the mid-resource test
languages. Additionally, in our error analysis we
find that we may have actually undertrained our
token classification models, and thus our systems
may have the potential to perform better with ad-
ditional hyperparameter tuning. While our ByT5
models did not perform as well as our other sys-
tems, we show that pretraining on ODIN data is
effective, despite this data being very noisy. Finally,
we also demonstrate improvements by utilizing a
dictionary to post-correct model outputs for Gitk-
san.
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A Hyperparameter Settings

We use Adafactor (Shazeer and Stern, 2018) as
the optimizer across all experiments, with the de-
fault scheduler from Hugging Face Transformers,
a batch size of 32 for RoBERTa based models and
a batch size of 4 with a gradient accumulation step
of 8 for ByT5 based models. We train the token
classification models for 40 epochs except for Ara-
paho, on which we train 20 epochs, and Gitksan,
on which we train 2,000 steps. We train the ByT5
based models for 20 epochs on all of the data mixed
together.
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Abstract

This paper presents a submission to Track 1 of
the 2023 SIGMORPHON shared task on inter-
linear glossed text (IGT) (Ginn et al., 2023).
There are a wide amount of techniques for
building and training IGT models (see Moeller
and Hulden, 2018; McMillan-Major, 2020;
Zhao et al., 2020). We describe the system’s en-
sembled sequence-to-sequence approach, per-
form experiments, and share the submission’s
test-set accuracy. We also discuss future areas
of research in low-resource token classification
methods for IGT.

1 Introduction

This paper is a system demonstration for our sub-
mission to the 2023 SIGMORPHON shared task
on interlinear glossed text (Ginn et al., 2023). We
focused on the closed track of the task, where only
the input sentence, output gloss, and translation are
provided in training data. This was more restrictive
than the open track, in which more information was
available, such as morphological segmentations or
part-of-speech tags.

1.1 Interlinear Glossed Text

Interlinear glossed text (IGT) is a form of linguistic
data annotation which highlights the grammatical
properties of a corpus of text. IGT is not standard-
ized and varies from annotator to annotator (Palmer
et al., 2009), but typically uses three lines for each
sentence of text. The data provided in the shared
task follow the Leipzig glossing conventions (Com-
rie et al., 2008), in which the first line contains
a transcription in an “object language,” i.e. the
language of study; the second line is a morpheme-
by-morpheme annoatation of the sentence (called a
“gloss”); and the third line is a direct translation.

(1) Ap
VER

yukwhl
IPFV-CN

ha’niisgwaa’ytxw.
INS-on-rest

But it was Sunday.

Ex. 1 shows an example in Gitksan from the task’s
training data. In the gloss, the functional mor-
phemes are referred to as “grams” and the lexical
morphemes are “stems,” as per Zhao et al. (2020).

1.2 Related Work

Moeller and Hulden (2018) used a character-level
system that combined a Support Vector Machine
for recognizing grams and stems with a Conditional
Random Fields labeller for assigning output grams
to input characters, using a BIO-tagging convention
(Ramshaw and Marcus, 1995). They also trained
a character-level LSTM encoder-decoder on the
BIO-tagged data.

McMillan-Major (2020) uses an ensembled sys-
tem in which two CRF models focus on the source
text and gloss, and translation text and gloss, re-
spectively.

Zhao et al. (2020) use a transformer-based
encoder-decoder system in which the encoder is
multi-sourced: the source text and the translation
are encoded separately and then combined in a sin-
gle attention mechanism.

1.3 Baseline Model

The IGT shared task baseline model (Ginn, 2023)
is a transformer-based token classification system.
The authors found that a sequence-to-sequence
model required more data to converge and per-
formed worse when compared to the token clas-
sification approach.

2 Methods

The system was based on an encoder-decoder
model using the LSTM architecture (Sutskever
et al., 2014). It used ensembling and data aug-
mentation as a method to counteract the relatively
lower performance of encoder-decoder models as
highlighted in the previous section. The system
was implemented with Fairseq (Ott et al., 2019)
and trained on a single Nvidia GeForce MX350.
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Strategy Input sequence Output sequence
Character output h a r i z i _ b o q n o _ ž a r e q u e s t _ I I I - b e c o m e - T O P _ D E M 1 . S G
Token output h a r i z i _ b o q n o _ ž a request III - become - TOP DEM1 . SG
Stem token h a r i z i _ b o q n o _ ž a <stem> III - <stem> - TOP DEM1 . SG
Word-level (w=1) b o q n o _ ž a _ <e> DEM1 . SG
Stemmer model t h e _ d r a g o n _ b e g g e d r e q u e s t _ b e c o m e

Table 1: An example from the shared task’s training data in Tsez, showing different preprocessing approaches.

Window size Stem F1 Morpheme Word
1 43% 42% 46%
2 46% 50% 65%
3 35% 40% 56%
1 and 2 49% 54% 64%
2 and 3 41% 47% 62%

Table 2: Development-set results for Tsez, compar-
ing different word-level window sizes and ensembling
combinations over stem F1-score, morpheme-level, and
word-level accuracy. These models all use a token-level
output alphabet.

Fairseq has built-in support for transformers as
well as LSTMs, but the former requires more re-
sources to train. The GPU used for this project did
not have sufficient memory for training a conver-
gent transformer model, and so the LSTM architec-
ture was chosen instead.

2.1 Representing target glosses

The source language text was represented as a se-
quence of characters, and we experimented with
several approaches for representing the gloss as a
target alphabet. Initially, the output gloss was also
represented as a sequence of characters. Later, we
used a token-based output alphabet. See Table 1
for examples.

The shared task dataset includes translated stems
in its glosses. We experimented with represent-
ing the stems with a special token instead, and a
model for generating stems from the translation,
but chose to use the token-based output with the
original stems in the final results. Development-set
results can be found in Table 3.

2.2 Word-level training examples

Instead of giving the system an entire sentence to
gloss as one example, the system was trained with
word-level examples, which included tokens on ei-
ther side of the “target” word for added context.
Since the output gloss contains the same number
of tokens as the input sentence, training and in-

Output format Stem F1 Morph. Word
Characters 38% 44% 53%
Tokens 49% 44% 64%

Table 3: Development-set results for output formats
for Tsez training data. Results for the stemmer and a
special stem token are not included. Both systems use
an ensemble of window size 1 and 2 word-level models.

ference can be performed on the word-level, and
sentence-level results can be created from a simple
concatenation of word-level results. The number
of tokens on either side of the “target” became a
hyperparameter, and we found that a word-window
of two tokens on either side gave the best results
for a single model. See Table 2 for results.

2.3 Ensembling and voting

The final form of the system was a combination
of a model trained on a window size of one, and
another trained on a window size of two. During in-
ference, Fairseq provides a negative log-likelihood
(NLL) score for the model’s predictions. A final
output token was chosen by finding the smallest
NLL score for either model’s predictions. Figure 1
depicts the ensembling and voting process.

2.4 A model for predicting stems

We experimented with an additional sequence-to-
sequence model for generating stems using the
gloss and the translation text. The full translation
was used as an input sequence, and just the stems
from the gloss would be used as an output sequence.
The input and output sequences were represented
with a character-level alphabet.

The system used a simple technique for adding
stems to the final model predictions: During the
combination of word-level results into sentence-
level outputs, the system replaced the special stem
tokens with predictions from the stemmer model in
the order that each sentence-level stemmer result
was generated. If the model generated too many
stems, the rightmost outputs would be left out, and
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Word-level accuracy arp ddo git lez ntu nyb usp AVG
This submission 56% 74% 7% 66% 71% 77% 67% 60%
Baseline 71% 73% 17% 50% 42% 5% 72% 47%
Best other result (per language) 79% 81% 21% 79% 81% 85% 73% 71%

Morpheme-level accuracy
This submission 45% 64% 9% 40% 37% 73% 56% 47%
Baseline 44% 51% 8% 42% 18% 14% 57% 34%
Best other result (per language) 78% 73% 12% 62% 56% 87% 70% 63%

Table 4: Test-set results of the shared task across all languages.

Eženi esiya eňlin

<s> _ e ž e n i _ e s i y a
e ž e n i _ e s i y a _ e ňl i n

e s i y a _ e ňl i n _ <e>
<s> _ <s> _ e ž e n i _ e s i y a _ e ňl i n
<s> _ e ž e n i _ e s i y a _ e ňl i n _ <e>
e ž e n i _ e s i y a _ e ňl i n _ <e> _ <e>

window=1 model window=2 model

-0.01 old - DEF
-0.01 brother - ERG

-0.1 tell - PST . UNW

-0.1 old - ERG
-0.1 brother - DEF

-0.01 say - PST . UNW

Voting, combine output tokens

old-DEF brother-ERG say-PST.UNW

Figure 1: A diagram of the system’s approach to word-
level training and voting, with an example from Tsez
and hypothetical NLL scores and word-level predic-
tions.

if there were too few, at least one special stem
token would remain. Figure 2 represents a glossing
system working with the stemmer model.

This stemmer model was prototypical and we
found that it did not have an effect on overall per-
formance or stem F1 score.

2.5 Evaluation
We used the shared task baseline model’s evalua-
tion script, which calculates a variety of metrics, in-
cluding an overall BLEU score, stem F1, precision,
and recall, as well as word- and morpheme-level
accuracy.

3 Results

The final system consisted of two word-level
sequence-to-sequence models, trained with a word
window size of one and two, respectively. The in-
put alphabet consisted of characters and the output

Eženi esiya eňlin

The eldest brother said

Glossing model
with stem tokens

<stem>-DEF <stem>-ERG <stem>-PST.UNW

t h e _ e l d e s t _ b r o t h e r _ s a i d

Stemmer model

o l d _ b r o t h e r _ s a y

Replace stem tokens left-to-right

old-DEF brother-ERG say-PST.UNW

Figure 2: A diagram of the system with a model that
uses the translation to predict stem tokens. The gloss-
ing model could be a single word-level model or an
ensemble like in Figure 1.

alphabet was token-level. The models were trained
with an inverse square root learning rate scheduler,
early stopping, and the Adam optimizer. Models
trained on all languages except for Gitksan used
a batch size of 128. Since the Gitksan training
dataset was just 31 examples long, it used a batch
size of 64 instead.

See Table 4 for results across all languages in
the shared task training data.

3.1 Analysis

For most of the languages, the system performed
better than the baseline in terms of word-level
and morpheme-level accuracy. However, the rela-
tive performance varied by language: the system’s
word-level accuracy for Arapaho is 15% lower than
the baseline, while the same metric for Nyangbo is
72% higher.

We hypothesized that these results could have

219



been caused by differences in morpheme-to-word
ratios across the languages. Since the system
was trained on word-level examples, a lower ra-
tio would suggest longer sequences for training —
Wu et al. (2021) points out that transformer models
perform better than RNNs on longer sequences.

For each training dataset, we calculated the aver-
age morpheme-to-word ratio and found that Nau-
tugu and Uspanteko have the joint highest ratios of
0.83, while Arapaho and Nyangbo are lower with
0.72 and 0.75, respectively. The language with the
lowest ratio was Tsez, at 0.6.

There seems to be a weak trend: The model
under-performed or was at par with the baseline for
languages with low ratios. For languages with a
higher ratios, the model performed better than the
baseline, with an exception of Uspanteko.

From this analysis, we conclude that training
data size and morpheme-to-word ratio alone can-
not explain the model’s under-performance for Ara-
paho and over-performance for Nyangbo.

4 Conclusion

This was a system demonstration of our submission
to the 2023 SIGMORPHON shared task on inter-
linear glossed text. While the system was not the
best-performing of all the submissions, it nonethe-
less performed consistently better than the baseline
model in terms of word- and morpheme-level test-
set accuracy.

The system was relatively inexpensive to train,
as it was built on a single CUDA-enabled laptop.
This could be an advantage of the LSTM-based
architecture: when Wu et al. (2021) introduced the
transformer architecture to character-level transduc-
tion tasks, the authors noted that transformer-based
performance depended on finely-tuned hyperpa-
rameters and longer training times.

However, non-encoder-decoder systems for the
ILG task still show lots of promise, especially for
small datasets. Further research can be done to
examine the effect of ensembling and data augmen-
tation on CRF or LSTM-based token classification
systems.

More work can be done on the stem genera-
tion system as well: a linguist-created inflectional
database like the one described in Oliver et al.
(2022) could algorithmically recognize stems and
look up translations. Also, an upstream word align-
ment model, such as one of the IBM models de-
scribed in Brown et al. (1993), could help with the

construction of a stemmer system.
We hope this demonstration will lead to future

work on low-resource systems for automatic ILG,
in terms of both computation and dataset size.

5 Limitations

Due to time constraints, it was not possible to per-
form a satisfactory grid search on the large combi-
nations of training hyperparameters, preprocessing
techniques, and stem approaches. It is possible that
a more optimal system is possible, but we were
unable to find it.
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Abstract
This paper presents several subword-modelling-
based approaches to interlinear glossing for
seven under-resourced languages as a part of
the 2023 SIGMORPHON shared task on in-
terlinear glossing (Ginn et al., 2023). In an
interlinear glossed text (IGT), each line of the
original text is paired with one or more cor-
responding lines which encode the underly-
ing grammatical structure. While expert an-
notated glossed text is especially valuable for
the study of low-resource languages in both
theoretical linguistics and natural language pro-
cessing, generating high-quality glossed data
is expensive and time-consuming. Therefore,
approaches which aim to automatically or semi-
automatically generate glossed data can be valu-
able for linguistic research. We experiment
with various augmentation and tokenization
strategies for both the open and closed tracks
of data. We found that while subword models
may perform well for greater amounts of data,
character-based approaches remain competitive
in their performance in lower resource settings.

1 Introduction and Motivation

Subword1 representations can leverage the com-
positional nature of input words to model the mor-
phology of a language. Approaches that treat words
as atomic units have limitations when handling
morphologically rich languages (Ling et al., 2015),
where words may be composed of several meaning-
ful morphemes (which, in turn, are composed of
characters). Another limitation of the word-level
approach is its inability to handle out-of-vocabulary
(OOV) words. When data is scarce and many test
words are absent from the training set, generic OOV
handling (i.e. <UNK> tagging) is especially prob-
lematic. Recent strategies for OOV handling in neu-
ral machine translation include using pre-trained

∗*The first two authors contributed equally.
1Throughout this paper, we use character to refer to sim-

ple character-level splitting and subword to refer to all other
subword segmentation

contextualized word embeddings (Lochter et al.,
2020) or exploiting external data (Ngo et al., 2019).
However, these methods are often domain-specific
and may be unrealistic in a truly low-resource set-
ting.

In such scenarios, models capable of learning
relationships between orthographically similar se-
quences (Ling et al., 2015) may be especially valu-
able for disambiguating rare and unseen words,
as there is often overlap between an OOV word
(e.g. desktop) and those present in the vocabu-
lary (e.g. desk, top). A drawback (Plank et al.,
2016) of character-level representations lies in the
non-trivial relationship between word forms and
their meanings. Subword models may represent
a compromise between characters, which are se-
mantically void, and word-level representations.
Indeed, byte-pair encoding (BPE) (Sennrich et al.,
2016a) can effectively handle rare and unknown
words in neural machine translation, particularly
when a word-level translation may be derived from
the translation of word-internal units.

Throughout this paper, we examine several ap-
proaches to neural interlinear glossing, and our
contributions are as follows:

1. We implement a sliding-window based data
augmentation approach, drawing solely from
the given training set, to improve results for
unsegmented inputs (3).

2. We compare the outputs of input representa-
tions at two granularities (subword, character)
across various language typologies (6.1.1).

3. We provide a quantitative error analysis of
gloss tags generated at the character level
(6.1.2).

4. We compare the performance of recursive and
transformer models for pre-segmented inputs
(6.2).
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Additionally, we propose that sequence-to-
sequence (seq2seq) models are a viable approach
for automated gloss generation in low-resource sce-
narios even for the closed-track task, where sys-
tems are trained exclusively on unsegmented input
sentences and glosses.

2 Related Work

Given the data-hungry nature of neural systems,
many approaches for automating low-resource IGT
generation (Moeller and Hulden, 2018; McMillan-
Major, 2020) have been statistical, treating gloss
generation as a token classification task where each
morphologically segmented source line is mapped
to its corresponding morphosyntactic descriptor
(MSD). As CRFs cannot encode variable-length
sequences, they do not extend to the closed-task
setting.

The baseline (Ginn, 2023) for this task uses
a BERT-based model to label each whitespace-
separated sequence with its corresponding glossed
unit. This choice in architecture is motivated by
the scarcity of training data and fails to exploit or-
thographic regularities which lend consistent clues
to the internal structures of morphologically rich
grammars.

In a recent neural approach to automated gloss
generation for Lezgi, Tsez, and Arapaho, Zhao et al.
(2020) experimented with both word and byte-pair
tokenization. While they noted that the subword
model outperformed the word-level model for all
languages but Lezgi, they did not systematically
analyze each approach.

3 Data

The data for this shared task comes from seven low-
resource languages from various language fami-
lies. Some languages in the set include a large
number of training examples, while others con-
tain very few.2 All languages have original texts
(orthographic representations) and gold-standard
glosses. Some languages also have translated lines
of text (in either English or Spanish). For the open
track, all languages except Nyangbo have morpho-
logically segmented lines, and Uspanteko has POS
annotations.

The format of the data was as follows for the
closed track:

• <t>, the orthographic representation
2For detailed information on the languages, see Table 1

Figure 1: Sliding window augmentation

• <g>, the gold standard gloss

• <l>, the translation (in English or Spanish)

The format of the data was as follows for the
open track:

• <t>, the orthographic representation

• <m>, the morphologically segmented line

• <p>, part of speech tags (Uspanteko only)

• <g>, the gold-standard gloss

• <l>, the translation (in English or Spanish)

3.1 Closed Track Data Augmentation
For the closed track, we used a sliding window
augmentation strategy (Figure 1).

Given the training set for a language, we first de-
fine a minimum window size lb = 1 and a scaling
factor p = 0.5|0.7. We count the length of each
whitespace-segmented target line in the training
set and find the average count c. The maximum
window size ub is c ∗ p. We then generate new
source and target examples by segmenting each ex-
ample in the training set into spans of length lb...ub.
These spans are added back into the training set as
new training instances.

Language Original Augmented Total

Arapaho 39501 370058 409559
Gitksan 31 827 858
Lezgi 701 44517 45218
Natugu 791 53033 53824
Nyangbo 2100 17836 19936
Tsez 3558 238190 241748
Uspanteko 9774 103365 113139

Table 1: Overview of closed track training set

3.2 Open Track Data Representation
For the open track, all sentences were split up into
individual words. Each word was represented once
for every morpheme it contained, with moving
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’morpheme boundaries’ for each duplication (we
used a <#> tag to represent this boundary). For
example, the input re-connect-ed would be repre-
sented as follows:

<#> re <#> connec t −ed
re <#> connec t <#>ed
re − connec t <#>ed <#>

Simplifying our input like this allowed us to rep-
resent the problem as a series of morpheme clas-
sifications, rather than a variable-length sequence
output task.

Our final model only used a context size of one
word, meaning each word in the input is considered
independently. A larger model could allow us to
include several words, or even the entire sentence,
as context. A larger context could potentially allow
the model to learn syntactic patterns, however, we
decided this would be too computationally inten-
sive for the shared task, as the improvements would
likely be marginal.

Overall, this representation meant that our in-
put data had as many examples as the number of
morpheme tokens in given sentences.

Language # Sents # Words # Morphs

Arapaho 39501 139714 251655
Gitksan 31 261 429
Lezgi 701 7029 10497
Natugu 791 10140 16341
Nyangbo 2100 8669 13778
Tsez 3558 37458 74334
Uspanteko 9774 41923 60458

Table 2: Overview of open track training set

4 Model Architecture

4.1 Closed Track
Our closed track model is a standard transformer-
based sequence-to-sequence network (Vaswani
et al., 2017). We use 3 layers for both the en-
coder and decoder, as well as 6 attention heads.
Dropout is set to 0.25, and the feedforward and
embedding dimensions are set to 512 and 300, re-
spectively. The default batch size is set to 32 for
both training and inference, adjusted to 8 for Gitk-
san and 64 for Arapaho to account for differences
in the amount of available data. For training, we
used PyTorch’s implementation of the Adam op-

timizer3, with learning rate γ = 10−4, β1 = 0.9,
β2 = 0.98, and ϵ = 10−9. Each model was trained
over 50 epochs. To prevent overfitting, we stopped
the training procedure if validation accuracy did
not improve for 3 consecutive epochs.

Inputs are segmented into either BPE subwords
or characters. During the decoding phase, the de-
coder auto-regressively generates an output gloss
sequence until the <end> token is reached; at
translation time, the predicted token is selected
via a greedy decoding mechanism.

4.2 Open Track
Our open track solution was broken up into two
parts, the first being tag prediction, and the second
being stem prediction. Example glosses contained
a mix of MSDs and stems, and while our models
would be capable of predicting both together, we
decided that the two tasks should be separated due
to their vastly different vocabulary sizes. For ex-
ample, a language may only contain a few hundred
unique tags, but several thousand stems. This sep-
aration meant we could greatly reduce the output
space of each task, in turn speeding up model learn-
ing. To do this, our tag prediction model would ob-
scure all stems by replacing them with a <STEM>
tag. We could then use a more lightweight predic-
tion model for anything our tag predictor classified
as a stem.

4.2.1 Tag prediction - BiLSTM encoder
Our first approach for encoding inputs in the open
track task was using a BiLSTM model. Each ex-
ample was represented as a sequence of charac-
ters (or tags in the case of the morpheme boundary
<#>), with each character having its own randomly-
initialised embedding. Our model would retrieve
the embeddings for each character and then sequen-
tially pass them into a bidirectional LSTM network.
To get the encoding of our input we took the fi-
nal hidden states from each LSTM direction and
concatenated them into a final context vector.

4.2.2 Tag prediction - ByT5 encoder
To improve on our BiLSTM model, we used the
encoder from Google’s pre-trained ByT5 model
to generate our context vectors. This encoding
system is much more powerful than our BiLSTM
model, in part due to its higher dimensional layers,
but also its pre-trained embeddings and attention

3Other implementations of the Adam optimizer may use α
to represent the learning rate
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mechanisms. When fine-tuning our models we ap-
plied multilingual training jointly on all shared task
languages before fine-tuning on each individual
language. This was done in order to enable some
transfer learning, which may be useful for the most
low-resource languages. To further this, multilin-
gual training sets could be supplemented with data
from high-resource languages to improve results in
the multilingual training phase (though that may be
outside the spirit of the shared task).

4.2.3 Tag prediction - Feed-forward decoder
After generating context vectors with either the
BiLSTM or ByT5 encoder, we then passed the out-
put through a feed-forward network with a single
hidden layer to generate a tag prediction. The in-
put size of the network was defined by the size of
the encoder’s output context vector, and the output
size was defined by the vocabulary size of possible
output tags observed during training time. The hid-
den layer size was tuned as a hyperparameter, but
always remained above the output dimension.

4.2.4 Stem prediction - Most common vocab
To predict stems we used a vocabulary dictionary
to map word forms seen during training with their
equivalent glosses. We used a counter to keep track
of the most common glosses for each morpheme
and used this to replace any forms predicted to
be <STEM> with their most common gloss. Any
forms not seen during training time were replaced
with <UNK> tags, though they could also be left as
the original word form, which might improve per-
formance on noun stems (such as names or places)
where the translation and gloss might match.

5 Experiments

5.1 Closed Track - Character-level
For each language-specific model, we built sepa-
rate source and target vocabularies consisting of
the set of unique characters in the transcription
(source) and gloss (target) lines of the training data.
An early error analysis showed that OOV charac-
ters were usually non-alphabetic, so we manually
added these characters to both source and target
vocabularies.

Each line was split into characters and post-
processed. Morpheme separators4 were re-attached
to preceding and following characters. In addition,

4Corresponding to the Leipzig Glossing Rules 2 and 4

whitespace was replaced with #. This step pre-
vented the generation of ill-formed glosses with
dangling separators such as ’one escape-’.5

For example, the gloss ’one escape-IMPF .’ is
tokenized and post-processed as follows, with seg-
ments delimited by a pipe character:

1. Original gloss:

one escape-IMPF .

2. Tokenized:

<start>|o|n|e|#|e|s|c|a|p|e|-|I|M|P|F|#|.|<end>

3. Post-processed:

<start>|o|n|e|#|e|s|c|a|p|e-|-I|M|P|F|#|.|<end>

5.2 Closed Track - BPE
We trained separate input and output BPE6 tok-
enizers for each dataset, defining the maximum
threshold for convergence operations given a set of
characters C as n ∗ |C| Although we set n = 16
to avoid re-training the tokenizers at different vo-
cabulary sizes, fine-tuning the number of merge
operations is likely to yield improved results.

5.3 Open Track - BiLSTM
In our first experiments, we fed the open track data
(as modelled in 3.2) into our BiLSTM encoder then
feed-forward decoder and most-common-vocab
stem prediction model. This performed very well
and could be trained within minutes when run lo-
cally on a CPU. Our model used early stopping and
would keep training only until a drop in the model’s
accuracy on the development was observed.

5.4 Open Track - ByT5
In our later experiments, we used our ByT5 en-
coder along with the feed-forward decoder and
most-common-vocab stem prediction model. This
model took significantly longer to train due to its
much more complex architecture. After one week
of training, we were unable to get it to perform
better than the BiLSTM encoder model, however,
we expect that its architecture should theoretically
allow for a higher performance ceiling given suffi-
cient training.

5Whitespace was re-inserted and duplicate separators were
removed prior to evaluation

6The Hugging Face implementation based on Sennrich
et al. (2016b)
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To assist multilingual learning, inputs to this
model were prepended with a 3-character language
tag, which bypassed the byte-level encoding and
was treated as a special character with its own em-
bedding. We believe this should help the model
distinguish between orthographically similar lan-
guages, though further testing would be useful to
determine how strong this approach is.

When training this model we used checkpointing
to save the weights after each epoch. We then used
an evaluation pipeline to assess the results at each
checkpoint in order to determine the best model.
We began fine-tuning with individual languages
after 20 multilingual epochs.

6 Results & Discussion

6.1 Closed track
First, it must be noted that our approach does not
appear to extend to the truly low-resource setting
given its poor performance on Gitksan. More-
over, improvements in word accuracy are inconsis-
tent, which is unsurprising given the limitations of
character-level modelling discussed above. For the
remaining languages, our character-level sequence-
to-sequence model consistently and noticeably out-
performs the baseline model for average morpheme
accuracy. The only exception is Lezgi, where there
is no significant difference between the morpheme
accuracies. This may be due to the size of the Lez-
gian dataset as well as the structure of the language,
but we leave this question for further investigation.

6.1.1 Character vs BPE
Both the character-level and baseline models out-
performed the BPE model for all datasets apart
from Arapaho; this makes sense since the general-
izability of the byte-pair encoding algorithm (w.r.t.
identifying rare sequences in the vocabulary) de-
pends on the size and diversity of the training data.
As we used a generic approach to training each
BPE tokenizer, our results do not necessarily align
with a more robust implementation of the byte-pair
encoding algorithm. Although we suggest that BPE
modelling is likely to be a competitive approach
when more training data is available, the hands-off
appeal of the character-level approach should not
be ignored, especially in the context of the low-
resource glossing task. If the dataset is sufficiently
large, however, BPE could prove more efficient due
to its compactness.

6.1.2 Qualitative Analysis
We analyze examples of predicted glosses for Ara-
paho (3). In the positive examples (3.1, 3.5), the
predicted and target stems are consistent in mean-
ing, while the negative examples (3.3, 3.6) are less
coherent. We offer the following observations, with
the caveat that we have yet to conduct a systematic
analysis:

• There might be a relationship between stem
rarity and prediction coherence; that is, the
less frequent a stem, the less semantic similar-
ity between predicted and target tags.

• The character-based model might do a better
job at predicting semantically related tags for
morphologically complex stems.

• Misalignment errors (such as in Table 3.2),
where the model fails to generate a gloss tag
for each word in the transcription line, occur
frequently.

6.1.3 Generalization to unseen stems
The character-level model is able to successfully
predict unseen English stems (Table 3.7). When the
model encounters an unknown lexeme, it seems to
have learned to replicate the stem (or stem-internal
constituents) to preserve meaningful elements.

Notably, Arapaho is the only language where
the model learns to produce unseen English words.
(Liu et al., 2018) report similar results in their
character-level seq2seq translator for OOV han-
dling in statistical machine translation: the model
learns to produce novel English target words by
combining previously seen subwords or translit-
erating complete sequences. As their system (1)
is specifically designed for OOV prediction for
moderate-resource languages and (2) leverages ex-
ternal data (bilingual dictionaries, translation tables,
there could be a data threshold for stem generation.
With a high tag accuracy, this could prove useful
for researchers who could prioritize glossing the
stems and leverage the model to generate the tags.
Orthographic similarity may also play a role: in
our data, Arapaho is transcribed in the Latin al-
phabet while Tsez, the second-largest dataset, is
transcribed in the Cyrillic alphabet.

6.2 Open track
We found that the BiLSTM model performed
strongest compared to preliminary training on the
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Token Original Sentence Reference Prediction

(1) heneenei3oobei’i3i’ Nuhu’ tih’eeneti3i’ he-
neenei3oobei’i3i’

IC.tell.the.truth-
3PL

IC.true-3PL

(2) Beetbeteeenehk Beetbeteeenehk wo’uuceh
nee’eesoo’

want.to-dance-
2S.SUBJ

want.to-dance-
SUBJ

(3) te3ou B Tous te3ou sandhill.crane tell.story

(4) ne’koxo’useet Ne’P ne’koxo’useet then-walk.slowly-
3.S

then-slowly-
slowly-3.S

(5) he’ihce’oo’eixootiin Noh he’ihce’oo’eixootiin NARRPAST-again-
people.assemble

NARRPAST-back-
people.are.gathering-
0S

(6) hoowuhneniinoo’ ’oh hinee 3eboosei3iihi’
hoowuhneniinoo’
hoowu...

IC.lots.of.things-
0S

NEG-too.man-0S

(7) sycamore nuhu’ sycamore huuno-
hootin

sycamore sycamore

Table 3: Error analysis for Arapaho (character level modelling)

Char Byte Baseline

Language BLEU Word Morph BLEU Word Morph BLEU Word Morph

Arapaho 0.61 0.72 0.74 0.65 0.74 0.76 0.418 0.701 0.519
Gitksan 0.00 0.04 0.06 0.00 0.02 0.09 0.045 0.291 0.163
Lezgi 0.44 0.52 0.48 0.30 0.28 0.32 0.520 0.557 0.492

Nyangbo 0.72 0.79 0.82 0.68 0.73 0.76 0.742 0.824 0.782
Tsez 0.72 0.77 0.76 0.63 0.65 0.65 0.578 0.721 0.529

Uspanteko 0.63 0.71 0.70 0.54 0.63 0.63 0.538 0.703 0.655
Natugu 0.52 0.58 0.51 0.42 0.35 0.38 - - -

Table 4: Closed track evaluation results

ByT5 architecture. We believe that additional fine-
tuning for individual languages on the ByT5 model
would improve performance enough to beat the
BiLSTM model results, however, the model’s com-
putational complexity meant we didn’t have the
time required to train the model to this level. Our
BiLSTM model was able to outperform the base-
line when used on Gitksan, Lezgi, Tsez, and Us-
panteko. It was not able to beat the baseline on
Arapaho and Nyangbo.7

The biggest strength of the BiLSTM model over
the ByT5 model was its significantly lower com-
putational complexity. We found that the BiLSTM
model could be trained in minutes with a consumer-

7For details on model performance, see Table 5

grade CPU, and the transformer-based ByT5 model
took up to several hours to train a single epoch
when using a research-grade GPU, which is what
likely led to its worse performance in our final re-
sults. The BiLSTM architecture is impressively
competent for the interlinear glossing task, and its
short training time with strong performance shows
that this model is a strong contender, even against
the vastly more complex transformer model.

6.3 Future Work
Further research could investigate the relation-
ship between morphological attributes (such as
morpheme-to-word ratio) and the extent to which
neural models can leverage compositional cues in
orthographic sequences.
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BiLSTM ByT5 Baseline

Language BLEU Word Morph BLEU Word Morph BLEU Word Morph

Arapaho 0.76 0.84 0.90 0.64 0.76 0.84 0.792 0.854 0.911
Gitksan 0.13 0.38 0.52 0.07 0.16 0.37 0.142 0.250 0.300
Lezgi 0.71 0.83 0.87 0.69 0.82 0.85 0.420 0.326 0.501

Nyangbo 0.60 0.72 0.81 0.23 0.50 0.58 0.784 0.847 0.892
Tsez 0.75 0.79 0.88 0.45 0.56 0.72 0.686 0.742 0.850

Uspanteko 0.64 0.77 0.82 0.39 0.66 0.69 0.649 0.759 0.813
Natugu 0.84 0.89 0.93 0.43 0.76 0.84 - - -

Table 5: Open track evaluation results

Additionally, we would like to implement some
utilisation of the translation track. For exam-
ple, this could be used to help resolve unknown
("<UNK>") tokens, by checking which lemmas
have already been predicted and selecting the most
likely of the rest. In our current approach, this
potentially valuable data is left unused.

Another approach we would like to try for resolv-
ing unknown tokens is choosing a ’nearest neigh-
bor’ vocabulary item to replace any unknown stems.
This would help mitigate the impact of misspellings
and input noise, which our current stem prediction
model (used in the open track models) is not robust
to.

When predicting output tags in our open track
models, which pair an encoder with a feed-forward
decoder, an improved approach could involve feed-
ing previous tag predictions into the model. This
would allow us to model some (unidirectional) re-
lationships between words without increasing the
context size. This could easily be done by replacing
the feed-forward decoder with a recursive decoder,
such as a unidirectional LSTM or GRU.

For our BiLSTM model, implementing a pa-
tience mechanism into the early stopping might
also allow for some improvements in performance
and prevent underfitting.

We would also like to train our ByT5 model on
a larger transformer architecture. We are currently
using Google’s ByT5-small model, as implemented
on Hugging Face, however, there are several larger
models that could easily be swapped in. In addition
to this, models could be trained on larger contexts
in order to learn inter-token patterns. For example,
we could use a context of 3 words (the target word
plus one word on either side) instead of only giving
the model one word at a time.

For low-resource languages, we would also like

to try Good-enough Compositional Augmentation
(Andreas, 2020), as well as other data augmentation
strategies. We believe this would be beneficial for
models with very few training examples, such as
Gitksan.

On closed-track tasks, we suggest that using a
beam search decoding algorithm may yield better
results than the current greedy decoding implemen-
tation, which has limited performance, particularly
with longer sequences.

7 Conclusion

In this paper, we explored the potential of us-
ing subword representations in grammatical gloss-
generating models to ’learn’ the morphological pat-
terns of a low-resource language. At a byte-pair
level, we found this strategy to be competitive but
dependent on the amount of training data available.
As such, the byte-pair tokenized model performed
the best for Arapaho (the dataset with the most
tokens). We recognized that there might be more
robust ways to implement this tokenization for lan-
guages with fewer tokens, and attributed some of
the underperformance of the model in other lan-
guages to our generic tokenization strategy. We
found that at a character level, even with no pre-
augmentation and fewer tokens, the model deliv-
ered impressive results. We propose that the char-
acter level modelling approach excels in terms of
both accessibility and performance in this setting.
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A Hyperparameters

For the model using ByT5 encoding, the output
decoder (4.2.3) used one hidden layer of size 1024,
which was large enough to encompass the approxi-
mately 700 size tag vocabulary.

For the model using BiLSTM encoding, the hid-
den layer size changed based on the size of the
language-specific tag vocabulary (as this model did
not use any multilingual training).

No other hyperparameters were optimised for
the open track.

All of our model training and prediction code
for the shared task can be accessed on GitHub at
https://github.com/michelleyun98/
sigmorphon2023-IGT.
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Abstract

Grapheme-to-phoneme conversion is an impor-
tant component in many speech technologies,
but until recently there were no multilingual
benchmarks for this task. The third iteration
of the SIGMORPHON shared task on multi-
lingual grapheme-to-phoneme conversion fea-
tures many improvements from the previous
year’s task (Ashby et al., 2021), including ad-
ditional languages, three subtasks varying the
amount of available resources, extensive qual-
ity assurance procedures, and automated error
analyses. Three teams submitted a total of fif-
teen systems, at best achieving relative reduc-
tions of word error rate of 14% in the cross-
lingual subtask and 14% in the very-low re-
source subtask. The generally consistent result
is that cross-lingual transfer substantially helps
grapheme-to-phonememodeling, but not to the
same degree as in-language examples.

1 Introduction
Many speech technologies demand mappings be-
tween written words and their pronunciations.
In open-vocabulary systems, as well as certain
resource-constrained embedded systems, it is in-
sufficient to simply list all possible pronunciations;
these mappings must generalize to rare or unseen
words as well. Therefore, the mapping must be
expressed as a mapping from a sequence of ortho-
graphic characters—graphemes—to a sequence of
sounds—phones or phonemes.1
Grapheme-to-phoneme (g2p) datasets vary in

size across languages (van Esch et al., 2016). In
low-resource scenarios, an effective way of “break-
ing the resource bottleneck” (Hwa et al., 2005) is
cross-lingual transfer of information from a high-
resource language, either by annotation projection

1We note that referring to elements of transcriptions as
phonemes implies an ontological commitment which may or
may not be justified; see Lee et al., 2020 (fn. 4) for discussion.
Therefore, we use the term phone to refer to symbols used to
transcribe pronunciations.

1000

1000100

Cross-lingual
transfer

Very low
resource

Low resource

100

Figure 1: Training grapheme–phoneme pairs in the
three subtasks. Transfer language is blue; target lan-
guage is red. In all cases, the test set was 100 examples
in the target language.

(Yarowsky and Ngai, 2001; Nicolai et al., 2020)
or adapting a model to a new language (Zoph
et al., 2016; Pino et al., 2019; McCarthy et al.,
2019, 2020b; Mueller et al., 2020; Lee et al., 2022).
The intent is that either the data or the learned
representations and parameters carry across lan-
guages. Cross-lingual transfer shows promise
for grapheme-to-phoneme conversion (Deri and
Knight, 2016). Since this shared task began, zero-
shot grapheme-to-phoneme procedures have been
proposed, using no examples in the language of in-
terest (Li et al., 2022).
SIGMORPHON in 2020 and 2021 hosted

shared tasks on grapheme-to-phoneme conversion
(Gorman et al., 2020; Ashby et al., 2021). The
tasks have drawn wide participation, and in both
years the participants outperformed the baseline
systems by respectable margins. A major finding
of the most recent iteration (Ashby et al., 2021) is
that the largest improvements came from data aug-
mentation, rather than alterations of the coremodel.
Consequently, we have proposed a third edition of
the shared task that explores data efficiency and
language relatedness through cross-linguality.
This year’s subtasks are designed so that, by con-

trasting these two aspects, we can answer two ques-
tions about data efficiency:
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1. How much does the transfer language data
help?

2. How hard is it to model the language’s
grapheme-to-phoneme mapping, intrinsi-
cally?

This year, we study 10 language pairs, includ-
ing two surprise pairs which were not released to
the participants until close to the deadline as a chal-
lenge. Each pair of languages shares a script and
some other relationship (e.g., phylogeny or hege-
mony). We investigate three data settings:2

Cross-lingual transfer A small amount of data
(100 words) in the language of interest (the
“target language”) and a large amount of data
(1000words) in a nearby language (the “trans-
fer language”).

Very-low resource A small amount of data (100
words) in the target language and no data in
the transfer language.

Low resource A large amount of data (1000
words) in the target language and no data in
the transfer language.

In every case, we use the same 100-word test set,
providing only the graphemes to the participants.
Because the language pairs are consistent across
the subtasks, we can draw meaningful contrasts.
Altogether, 15 systems were submitted, which

allow substantial insights into our questions about
data efficiency and g2p modelability. This third
iteration of the SIGMORPHON shared task on
graphme-to-phoneme conversion introduces trans-
fer languages, new target languages, surprise lan-
guages, and stringent quality assurance, as the sub-
task structure which enables comparison.

2 Data
As in the two previous years, all pronunciation data
was drawn from WikiPron (Lee et al., 2020), a
massively multilingual pronunciation database ex-
tracted from the online dictionary Wiktionary. De-
pending on the language and script, Wiktionary
pronunciations are either manually entered by hu-
man volunteers working from language-specific
pronunciation guidelines or generated from the
graphemic form via language-specific server-side
scripting. WikiPron scrapes these pronuncia-
tions from Wiktionary, optionally applying case-
folding to the graphemic form, removing any

2The data are available at https://github.com/
sigmorphon/2022G2PST.

Target language Transfer language
Swedish Norwegian Nynorsk
German Dutch
Italian Romanian
Ukrainian Belarusian
Tagalog Cebuano
Bengali Assamese
Persian Pashto
Thai Eastern Lawa
Irish Welsh
Burmese Shan

Table 1: Language pairs used in the shared task. Irish–
Welsh and Burmese–Shan were surprise pairs withheld
until mid-April.

stress and syllable boundaries, and segmenting
the pronunciation—encoded in the International
Phonetic Alphabet—using the Python library seg-
ments (Moran and Cysouw, 2018). In all, 20
WikiPron languages were selected for the three
subtasks. Only four of these were used in the 2021
iteration of the shared task. We give the twenty
languages, as 10 target–transfer pairs, in Table 1.
Morphological information from the UniMorph

morphological lexicons (Kirov et al., 2018; Mc-
Carthy et al., 2020a) were again provided to partic-
ipants; however, no participant made use of these,
just like last year.

Language selection While the 2021 shared task
considered both high-resource and low-resource
settings, we did not control for the language itself.
It was hard to extrapolate from the scores to claims
about the resource requirements and difficulties of
particular languages. This year, we use the same
languages in all settings. This makes it reasonable
and appropriate for the results to be directly com-
pared, answering the two questions from Section 1.
These languages were chosen to avoid partic-

ularly pathological languages noted in previous
years (English, Croatian) and those with unique
and hard-to-predict phenomena, like stød in
Danish.

Data quality assurance While the WikiPron
data (Lee et al., 2020) that we use for the shared
task is typically of high quality, some participants
reported limitations in the English data. Conse-
quently, we have omitted English data from the
task. Beyond this, the data quality assurance pro-
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cedures are inspired by Ashby et al. (2021).

3 Task Definition
In this task, participants were provided with a col-
lection of words and their pronunciations, and then
scored on their ability to predict the pronunciation
of a set of unseen words.

3.1 Subtasks
Last year, the task presented high-, medium-,
and low-resource scenarios, each in different lan-
guages. This hampered cross-setting compari-
son, muddling whether differences in performance
were due to data size, models, or languages.
This year, the same test sets are used across all

settings, in the same set of languages. We offer a
low-resource subtask, a very low-resource subtask,
and a very low-resource subtask with more data
available in a related (e.g., phylogenically or hege-
monically) language. The relative error rates on
each of three subtasks help to answer the research
questions from Section 1. The design of these sub-
tasks builds onMcCarthy et al. (2019), which intro-
duced the first shared task on cross-lingual transfer
of information in morphological inflection.

Cross-lingual transfer This setting is meant to
simulate a situation in which few data are available
in the language of interest, but more are available
in a related language, which can be leveraged. 100
words are given in each of the 10 languages, and
an additional 1000 words are given in a related lan-
guage for each language of interest. Throughout,
we use the terms transfer language and target lan-
guage, respectively, to refer to these. While it is
realistic to have even more data available in a high-
resource language, we constrain the size to enable
comparison with the third setting.

Very-low resource This setting is designed to
be extremely challenging. 100 words are given
in each of the 10 languages. Comparing with the
cross-lingual transfer setting gives insights about
the value of the transfer data, and (indirectly) the
similarities of the orthographic and phonetic sys-
tems present in the language pairs.

Low resource This setting matches the low re-
source condition from Ashby et al. (2021). 1000
words are given in each of the 10 languages. Com-
paring with the very-low resource setting gives
insights about the learnability of the task. Com-

paring with both previous subtasks gives insights
about the relevance of in-language data.

3.2 Data preparation

The procedures for sampling and splitting the data
are similar to those used in the previous year’s
shared task; see Gorman et al. (2020, §3) and
Ashby et al. (2021, §4.2). For each of the three sub-
tasks, the data for each language are first randomly
downsampled according to their frequencies in the
Wortschatz (Goldhahn et al., 2012) norms. Words
containing less than two Unicode characters or
less than two phone segments are excluded, as are
words with multiple pronunciations. The resulting
data are randomly split into training data, develop-
ment data, and test data. As in the previous year’s
shared task, these splits are constrained so that in-
flectional variants of any given lemma—according
to the UniMorph (Kirov et al., 2018; McCarthy
et al., 2020a) paradigms— can occur in at most one
of the three shards. Training and development data
was made available at the start of the task. The test
words were also made available at the start of the
task; test pronunciations were withheld until the
end of the task.

Language-specific decisions The WikiPron
data for Welsh has separate files for the North
Wales and South Wales dialects. The South Wales
dialect was chosen for there being slightly more
data. Pashto, Eastern Lawa, and Shan do not have
frequency data, so their “freq” file simply has the
frequency of 1 for every word.

4 Evaluation

The primary metric for this task was word er-
ror rate (WER), the percentage of words for
which the hypothesized transcription sequence is
not identical to the gold reference transcription.
As all three subtasks involve multiple languages,
macro-averaged WER was used for system rank-
ing. Participants were provided with two evalua-
tion scripts: one which computes WER for a sin-
gle language, and one which also computes macro-
averagedWER across two or more languages. The
2020 shared task also reported another metric,
phone error rate (PER), but this was found in the
2021 shared task to be highly correlated withWER
and was not reported.
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5 Baseline
The baseline system from 2021, the monotonic
hard attention system from CLUZH (Makarov and
Clematide, 2020), remained the baseline architec-
ture in 2022. It is is a neural transducer system us-
ing an imitation learning paradigm (Makarov and
Clematide, 2018).
All models were tuned to minimize per-

language development-setWER.We reuse the best
hyperparameter settings from last year. Align-
ments are computed using ten iterations of expecta-
tion maximization, and the imitation learning pol-
icy is trained for up to sixty epochs (with a pa-
tience of twelve) using the AdaDelta optimizer. A
beam of size of four is used for prediction. Final
predictions are produced by a majority-vote ten-
component ensemble. Internal processing uses the
decomposed Unicode normalization form (NFD),
but predictions are converted back to the com-
posed form (NFC). An implementation of the base-
line was provided during the task and participating
teams were encouraged to adapt it for their submis-
sions.
In many cases, the baseline’s loss did not im-

prove over the course of training. We indicate this
with a ‘-’ in Tables 2 to 4.

6 Submissions
The shared task received 15 submissions from
3 teams. Below we provide brief descriptions
of sub- missions to the shared task; more de-
tailed descriptions of the first two—as well as
various exploratory analyses and post-submission
experiments—can be found in the system papers
later in this volume.

Tü-G2P Girrbach (2022) evaluated three
sequence labeling approaches to grapheme-to-
phoneme conversion. In the supervised case,
Girrbach trained a BiLSTM model to predict
phoneme n-grams. The labels are derived from
external alignments calculated by a custom neural
aligner. Second, Girrbach trained a Gram-CTC
model (Liu et al., 2017) to jointly predict and
realign phoneme n-grams. Finally, the main
approach is to use a standard BiLSTM sequence
labeling model, but predict multiple (τ ∈ {3, 4, 5})
phoneme unigrams from each grapheme. Girrbach
uses standard CTC (Graves et al., 2006) to train
the model, which is possible because predicting
multiple phonemes from each grapheme causes

the number of predicted symbols to always be
greater than the number of target phonemes.
Note that using CTC avoids relying on external
alignments in any way. For the transfer task,
Girrbach shares the same grapheme embeddings
and BiLSTM encoder between target and transfer
language, but uses different prediction layers.

Hammond Hammond (2022) submitted one sys-
tem. He initially built a Transformer-based sys-
tem, but because data are so minimal, it performed
poorly. He switched to an HMM-based system
(Novak et al., 2012).
For the transfer condition, which was his pri-

ority, he used the provided transfer data and aug-
mented the system in two ways. First, he used
a simplified version of the splicing augmentation
scheme developed by Ryan and Hulden (2020) for
the core data. Second, for the transfer languages,
he only used data where the phonologies over-
lapped at the bigram level; in other words, he only
included transfer training pairs that only included
phonetic bigrams that occurred in the target lan-
guages.

mSLAM Garrette (2022) prepared a submission
based on mSLAM (Bapna et al., 2022), a multilin-
gual encoder model pretrained simultaneously on
text from 101 languages and speech from 51 lan-
guages. The mSLAM team used the 600M param-
eter configuration of mSLAM. At fine-tuning time,
they combinedmSLAM’s text encoder, which uses
characters as ints input tokens, with an uninitial-
ized RNN-T decoder (Graves, 2012) whose vocab-
ulary was the set of all 384 phonemes appearing
in the shared task data. Due to the extremely lim-
ited amount of training data for the tasks, the team
found that the decoder needed to be very small.
They used a single layer, with hidden dimension
8, model dimension of 16, and 4 heads. They also
used a dropout rate of 0.3 and a label smoothing of
0.2.
They took an explicitly multilingual approach to

modeling the G2P tasks, fine-tuning and evaluat-
ing a single model that covered all languages in
the task. Having a single model for all languages
made it necessary to tell the model, for each in-
put, which language it was generating the pronun-
ciation for, which was accomplished by prefixing
each input string with the language’s three-letter
code (followed by a single space).

NFST Lin (2022) proposed a universal
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Language Baseline Tü-G2P-1 -2 -3 -4 -5 Hammond mSLAM
ben 91.78 82.19 89.04 89.04 83.56 83.56 79.45 -
bur - 92.00 90.00 93.00 86.00 86.00 89.00 -
ger 97.00 79.00 74.00 74.00 74.00 74.00 85.00 -
gle - 78.00 74.00 80.00 81.00 81.00 85.00 -
ita 44.00 41.00 41.00 38.00 40.00 40.00 41.00 -
pes - 80.70 100.00 78.95 82.46 82.46 82.46 -
swe 80.00 82.00 77.00 80.00 74.00 74.00 81.00 -
tgl 30.00 50.00 40.00 68.00 92.00 92.00 37.00 -
tha - 91.00 83.00 81.00 94.00 94.00 91.00 -
ukr 96.00 77.00 74.00 76.00 92.00 92.00 86.00 -
Macro-average 83.48 75.29 74.20 75.80 79.90 79.90 75.69 -

Table 2: Results from the cross-lingual transfer subtask.

Language Baseline Tü-G2P-1 -2 -3 -4 -5 Hammond mSLAM
ben - 90.41 83.56 83.56 86.30 91.78 91.78 -
bur - 90.00 87.00 86.00 87.00 95.00 93.00 -
ger - 81.00 83.00 84.00 82.00 89.00 90.00 -
gle - 78.00 76.00 76.00 79.00 86.00 93.00 -
ita 51.00 44.00 49.00 51.00 45.00 48.00 50.00 -
pes - 75.44 80.70 85.96 82.46 80.70 80.70 -
swe 79.00 84.00 81.00 81.00 81.00 86.00 82.00 -
tgl 29.00 40.00 35.00 37.00 32.00 42.00 24.00 -
tha - 91.00 84.00 83.00 86.00 96.00 95.00 -
ukr - 73.00 79.00 80.00 77.00 84.00 96.00 -
Macro-average 85.20 74.68 73.83 74.75 73.78 79.85 79.55 -

Table 3: Results from the very low resource subtask.

Language Baseline Tü-G2P-1 -2 -3 -4 -5 Hammond mSLAM
ben 67.12 68.49 72.60 69.86 68.49 71.23 71.23 -
bur 29.00 37.00 31.00 37.00 35.00 51.00 46.00 -
ger 42.00 50.00 50.00 45.00 46.00 47.00 48.00 -
gle 38.00 33.00 35.00 37.00 36.00 39.00 56.00 -
ita 15.00 19.00 18.00 18.00 19.00 15.00 29.00 -
pes 59.65 57.89 100.00 57.89 56.14 61.40 59.65 -
swe 45.00 54.00 53.00 51.00 52.00 51.00 62.00 -
tgl 20.00 15.00 16.00 18.00 15.00 14.00 16.00 -
tha 21.00 39.00 38.00 36.00 35.00 57.00 71.00 -
ukr 32.00 36.00 41.00 39.00 44.00 41.00 53.00 -
Macro-average 36.88 40.94 45.46 40.88 40.66 44.76 51.19 -

Table 4: Results from the low resource subtask.

grapheme-to-phoneme transduction model us-
ing neuralized finite-state transducers (NFST;
Lin et al., 2019), a generalization of weighted

finite-state transducers (WFSTs). The submission
was not received by the published deadline. In
fairness to other participants, scores are not listed.
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7 Results
Overall, teams were able to outperform the base-
line in the cross-lingual and very-low resource set-
tings, at best achieving relative reductions of word
error rate of 14% in the cross-lingual subtask and
14% in the very-low resource subtask. The best
results for each setting are given in Tables 2 to 4.
Non-neural approaches like HMMs with data aug-
mentation were particularly successful in regimes
where Transformer models often founder, mirror-
ing findings in machine translation andmorpholog-
ical inflection (McCarthy et al., 2019).

7.1 Error analysis
Error analysis can help identify strengths and
weaknesses of existing models, suggesting future
improvements and guiding the construction of
ensemble models. Prior experience using gold
crowd-sourced data extracted from Wiktionary
suggests that a non-trivial portion of errors made
by top systems are due to errors in the gold data
itself. For example, Gorman et al. (2019) report
that a substantial portion of the prediction errors
made by the top two systems in the 2017 CoNLL–
SIGMORPHON shared task on morphological re-
inflection3 are due to target errors, i.e., errors in the
gold data. (These observations led to the develop-
ment of cleaner data in UniMorph 3.0 (McCarthy
et al., 2020a).)
To facilitate ensemble construction and further

error analysis, we release all submissions’ test set
predictions to the research community.4

8 Discussion
We once again see an enormous difference in lan-
guage difficulty. In particular, Hammond (2022)
provides examples from the Welsh/Irish language
pair to suggest that phylogenic or hegemonic sim-
ilarity of languages does not entail similarity of
orthography and phonology. Moreover, phoneme
OOVswere a problem in the very-low resource set-
ting: many phonemes and phenomena were simply
not observed in 100 randomly sampled examples.
This suggest room for typological information to
improve modeling.
As mentioned above, the data here are a mix-

ture of broad and narrow transcriptions. At first
3https://sigmorphon.github.io/sharedtasks/2017/
4https://drive.google.com/drive/folders/

1qXKjMqtlgtNtT38o2uSZozLlo-7F_R0w?usp=
sharing

glance, this might explain some of the variation in
language difficulty; for example, it is easy to imag-
ine that the additional details in narrow transcrip-
tions make them more difficult to predict. How-
ever, for many languages, only one of the two lev-
els of transcription is available at scale, and other
languages, divergence between broad and narrow
transcriptions is impressionistically quite minor, as
asserted in Ashby et al. (2021). However, this im-
pression ought to be quantified.
The inclusion of the very-low resource subtask

is intended to be a challenging case for partici-
pants; however, we did not anticipate the degree to
which it would be challenging. In many cases, the
baseline and participants’ systems achieve a word
error rate of zero or one. Clearly, there is room for
improvement in minimally supervised grapheme-
to-phoneme conversion.
Participants were permitted in all three subtasks

to make use of lemmas and morphological tags
from UniMorph as additional features. However,
no team made use of these resources. Some prior
work (e.g., Demberg et al., 2007) has found mor-
phological tags highly useful, and Ashby et al.
(2021) suggests this information would make an
impact in French.
The results of the shared task suggest several

next steps for carrying out a g2p shared task:
1. Split evaluation into frequent and infrequent

test sets, as infrequent words may exhibit
greater regularity.

2. Evaluate downstream performance for ASR.
3. Provide pointers to linguistic resources detail-

ing phylogenic/hegemonic relationships, etc.

9 Conclusion
The third iteration of the shared task on multi-
lingual grapheme-to-phoneme conversion is struc-
tured to provide answers to questions about the
value of cross-lingual transfer and data availabil-
ity.
Three teams submitted fifteen systems, achiev-

ing substantial reductions in both absolute and
relative error over the baseline in two of three
subtasks. We hope the code and data, re-
leased under permissive licenses,5 will be used to
benchmark grapheme-to-phoneme conversion and
sequence-to-sequence modeling techniques more
generally—especially in challenging low-resource
scenarios.

5https://github.com/sigmorphon/2022G2PST
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Abstract
This paper describes our participation in
the Third SIGMORPHON Shared Task
on Grapheme-to-Phoneme Conversion (Low-
Resource and Cross-Lingual) (McCarthy et al.,
2022). Our models rely on different sequence
labelling methods. The main model predicts
multiple phonemes from each grapheme and is
trained using CTC loss (Graves et al., 2006).
We find that sequence labelling methods yield
worse performance than the baseline when
enough data is available, but can still be used
when very little data is available. Furthermore,
we demonstrate that alignments learned by the
sequence labelling models can be easily in-
spected.

1 Introduction

This paper describes our participation in the Third
SIGMORPHON Shared Task on Grapheme-to-
Phoneme Conversion (Low-Resource and Cross-
Lingual) (McCarthy et al., 2022). We evalu-
ate 3 sequence labelling methods for grapheme-
to-phoneme conversion (henceforth: g2p). We
approach the challenge of different lengths of
grapheme and phoneme sequences by allowing to
predict multiple phonemes from each grapheme.

The shared task consists of 3 tracks and includes
10 languages. The 3 tracks are high resource, low
resource, and transfer. For the high resource track,
grapheme-phoneme pairs are given for 1000 words.
For the low resource track, grapheme-phoneme
pairs are given for 100 words. For the transfer track,
grapheme-phoneme pairs are given for 100 words
in the target language and additionally grapheme-
phoneme pairs are given for 1000 words in a trans-
fer language (that is related to the target language,
e.g. Dutch→ German). The test set is the same for
each track and contains 100 words of the target lan-
guage. Additionally, a development set is provided
for each target language. The development set also
is the same for each track. All of our models are
applicable to all languages and tracks.

Sequence labelling approaches can claim sev-
eral advantages over the main alternative, namely
(neural) encoder-decoder approaches: Sequence
labelling does not require beam search for infer-
ence, may allow for smaller models, and defines a
direct alignment between the input and predictions.
The latter property may make models more inter-
pretable and help with error analysis. However,
sequence labelling is less flexible than encoder-
decoder approaches and requires special handling
of cases where the input and target sequences are
of different length.

2 Related Work

Common approaches to g2p are joint-ngram mod-
els (Galescu and Allen, 2001; Novak et al., 2016),
encoder-decoder models (Wu et al., 2021; Makarov
and Clematide, 2018a,b; Clematide and Makarov,
2021), and sequence labelling (Jiampojamarn et al.,
2007; Rosca and Breuel, 2016; Schnober et al.,
2016; Ribeiro et al., 2018). In previous iterations
of this shared task on g2p, encoder-decoder models
were dominant both in terms of performance and
in terms of number of submissions (Gorman et al.,
2020; Ashby et al., 2021).

While this shows that neural encoder-decoder
models yield superior performance compared to
joint-ngram models, little work has been done to
evaluate the performance of neural sequence la-
belling models. Therefore, two of our three pro-
posed methods (explained in Section 3) directly
use or build on existing approaches, namely work
by Jiampojamarn et al. (2007) and Liu et al. (2017).
Our third method has so far, to our knowledge, not
been proposed for string transduction. It is how-
ever close to the approaches by Rosca and Breuel
(2016) and Ribeiro et al. (2018): Both propose to
augment the grapheme sequence by extra symbols,
so that phoneme sequences that are longer than the
grapheme sequence can be predicted. We propose
to turn their approach upside-down and allow each
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grapheme to predict multiple phonemes, instead
of optionally deleting unnecessarily added input
symbols.

However, in our current implementation, we pre-
dict a constant number of phonemes (which in-
cludes blank symbols) from each grapheme which
is less flexible than the method proposed by Ribeiro
et al. (2018), but avoids error propagation due to
incorrectly predicted number of insertions. Gener-
ally, no pure sequence labelling method can achieve
the same flexibility as sequence-to-sequence mod-
els, but for some problems with strong local rela-
tionship between the input sequence and the target
sequence, like g2p, sequence labelling may be suf-
ficient.

3 Method

We propose and evaluate 3 different sequence la-
belling methods. To refer to the different methods,
we term them by their main inspiration: “Super-
vised” (cf. Jiampojamarn et al. (2007); Novak et al.
(2016)), “Gram-CTC” (cf. Liu et al. (2017)), and
“Inverse-Scatter-CTC” (cf. Ribeiro et al. (2018);
Rosca and Breuel (2016)). The main challenge
when applying sequence labelling methods to se-
quence transduction problems is finding a way to
handle different lengths of the grapheme sequence
and the phoneme sequence. The solution com-
mon to all our proposed methods is allowing to
predict phoneme ngrams from grapheme unigrams
and allowing to delete graphemes. Since in g2p
the length of phoneme sequences cannot differ ar-
bitrarily from the respective grapheme sequences,
predicting ngrams, which imposes a strict bound
on the length of the predicted phoneme sequence,
is still a realistic approach. In the following, we
describe each method in more detail.

3.1 Supervised Sequence Labelling

The supervised method is a pipeline consisting of
aligning grapheme ngrams to phoneme ngrams and
then training a sequence labelling model to predict
phoneme ngrams from a sequence of graphemes
(cf. Jiampojamarn et al. (2007)). We make the
following design choices:

Our aligner is a neuralisation of the EM many-
to-many aligner proposed by Jiampojamarn et al.
(2007). The aligner calculates grapheme (uni-
gram) and phoneme (unigram) embeddings from
1d convolutions applied to the grapheme sequence
and phoneme sequence. Alignment scores of

grapheme unigrams and phoneme unigrams are the
dot-product between their embeddings. The aligner
is trained by normalising the resulting alignment
score matrix and maximising the alignment prob-
ability of the grapheme sequence and phoneme
sequence, which can be efficiently calculated by
dynamic programming. Alignments are obtained
by calculating the Viterbi path through the align-
ment matrix. Note that this approach generalises
unigram alignment scores to ngram alignments and
therefore does not support deletion of graphemes,
insertion of phonemes, or alignments of types other
than 1-to-many and many-to-1 (which includes 1-
to-1). Furthermore, the length of aligned ngrams is
learned automatically and does not have to be set
as hyperparameter.

Having obtained such alignments, any sequence
labelling model can be trained to predict phoneme
ngrams from graphemes. However, different from
Jiampojamarn et al. (2007), we want to avoid train-
ing a chunker to deal with the many-to-1 case. We
convert the many-to-1 case to 1-to-1 cases in the fol-
lowing way: Assign the aligned phoneme as label
to the first grapheme in the grapheme ngram and
assign deletion as label to all following graphemes
in the grapheme ngram.

3.2 Gram-CTC Sequence Labelling

Gram-CTC as proposed by Liu et al. (2017) works
as follows: Given a whitelist of allowed ngrams, de-
compose the target sequence (here: the phonemes)
into all possible decompositions only containing
ngrams in the whitelist. Then, for each symbol in
the input sequence (here: the graphemes), calcu-
late prediction probabilities for all ngrams in the
whitelist. Also, prediction of a special blank to-
ken is possible (cf. Graves et al. (2006)). Finally,
the model is trained by maximising the prediction
probability of the target sequence, which is the sum
of prediction probabilities of all decompositions.
This sum can be efficiently computed by dynamic
programming.

As whitelist, we use all phoneme ngrams that
appear in alignments calculated for the supervised
method (see Section 3.1). Compared to the main
modus operandi described by Liu et al. (2017), who
propose to use all ngrams up to a certain length,
restricting the whitelist in this way stabilises and
speeds up training.

Compared to the supervised method described in
Section 3.1, Gram-CTC is not directly dependent
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on explicit grapheme-phoneme alignments, but
learns such grapheme-phoneme alignments from
scratch. Therefore, Gram-CTC can correct errors
made by the aligner that would otherwise directly
propagate to the sequence labelling model.

3.3 Inverse-Scatter-CTC Sequence Labelling

Inverse-Scatter-CTC works as follows: For each
grapheme, predict τ phoneme unigrams. Thereby,
the length of the predicted phoneme sequence is
increased and, given a suitable τ , so that the num-
ber of predicted phonemes is always strictly greater
than the number of target phonemes, we can use
standard CTC (Graves et al., 2006) to train the
model. We find τ ≥ 3 to work for all languages
in the shared task except for Persian, where only
τ ≥ 4 works. Therefore, we evaluate τ ∈ {3, 4, 5}.

Compared to the supervised approach (see Sec-
tion 3.1) and Gram-CTC (see Section 3.2), Inverse-
Scatter-CTC has the advantage of only using
phoneme unigrams as labels, thereby reducing the
number of labels and allowing for more flexible
alignments. Furthermore, Inverse-Scatter-CTC is
not affected by an external aligner in any way.

4 Models

For sequence labelling, we always use a plain 1-
layer BiLSTM model. Models are trained using the
different approaches described in Section 3. For
the transfer track, we do not entirely mix the target
language and the transfer language, but we share
the same embeddings and LSTM encoder for both
languages and use separate classification layers,
since we found this to yield better performance.
Our intuition is that transfer data stabilises training
and mitigates overfitting of embeddings and the
LSTM encoder, but the target phonemes differ to a
degree that makes separate decoding necessary.

For each language and track, we train 10 models
and keep the best 5 performing models in terms
of WER on the development set. We use these
5 models to compute word-level majority-voted
ensemble predictions. We resolve ties by choosing
the prediction from the model with lowest WER
on the development set among all predictions with
most votes.

The different approaches also require different
hyperparameters. However, common to all setups
are embedding size 64, no dropout or weight de-
cay, vanilla SGD optimizer with one-cycle learning
rate scheduler (Smith and Topin, 2019), and only

keeping the best checkpoint from each training run
based on WER on development set evaluated af-
ter every epoch. Hyperparameters that differ are
training for 100 epochs with batch size 2, max.
learning rate 0.01, clipping gradients with absolute
value greater than 1 and the LSTM encoder having
128 hidden units for supervised and Gram-CTC,
whereas Inverse-Scatter-CTC models are trained
for 80 epochs with batch size 16, max. learning
rate 0.1, no gradient clipping, and 256 hidden units
for the LSTM encoder. All models and training
routines are implemented in PyTorch (Paszke et al.,
2019).

5 Results

In Table 1, we report test set word error rates
(WER) of supervised and Gram-CTC models for
all languages and tasks. These are the official re-
sults made available by the organisers. For the high
and low resource scenarios, Gram-CTC improves
upon supervised training for 6 out of 10 languages,
and the macro-average WER is around 4 points
lower. The most pronounced difference is for Thai
in the high resource setting. This suggests that it is
indeed helpful to allow learning to realign phoneme
ngrams, as is done by Gram-CTC.

However, for the transfer task, we make different
observations: While Gram-CTC performs worse in
the transfer setting than in the low resource setting,
supervised training is able to use the additional
transfer data in order to improve upon its perfor-
mance in the low resource setting. The improve-
ment amounts to approximately 7 points in WER
(macro-average). Therefore, transfer data can in-
deed be very helpful when used with the right kind
of model.

This being said, Gram-CTC still outperforms su-
pervised training in 6 out of 10 languages (transfer
track). The fact that the macro-average WER of
the supervised model is eventually lower is mainly
due to the much better performance of supervised
training on Tagalog (24 vs 50). If we ignore Taga-
log when calculating macro-average scores, Gram-
CTC (both low and transfer tracks) and supervised
training (transfer track) perform almost equally
well, with a slight advantage for Gram-CTC in
transfer setting.

In Table 2, we report WER for Inverse-Scatter-
CTC. In the high resource setting, we observe
that greater τ (more outputs predicted from each
grapheme) is beneficial. While there does not seem
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high low transfer
gram-ctc supervised gram-ctc supervised gram-ctc supervised

ben 68.49 71.23 90.41 91.78 82.19 80.82
bur 37.00 51.00 90.00 95.00 92.00 94.00
ger 50.00 47.00 81.00 89.00 79.00 80.00
gle 33.00 39.00 78.00 86.00 78.00 82.00
ita 19.00 15.00 44.00 48.00 41.00 36.00
per 57.89 61.40 75.44 80.70 80.70 82.46
swe 54.00 51.00 84.00 86.00 82.00 74.00
tgl 15.00 14.00 40.00 42.00 50.00 24.00
tha 39.00 57.00 91.00 96.00 91.00 95.00
ukr 36.00 41.00 73.00 84.00 77.00 81.00

Avg. 40.94 44.76 74.68 79.85 75.29 72.93

Table 1: Word error rates (WER) for supervised and Gram-CTC models. Avg is macro-average over languages.

to be a visible trend for the low resource track,
greater τ seems harmful in terms of macro-average
WER for the transfer track.

Depending on τ , performance of Inverse-Scatter-
CTC can be slightly better than performance of
Gram-CTC, but we do not observe any decisive
advantages. We demonstrate this in Figure 1: The
numbers in the heatmap show for how many lan-
guages the model on the x-axis achieves strictly
lower WER than the model on the y-axis. De-
spite having the lowest macro-average, supervised
training actually is not superior to any model
for more than 50% of the languages. Contrar-
ily, Inverse-Scatter-CTC with τ=4 achieves bet-
ter performance than most models for more than
50% of the languages, but has second-worst macro-
averaged WER. Overall, Figure 1 shows that which
model is best is language dependent and there is no
clear winner among the models evaluated in this
paper. Similar results can be found also for the
high and the low resource tracks.

Compared to the baseline1, our models gener-
ally perform worse in the high-resource tack, but
better in the low resource and transfer tracks. This
suggests that sequence-to-sequence models may be
superior to sequence labelling models when enough
data is available, while it is still possible to train
neural (sequence labelling) models in the ultra-low
resource settings.

1Results taken from https://github.com/
sigmorphon/2022G2PST#baseline
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Figure 1: Heatmap showing for how many languages
(out of 10) the model on the y-axis achieves strictly
lower test set WER than the model on the x-axis. Results
are shown for the transfer track.

6 Model Inspection

In the introduction, we claim that one advantage of
sequence labelling methods is that they define a di-
rect alignment between graphemes and phonemes,
which can be inspected. Therefore, in Table 3, we
give the 10 most frequent graphemes appearing in
the German development set and their respective
phonemes as predicted by the best trained German
Inverse-Scatter-CTC model (τ=5). From Table 3,
we can see that most alignments are reasonable
(of course one would also have to look at the con-
text). This means that the Inverse-Scatter-CTC
indeed learns useful alignments of graphemes to
phonemes. However, there are also some problems:
While the German model seems to handle deletions
(e.g. “sch” → “S”) rather well, it struggles with
predicting multiple phonemes from one grapheme.

242

https://github.com/sigmorphon/2022G2PST#baseline
https://github.com/sigmorphon/2022G2PST#baseline


high low transfer
τ 3 4 5 3 4 5 3 4 5

ben 72.6 69.86 68.49 83.56 83.56 86.30 89.04 89.04 83.56
bur 31.0 37.00 35.00 87.00 86.00 87.00 90.00 93.00 86.00
ger 50.0 45.00 46.00 83.00 84.00 82.00 74.00 74.00 74.00
gle 35.0 37.00 36.00 76.00 76.00 79.00 74.00 80.00 81.00
ita 18.0 18.00 19.00 49.00 51.00 45.00 41.00 38.00 40.00
per 100.0 57.89 56.14 80.70 85.96 82.46 100.00 78.95 82.46
swe 53.0 51.00 52.00 81.00 81.00 81.00 77.00 80.00 74.00
tgl 16.0 18.00 15.00 35.00 37.00 32.00 40.00 68.00 92.00
tha 38.0 36.00 35.00 84.00 83.00 86.00 83.00 81.00 94.00
ukr 41.0 39.00 44.00 79.00 80.00 77.00 74.00 76.00 92.00

Avg. 45.46 40.88 40.66 73.83 74.75 73.78 74.20 75.80 79.90

Table 2: Word error rates (WER) for Inverse-Scatter-CTC models. τ is the number of outputs predicted from each
grapheme. Avg is macro-average over languages.

Grapheme Predicted Phonemes

e @, , a, E, e:, P a, O, P E, n
"n n, , N

r K, 5, 5
“
, r

t t,
a a, a:
i I, I

“
, i:, i, P i:

s S, s, z, ,
>
t s

h , h
l l,
u U, u, I

“
, u:, U

“

Table 3: Phoneme predictions of the 10 most frequent
graphemes in the development set. Both graphemes and
phonemes are sorted by frequency in descending order.
“ ” denotes deletion.

In German, this is a rather rare phenomenon, oc-
curring only for the grapheme “x”, which is pro-
nounced as “k s”, and also for the glottal stop P
when words start with a vowel. For example, the
pronunciation of German “axt” (English: “axe, ax”)
is predicted as “a k t”, while “a k s t” is correct.

One possibility of how to make use of these
direct alignments is using predefined mappings of
graphemes to phonemes to restrict which phonemes
may be predicted. Another advantage, of course, is
error analysis. For the German model, for exam-
ple, we would recommend adding more examples
containing “x” to the training set. In fact, there is
only one such example in the high resource training
data, namely “existieren” (English: “to exist”).

7 Conclusion

We presented and evaluated 3 sequence labelling
methods for g2p: Supervised, Gram-CTC, and
Inverse-Scatter-CTC. We show that all 3 meth-
ods can be applied to all 3 tracks, but no method
seems clearly superior to the other methods. In
the high resource setting, the baseline sequence-to-
sequence model seems to yield better performance
than sequence labelling methods. However, se-
quence labelling methods seem to perform better
in the very low resource settings. Finally, we show
that Inverse-Scatter-CTC models learn reasonable
alignments of graphemes and phonemes, thereby
validating the claim that sequence labelling models
allow for comparatively easy model inspection.
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We thank Çağrı Çöltekin for helpful discussions
and providing access to computation resources. We
thank the organisers for organising this shared task.

References
Lucas F.E. Ashby, Travis M. Bartley, Simon Clematide,

Luca Del Signore, Cameron Gibson, Kyle Gorman,
Yeonju Lee-Sikka, Peter Makarov, Aidan Malanoski,
Sean Miller, Omar Ortiz, Reuben Raff, Arundhati
Sengupta, Bora Seo, Yulia Spektor, and Winnie Yan.
2021. Results of the second SIGMORPHON shared
task on multilingual grapheme-to-phoneme conver-
sion. In Proceedings of the 18th SIGMORPHON
Workshop on Computational Research in Phonetics,
Phonology, and Morphology, pages 115–125, Online.
Association for Computational Linguistics.

243

https://doi.org/10.18653/v1/2021.sigmorphon-1.13
https://doi.org/10.18653/v1/2021.sigmorphon-1.13
https://doi.org/10.18653/v1/2021.sigmorphon-1.13


Simon Clematide and Peter Makarov. 2021. CLUZH
at SIGMORPHON 2021 shared task on multilingual
grapheme-to-phoneme conversion: Variations on a
baseline. In Proceedings of the 18th SIGMORPHON
Workshop on Computational Research in Phonetics,
Phonology, and Morphology, pages 148–153, Online.
Association for Computational Linguistics.

Lucian Galescu and James F. Allen. 2001. Bi-
directional conversion between graphemes and
phonemes using a joint n-gram model. In 4th ITRW
on Speech Synthesis, Perthshire, Scotland, UK, Au-
gust 29 - September 1, 2001, page 131. ISCA.

Kyle Gorman, Lucas F.E. Ashby, Aaron Goyzueta, Arya
McCarthy, Shijie Wu, and Daniel You. 2020. The
SIGMORPHON 2020 shared task on multilingual
grapheme-to-phoneme conversion. In Proceedings
of the 17th SIGMORPHON Workshop on Computa-
tional Research in Phonetics, Phonology, and Mor-
phology, pages 40–50, Online. Association for Com-
putational Linguistics.

Alex Graves, Santiago Fernández, Faustino J. Gomez,
and Jürgen Schmidhuber. 2006. Connectionist tem-
poral classification: labelling unsegmented sequence
data with recurrent neural networks. In Machine
Learning, Proceedings of the Twenty-Third Interna-
tional Conference (ICML 2006), Pittsburgh, Pennsyl-
vania, USA, June 25-29, 2006, volume 148 of ACM
International Conference Proceeding Series, pages
369–376. ACM.

Sittichai Jiampojamarn, Grzegorz Kondrak, and Tarek
Sherif. 2007. Applying many-to-many alignments
and hidden Markov models to letter-to-phoneme con-
version. In Human Language Technologies 2007:
The Conference of the North American Chapter of
the Association for Computational Linguistics; Pro-
ceedings of the Main Conference, pages 372–379,
Rochester, New York. Association for Computational
Linguistics.

Hairong Liu, Zhenyao Zhu, Xiangang Li, and Sanjeev
Satheesh. 2017. Gram-CTC: Automatic unit selec-
tion and target decomposition for sequence labelling.
In Proceedings of the 34th International Conference
on Machine Learning, ICML 2017, Sydney, NSW, Aus-
tralia, 6-11 August 2017, volume 70 of Proceedings
of Machine Learning Research, pages 2188–2197.
PMLR.

Peter Makarov and Simon Clematide. 2018a. Imitation
learning for neural morphological string transduction.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2877–2882, Brussels, Belgium. Association for Com-
putational Linguistics.

Peter Makarov and Simon Clematide. 2018b. Neu-
ral transition-based string transduction for limited-
resource setting in morphology. In Proceedings of
the 27th International Conference on Computational
Linguistics, pages 83–93, Santa Fe, New Mexico,
USA. Association for Computational Linguistics.

Arya D. McCarthy, Jackson L. Lee, Alexandra DeLu-
cia, Winston Wu, Travis M. Bartley, Milind Agar-
wal, Lucas F.E. Ashby, Luca Del Signore, and
Cameron Gibson. 2022. Results of the third SIG-
MORPHON shared task on cross-lingual and low-
resource grapheme-to-phoneme conversion. In Pro-
ceedings of the 19th SIGMORPHON Workshop on
Computational Research in Phonetics, Phonology,
and Morphology, Seattle, USA. Association for Com-
putational Linguistics.

Josef R. Novak, Nobuaki Minematsu, and Keikichi Hi-
rose. 2016. Phonetisaurus: Exploring grapheme-to-
phoneme conversion with joint n-gram models in the
WFST framework. Nat. Lang. Eng., 22(6):907–938.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch:
An imperative style, high-performance deep learning
library. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems
32, pages 8024–8035. Curran Associates, Inc.

Joana Ribeiro, Shashi Narayan, Shay B. Cohen, and
Xavier Carreras. 2018. Local string transduction as
sequence labeling. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics,
pages 1360–1371, Santa Fe, New Mexico, USA. As-
sociation for Computational Linguistics.

Mihaela Rosca and Thomas M. Breuel. 2016. Sequence-
to-sequence neural network models for transliteration.
CoRR, abs/1610.09565.

Carsten Schnober, Steffen Eger, Erik-Lân Do Dinh, and
Iryna Gurevych. 2016. Still not there? comparing
traditional sequence-to-sequence models to encoder-
decoder neural networks on monotone string trans-
lation tasks. In Proceedings of COLING 2016, the
26th International Conference on Computational Lin-
guistics: Technical Papers, pages 1703–1714, Osaka,
Japan. The COLING 2016 Organizing Committee.

Leslie N. Smith and Nicholay Topin. 2019. Super-
convergence: very fast training of neural networks us-
ing large learning rates. In Artificial Intelligence and
Machine Learning for Multi-Domain Operations Ap-
plications, volume 11006 of Society of Photo-Optical
Instrumentation Engineers (SPIE) Conference Series,
page 1100612.

Shijie Wu, Ryan Cotterell, and Mans Hulden. 2021. Ap-
plying the transformer to character-level transduction.
In Proceedings of the 16th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics: Main Volume, pages 1901–1907, Online.
Association for Computational Linguistics.

244

https://doi.org/10.18653/v1/2021.sigmorphon-1.17
https://doi.org/10.18653/v1/2021.sigmorphon-1.17
https://doi.org/10.18653/v1/2021.sigmorphon-1.17
https://doi.org/10.18653/v1/2021.sigmorphon-1.17
http://www.isca-speech.org/archive_open/ssw4/ssw4_131.html
http://www.isca-speech.org/archive_open/ssw4/ssw4_131.html
http://www.isca-speech.org/archive_open/ssw4/ssw4_131.html
https://doi.org/10.18653/v1/2020.sigmorphon-1.2
https://doi.org/10.18653/v1/2020.sigmorphon-1.2
https://doi.org/10.18653/v1/2020.sigmorphon-1.2
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.1145/1143844.1143891
https://aclanthology.org/N07-1047
https://aclanthology.org/N07-1047
https://aclanthology.org/N07-1047
http://proceedings.mlr.press/v70/liu17f.html
http://proceedings.mlr.press/v70/liu17f.html
https://doi.org/10.18653/v1/D18-1314
https://doi.org/10.18653/v1/D18-1314
https://aclanthology.org/C18-1008
https://aclanthology.org/C18-1008
https://aclanthology.org/C18-1008
https://doi.org/10.1017/S1351324915000315
https://doi.org/10.1017/S1351324915000315
https://doi.org/10.1017/S1351324915000315
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://aclanthology.org/C18-1115
https://aclanthology.org/C18-1115
http://arxiv.org/abs/1610.09565
http://arxiv.org/abs/1610.09565
https://aclanthology.org/C16-1160
https://aclanthology.org/C16-1160
https://aclanthology.org/C16-1160
https://aclanthology.org/C16-1160
https://doi.org/10.1117/12.2520589
https://doi.org/10.1117/12.2520589
https://doi.org/10.1117/12.2520589
https://doi.org/10.18653/v1/2021.eacl-main.163
https://doi.org/10.18653/v1/2021.eacl-main.163


Proceedings of the 20th SIGMORPHON workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 245–248
July 14, 2023 ©2023 Association for Computational Linguistics

Low-resource grapheme-to-phoneme mapping with
phonetically-conditioned transfer

Michael Hammond
Dept. of Linguistics

U. of Arizona
Tucson, AZ, USA

hammond@u.arizona.edu

Abstract

In this paper we explore a very simple non-
neural approach to mapping orthography to
phonetic transcription in a low-resource con-
text with transfer data from a related language.
We start from a baseline system and focus our
efforts on data augmentation. We make three
principal moves. First, we start with an HMM-
based system (Novak et al., 2012). Second, we
augment our basic system by recombining le-
gal substrings in restricted fashion (Ryan and
Hulden, 2020). Finally, we limit our transfer
data by only using training pairs where the pho-
netic form shares all bigrams with the target
language.

1 Introduction

This paper describes the submission by our team to
the 2022 version of the SIGMORPHON grapheme-
to-phoneme conversion challenge (McCarthy et al.,
2022). Here we describe our efforts to improve
grapheme-to-phoneme mapping for low-resource
languages in a non-neural context using only data
augmentation techniques.

The problem in the low-resource condition was
to map from graphemes to phonetic segments with
extremely limited data. Specifically, there were 10
languages with 100 training pairs and 100 devel-
opment pairs. Each pair was a word in its ortho-
graphic representation and a phonetic transcription
of that word. In addition, for each language, there
were up to 1000 additional training pairs in a “re-
lated” language. Systems were then tested on 100
additional pairs for each language. The 10 lan-
guages are given in Table 1 along with their codes
and the number of additional training pairs.

In addition, there was a higher-resource condi-
tion where each language had 1000 pairs without
transfer data; our focus was the low-resource con-
dition.

2 Initial neural approaches

We started with a fairly generic transformer system
inspired by one of the 2020 baseline systems (Gor-
man et al., 2020). The system we used is adapted
from the OpenNMT base (Klein et al., 2017) and
is similar to the one used by Hammond (2021) in
the 2021 challenge. There is a 512-element embed-
ding layer in both encoder and decoder. There are
six layers in both encoder and decoder and each
layer also has 512 nodes. The systems are con-
nected by a 8-head attention mechanism (Luong
et al., 2015). Training proceeds in 1,000 steps and
the decay method is Noam. Optimization is Adam,
the batch size is 8, and the dropout rate is 0.1.1

Using this system and running 1000 steps, per-
formance on validation data is terrible as seen in
Table 2. In column 1 we give the language codes;
column 2 has performance for the 100-pair condi-
tion; column 3 gives the results for the 1000-pair
condition; and column 4 gives the results with trans-
fer data included.

To get a sense of how much data might be re-
quired to get decent performance, we ran a similar
transformer configuration over subsets of the CMU
pronouncing dictionary (Weide, 1998) for 5 epochs
and got the performance in Table 3. The point of
this chart is that 100 data pairs is orders of magni-
tude less than what is needed.

3 An HMM-based approach

Based on how poorly our neural approaches per-
formed with such limited data, we went back to
classical HMM-based approaches, specifically se-
lecting the Phonetisaurus system (Novak et al.,
2012).

This system is based on OpenFST and uses
weighted finite-state transducers and expectation-

1Full configuration files for this and the experiments be-
low are available at https://github.com/hammondm/
g2p2022.
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Target language Code Transfer language Code Number
Bengali ben Assamese asm 1000
Burmese bur Shan shn 841
German ger Dutch dut 1000
Irish gle Welsh wel 1000
Italian ita Romanian rum 1000
Persian per Pashto pus 721
Swedish swe Norwegian Nynorsk nno 1000
Tagalog tgl Cebuano ceb 126
Thai tha Eastern Lawa lwl 253
Ukrainian ukr Belarusian bel 1000

Table 1: Languages, codes, and the number of additional training pairs in the transfer language

Lang 100 1000 all
ben 100.00 93.15 98.63
ger 99.00 93.00 98.00
ita 99.00 92.00 97.00
per 98.21 94.64 100.00
swe 100.00 93.00 92.00
tgl 99.00 92.00 98.00
tha 98.00 78.00 99.00
ukr 100.00 91.00 100.00
gle 100.00 94.00 100.00
bur 100.00 81.00 99.00
mean 99.32 90.17 98.16

Table 2: Validation WER for all languages with encoder-
decoder after 1000 steps

Data WER
1000 100.00
5000 100.00
10000 83.00
20000 69.00
30000 65.00
133802 53.55

Table 3: Validation WER for CMU with a transformer
for 5 epochs with different amounts of data

Lang 100/2 100/3 1000/2 1000/3
ben 91.78 91.78 65.75 68.49
ger 88.00 86.00 57.00 61.00
ita 54.00 54.00 33.00 25.00
per 87.50 89.29 76.79 67.86
swe 83.00 82.00 65.00 55.00
tgl 34.00 34.00 19.00 18.00
tha 97.00 95.00 74.00 72.00
ukr 86.00 89.00 57.00 50.00
gle 93.00 95.00 57.00 51.00
bur 98.00 98.00 49.00 48.00
mean 81.22 81.4 55.35 51.63

Table 4: Validation WER for Phonetisaurus without
augmentation

maximization to compute the best many-to-many
alignment of letters and phonetic symbols. The
system offers a number of different options for
alignment and decoding, but we ran it in its most
“generic” form.

In Table 4 we give WER for 100 pairs and for
1000 pairs. We can use bigrams or trigrams for the
alignment and both are given. The point is that,
out of the box, the HMM system performs much
better than the neural systems. Compare Table 4
with Table 2.

4 Augmentation steps

We tried several kinds of augmentations. The first
was the substring approach developed by Ryan and
Hulden (2020). In this approach plausible align-
ments from the beginnings and ends of words are
recombined. In the original approach, techniques
were used to increase the likelihood that the align-
ment point occurred at a plausible C-V or V-C
juncture. We found that this did not work for all
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languages in our test set, presumably due to how
limited the data were. We therefore disabled this
feature.

The other augmentation we used applied to the
transfer data. If one looks at the training pairs, it’s
apparent that in a number of cases, the languages
are not terribly similar.

For example, Irish and Welsh are indeed related
and the diligent linguist can easily find cognates.
For example, the Welsh word for ‘book’ is llyfr
[ì1v1r] and the Irish word is leabhar [lj@urG]. The
Welsh word for ‘man’ is dyn [d1:n]; the Irish word
for ‘person’ is duine [dGInj@]. There are also similar
grammatical features. For example, both languages
use initial consonant mutation as a grammatical
mechanism, both have VSO word order, and both
have inflected prepositions.

On the other hand, the orthographic conventions
of the two languages are extremely divergent, as
are the phonetic inventories. For example, Irish has
a contrast between palatalized and plain consonants
that is completely absent in Welsh. This contrast is
reflected in the orthography where adjacent front
vowel letters i and e indicate that a consonant is
palatalized. This orthographic practice applies on
both sides of a consonant. Thus, if a consonant
is intervocalic and palatalized, it will have front
vowels on both sides; if it’s not palatalized, it will
have back vowels. On the other hand, unlike Irish,
Welsh strikingly can use w and y as vowels giving
rise to words that seem quite unpronouncable, e.g.
tywydd [th@w1D] ‘weather’ or gŵr [gu:r] ‘husband’.

With this in mind, we tried approaches that
would limit the transfer data to just those pairs
that were most like the target language.

We tried three approaches in this vein. First,
we only took pairs where the phonetic segments
of the transfer language were in the inventory of
the target language. Second, we further restricted
the pairs to only those where the phonetic bigrams
of the transfer language all occurred in the target
language. Finally, we only included pairs where
all orthographic characters in the transfer language
occurred in the target language.

Different combinations of these options appear
in Table 5. The second column gives validation
WER for all 100 training pairs plus all transfer
data (all). In the third column we have results
when only transfer pairs with shared phonetic el-
ements are included (phon). In column 4, we
only include transfer pairs where the phonetic and

orthographic elements are shared with the target
language (phonorth). In column 5, we further re-
strict that so all phonetic bigrams must be shared
(phorth+bg). In column 6, we leave the ortho-
graphic relationship unrestricted, but require shared
phonetic bigrams (phbg). Finally, in column 7, we
have shared bigrams and we add 1900 forms cre-
ated with shared legal prefixes and suffixes from
the target language (phbg+1900).

Looking at Table 5, we see that adding all trans-
fer data diminishes performance. If we restrict
the phonetic relationship between the transfer data
and the target language, we get some improvement.
We also get improvement if we restrict the rela-
tionship further with either phonetic bigrams or
orthographic overlap, but curiously those two crite-
ria do not help simultaneously. Finally, we see that
we get still further improvement with the substring
recombination technique.

Performance on the test data of course varies
slightly from what we saw with the validation data
so we give those results in Table 6 for the full
1000 pairs, the small 100-pair set, and our final sys-
tem with phonetically-restricted transfer data (us-
ing phonetic bigrams) plus substring recombined
forms.

5 Conclusion

In conclusion, we’ve seen several effects. First, a
simple encoder-decoder or transformer does not
perform well with so few data. Second, an HMM-
based approach does better, and does better still
when we restrict the kind of transfer data that is
used. Specifically, transfer data should be restricted
based on how similar it is to the target language.
Similarity in terms of phonetics is clearly benefi-
cial, but similarity in terms of orthography seems to
help as well. Finally, we saw that the substring re-
combination technique of Ryan and Hulden (2020)
can be added on top of these moves for an addi-
tional benefit.
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A future for universal grapheme-phoneme transduction modeling with
neuralized finite-state transducers
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Abstract

We propose a universal grapheme-phoneme transduction model using neuralized finite-state
transducers.

Many computational models of grapheme-phoneme transduction nowadays are based on the
(autoregressive) sequence-to-sequence string transduction paradigm. While such models have
achieved state-of-the-art performance, they suffer from theoretical limitations of autoregressive
models. On the other hand, neuralized finite-state transducers (NFSTs) have shown promising
results on various string transduction tasks. NFSTs can be seen as a generalization of weighted
finite-state transducers (WFSTs), and can be seen as pairs of a featurized finite-state machine
(‘marked finite-state transducer’ or MFST in NFST terminology), and a string scoring function.
Instead of taking a product of local contextual feature weights on FST arcs, NFSTs can em-
ploy arbitrary scoring functions to weight global contextual features of a string transduction,
and therefore break the Markov property. Furthermore, NFSTs can be formally shown to be
more expressive than (autoregressive) seq2seq models. Empirically, joint grapheme-phoneme
transduction NFSTs have consistently outperformed vanilla seq2seq models on grapheme-to-
phoneme and phoneme-to-grapheme transduction tasks for English. Furthermore, they provide
interpretable aligned string transductions, thanks to their finite-state machine component.

In this talk, we propose a multilingual extension of the joint grapheme-phoneme NFST. We
achieve this goal by modeling typological and phylogenetic features of languages and scripts
as optional latent variables using a finite-state machine. The result is a versatile grapheme-
phoneme transduction model: in addition to standard monolingual and multilingual transduction,
the proposed multilingual NFST can also be used in various controlled generation scenarios, such
as phoneme-to-grapheme transduction of an unseen language-script pair. We also plan to release
an NFST software package.
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Fine-tuning mSLAM for the SIGMORPHON 2022 Shared Task
on Grapheme-to-Phoneme Conversion
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Abstract

Grapheme-to-phoneme (G2P) conversion is a task that is inherently related to both written and
spoken language. Therefore, our submission to the G2P shared task builds off of mSLAM (Bapna
et al., 2022), a 600M parameter encoder model pretrained simultaneously on text from 101 lan-
guages and speech from 51 languages. For fine-tuning a G2P model, we combined mSLAM’s
text encoder, which uses characters as its input tokens, with an uninitialized single-layer RNN-T
decoder (Graves, 2012) whose vocabulary is the set of all 381 phonemes appearing in the shared
task data. We took an explicitly multilingual approach to modeling the G2P tasks, fine-tuning
and evaluating a single model that covered all the languages in each task, and adding language
codes as prefixes to the input strings as a means of specifying the language of each example.

Our models perform well in the shared task’s “high” setting (in which they were trained on 1,000
words from each language), though they do poorly in the “low” task setting (training on only
100 words from each language). Our models also perform reasonably in the “mixed” setting
(training on 100 words in the target language and 1000 words in a related language), hinting that
mSLAM’s multilingual pretraining may be enabling useful cross-lingual sharing.
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