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Abstract

Multilingual models have been widely used
for cross-lingual transfer to low-resource
languages. However, the performance on
these languages is hindered by their under-
representation in the pretraining data. To al-
leviate this problem, we propose a novel mul-
tilingual training technique based on teacher-
student knowledge distillation. In this set-
ting, we utilize monolingual teacher models
optimized for their language. We use those
teachers along with balanced (sub-sampled)
data to distill the teachers’ knowledge into a
single multilingual student. Our method out-
performs standard training methods in low-
resource languages and retains performance on
high-resource languages. 1

1 Introduction

While multilingual language models have been
gaining popularity, largely thanks to their cross-
lingual transfer ability, their performance has been
shown to be skewed toward languages with abun-
dant data (Joshi et al., 2020; Wu and Dredze, 2020).
Introducing language models that better incorpo-
rate diverse and low-resource languages can in-
crease accessibility to NLP technologies in these
languages and help improve cross-lingual trans-
fer (Malkin et al., 2022).

In this work, we address two research questions.
First, we ask if we can we improve performance
on low-resource languages without hurting it on
high-resource ones? Second, does a better trade-off
between high- and low-resource languages improve
cross-lingual transfer?

To answer these two questions, we distill mul-
tiple monolingual teacher models optimized for
various languages into a single multilingual student

∗ Equal contribution. The order was decided by a coin
toss.

† Work done while visiting the Hebrew University.
1We will make all of our code and resources publicly avail-

able.

Figure 1: We train a student for multilingual language
modeling using a collection of teachers optimized for
each of the target languages and multilingual data sub-
sampled to the data size of the lowest resource language.
Our approach achieves a better trade-off in performance
between high- and low-resource languages.

model, using a small balanced multilingual dataset
(Figure 1). Our experiments show that this al-
lows taking advantage of data in high-resource lan-
guages while avoiding under-fitting low-resource
languages.

2 Background: Soft Vs. Hard Labels

We compare two alternatives for the masked LM
loss functions: the original loss used for masked
language modeling, i.e., hard labeling and soft la-
beling as defined in Sanh et al. (2019):
(1) hard labeling, which takes into account a sin-
gle gold masked token in a sentence, ygold, and
evaluates the model’s prediction for this word, i.e.,
standard cross-entropy loss:

LHARD = − log(P (ygold)) (1)
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(2) soft labeling, which allows for multiple valid
candidates using the output distribution of an oracle
(or a strong LM) M̂l as a soft label:

LSOFT = −
∑

y∈V
PM̂l

(y) log
P (y)

PM̂l
(y)

(2)

Where y denotes tokens in the model’s vocabu-
lary V . Please note that LSOFT is also equivalent
to a KL-divergence between oracle and predicted
distributions.

In the following sections, we will explain how
soft labeling allows us to distill multiple teachers
into a single multilingual student while account-
ing for balanced performance in high- and low-
resource languages.

3 Teacher-Student Distillation for
Multilingual Language Models

We train a multilingual student using the masked-
language modeling objective and a collection of
monolingual teachers optimized for each student’s
language. All models share one multilingual vocab-
ulary. Sharing vocabulary was necessary to apply
our soft labeling loss, which requires that the stu-
dent’s and teacher’s probability space (in the case
of language models: vocabularies) are the same.2

To avoid under-fitting low-resource languages,
we naively balance the students’ training data by
truncating data in all target languages to the data
size of the lowest resource language. To make the
most out of high-resource languages, we rely on
soft labeling. For a mask in a given language, we
use the high-resource language-specific teacher’s
distribution over the mask and use it as the oracle
M̂l in Equation 2 as a soft label. Our intuition
is that this allows the student to gain the broader
teachers’ knowledge in its language and thus com-
pensate for the sub-sampled data size. Figure 1
provides a visual scheme for this approach.

Formally, given a set of languages
L = {l1, l2, ..., lK}, their corresponding
teachers Tl1 , Tl2 , ..., TlK , and their data
D = {D1, D2, ..., DK} we teach the stu-
dent model using the K teachers (which are trained
for each of the languages). For student training, we
truncate the data size of all languages in D to the
smallest dataset size (min(|D1|, |D2|, ..., |DK |)).

2Please refer to Section 8, “Teacher model availability”
for discussion about vocabulary sharing across monolingual
models.

Size [characters] Shared Script Diverse Script

100M English Russian
100M German German
50M Spanish Korean

30M Hungarian Greek
20M Vietnamese Hindi
10M Turkish Telugu
10M Basque Urdu

Table 1: Pre-training datasets for each language (in mil-
lions of characters) sampled from Wikipedia for high-
resource (top) and low-resource (bottom) languages.
Some of the selected low-resource languages are ac-
tually widely spoken. They were chosen because of
relatively smaller Wikipedia sizes (as shown in Ap-
pendix B).

Data selection and processing. We collect pre-
training data from Wikipedia,3 aiming to capture
a diverse set of high and low-resource languages,
as summarized in Table 1. We subsample the cor-
pora by randomly choosing sentences from each
language’s full corpus. We designate high-resource
languages as ones with 50 or 100 million characters
in their corpus after sampling, while low-resource
languages’ corpora consist of 10, 20, and 30 mil-
lion characters.

Throughout our experiments, we compare 7 lan-
guages that share the Latin script versus 7 lan-
guages with varying scripts, as the script was found
to be an essential factor for multilingual perfor-
mance (K et al., 2020; Muller et al., 2021; Malkin
et al., 2022). We include German in both sets (as
one of 7 languages), to compare its performance in
both settings.

Models’ Architecture and Hyper-parameters.
Each of our models comprises of 6 hidden layers
and 4 attention heads, an MLM task head. The
embedding dimension is 512 and sentences were
truncated to 128 tokens. In total, our models con-
sist of 51193168 parameters. We train a single
uncased wordpiece tokenizer (Wu et al., 2016) on
the 100mb splits of 15 languages.4 Before tok-
enization, we strip accents for all languages except
Korean.

We train all models for 10 epochs, with a batch
size of 8. We used linear decay of the learning rate

3Obtained and cleaned using wikiextractor (Attardi, 2015).
We chose Wikipedia as it consists of roughly similar ency-
clopedic domains across languages and is widely used for
training PLMs (Devlin et al., 2019).

413 languages presented in Table 1 with Hebrew and
Lithuanian that were added for future experiments.
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with the initial value of 5e-5. Exact configurations
and parameters are available in our code.

4 Experiments

We validate our method using two experiments.
First, we ascertain that our method indeed im-
proves performance for low-resource languages
while maintaining performance for high-resource
languages. This is done by comparing the perfor-
mance of our approach in masked language mod-
eling with two multilingual baselines. Second, we
show that our method is competitive for down-
stream tasks and cross-lingual transfer by probing
the pre-trained models for POS and NER tagging.

Multilingual modeling. We evaluate masked lan-
guage modeling performance on monolingual test
sets by measuring mean reciprocal rank (MRR).
Since the performance of multilingual models is
often compared to the performances of monolin-
gual baselines, we report the average performance
difference between a multilingual model and the
monolingual models trained on the same set of re-
spective languages.

Downstream probing. We use the models
trained in the previous experiment and train a
probe,5 keeping the base model parameters frozen,
to predict part-of-speech tagging (POS) and name
entity recognition (NER), as provided respectively
by universal dependencies (Nivre et al., 2020) and
the XTREME benchmark (Hu et al., 2020).6 We
chose those two tasks because they commonly ap-
pear in NLP pipelines (Manning et al., 2014; Hon-
nibal and Montani, 2017). We measure the models’
performance in two cases: when the training and
test datasets are in the same language (denoted IN-
LANG) and when a probe trained for a language l1
is tested on another one l2 (denoted ZERO-SHOT).
As noted by Hu et al. (2020), zero-shot evalua-
tion is a good measure of a model’s cross-lingual
transfer. We use probing because it offers a good
insight into the representation learned by the model
(Belinkov, 2022).

Baselines. We compare the students’ perfor-
mance to multilingual models trained with hard la-
bels, on the same data and languages as the student
and its teachers. One such model was trained on
all the available data in each language to examine

5

6See Section D.2 in the Appendix for more information.
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Figure 2: Our balanced teacher-student approach using
soft labels presents the overall best combination for low
and high-resource languages among multilingual mod-
els. This figure presents average MRR results in masked
language modeling for both low- and high-resource lan-
guages. Results are reported for a Latin-script language
set (Shared) and a set with diverse scripts (Diverse).

the extent of under-fitting low-resource languages,
denoted HL. Additionally, to measure how much
our student gains from its teacher’s knowledge, we
train another model on the corpora constrained to
the size of the least resourceful language using the
standard hard labels, denoted HL balanced.

Experimental Setup Each teacher is a monolin-
gual model trained with hard labels. The teachers
are trained on the entire training corpus available
in their language. In a student model, we distill
the knowledge of multiple monolingual teachers
into a multilingual student using soft labels, as de-
scribed above. The distillation into the student is
performed on groups of shared and diverse script
languages. The data is constrained to 10 million
characters for each language. All our models are
trained using default BERT hyper-parameters de-
tailed in Section 3.

5 Results

We report the experimental results on our test sets,
in three language sets grouped by the amount of
data available in pre-training, i.e., low-resource,
high-resource, and all data. We address our re-
search questions in light of the results:
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Script Lang. Set HL HL Balanced Ours

Shared
Low-Res. -2.5 0.3 -0.1
High-Res. -5.8 -10 -7.6

All -3.9 -4.0 -3.7

Diverse
Low-Res. -5.1 -3.8 -3.1
High-Res. -5.0 -12 -7.0

All -5.0 -7.2 -4.7

Table 2: Average difference from monolingual base-
lines (higher is better) calculated on MRR scores. Our
teacher-student model achieves better results overall in
both shared and diverse scripts. It is otherwise between
the baselines, except for shared script, where it is better
for low-resource.

Lang. set HL HL balanced Ours
I-L Z-S I-L Z-S I-L Z-S

Sh
ar

ed

Low-Res 35.2 33.4 35.5 34.3 36.6 34.5
High-Res 83.3 33.7 81.2 32.4 84.3 33.8
{de} 87.1 32.3 84.1 32.2 86.8 33.0
All 55.8 33.5 55.1 33.5 57.0 34.2

D
iv

er
se

Low-Res 53.1 35.8 54.6 34.9 55.7 35.9
High-Res 76.8 36.2 73.4 34.7 77.3 36.8
{de} 87.7 36.8 83.3 35.3 87.4 38.1
All 63.3 36.0 62.7 34.8 64.9 36.3

(a) Accuracy of POS probing.

Lang. set HL HL balanced Ours
I-L Z-S I-L Z-S I-L Z-S

Sh
ar

ed

Low-Res 26.5 23.7 27.9 24.3 29.8 23.9
High-Res 34.2 24.9 34.7 24.7 37.6 26.0
{de} 31.4 27.4 32.1 25.7 32.0 23.9
All 29.8 24.2 30.8 24.5 33.1 24.8

D
iv

er
se

Low-Res 25.7 12.8 28.0 13.8 29.9 12.9
High-Res 32.8 14.9 29.9 15.1 37.2 17.1
{de} 32.5 14.8 31.5 15.7 35.3 17.2
All 28.7 13.7 28.8 14.4 33.0 14.7

(b) Macro F1 of NER probing.

Table 3: For each model and language set, we report av-
erage IN-LANG performance (probe trained and tested
on the same language) and average ZERO-SHOT per-
formance (probe trained on one language and tested on
another). Each ZERO-SHOT number is an average result
across all source languages and target languages in the
indicated language set. Each entry is a mean of 5 runs
with different probe initialization. The Results with sig-
nificance intervals for each language can be found in
Appendix (Tables 6, 7).

Our method offers a good trade-off between per-
formance on high- and low-resource languages.
Figure 2 shows the trend of language modeling
scores (MRR) when changing from low- to high-
resource set. Table 2 summarizes performance dif-
ferences from monolingual models for our method
and the two control baseline models.

In low-resource setting, our model outperforms

HL and achieves similar results to HL balanced.
For high-resource languages, our approach closely
trails HL and is better than HL balanced, which
was trained on the same data as our student model.
It indicates that the student model effectively ac-
quires knowledge from the teachers’ distributions.
Our model achieves the best results overall when
calculated over all languages.

Better trade-off between high- and low-resource
languages improves results on downstream.
Table 3 shows that IN-LANG and ZERO-SHOT re-
sults of probing for POS and NER labels. Our
method achieves better or on-par average results in
both tasks and language sets. The only exception
is HL balanced baselines, which scores better in
NER for low-resource languages.

Sharing script is not necessary for good multilin-
gual performance. As seen in Figure 2 and Ta-
ble 2 for low-resource languages, shared script re-
sults are consistently closer to monolingual results
compared to the diverse script setting. Whereas, for
high-resource set, the average difference between
the results of monolingual models and our model or
HL is smaller in the diverse script scenario. For the
language included in both sets (German), MRR is
higher when coupled with distinct script languages.
The performance difference is 0.4 and 0.9 percent
in favor of diverse scripts, for HL and our model.
HL balanced scores 2.8% better in shared script
scenario. This implies that diverse scripts can ben-
efit multilingual modeling when we reveal enough
monolingual data (as in high-resource setting).

In Table 3, we observe that the results for Ger-
man in the shared-script scenario are better for
POS tagging and worse for NER in comparison
to diverse-script. Those findings align with pre-
vious results suggesting that shared vocabulary is
not necessary for cross-lingual transfer and has a
varying effect depending on the task (K et al., 2020;
Malkin et al., 2022).

6 Related Work

Recent work utilized knowledge distillation in train-
ing NLP models. However, to the best of our knowl-
edge, we are the first to do this in low-resource,
balanced data settings. Contrary to the approaches
of Tsai et al. (2019); Sanh et al. (2019), we do not
scale down student models but constraint training
datasets.
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Sun et al. (2020) use one teacher model and
train for machine translation, and Heffernan et al.
(2022) use a single multilingual teacher to train a
sentence embedding model for low-resource lan-
guages. Both rely on parallel corpora for target
low-resource languages. Other works on multilin-
gual language modeling addressed how to improve
low-resource performance, largely using post-hoc
or language-specific solutions. Chau et al. (2020)
change the vocabulary to account for low-resource
languages, while Muller et al. (2021) transliterate
tokens of low-resource languages to the most simi-
lar available high-resource language.

Finally, Pfeiffer et al. (2020) introduce cross-
lingual adapters, compact components that allow
adapting a given model pre-trained for a task in a
different desired language.

7 Conclusions

We train multilingual language models aimed at bal-
ancing the models’ performance for languages with
uneven data sizes. We outperform standard mod-
els for low-resource languages while maintaining
performance on high-resource languages. Notice-
ably, our method gives better results overall than
the naive data sub-sampling. Lastly, our model is a
good representation learner for downstream tasks,
outperforming baselines for two probing tasks.

Taken together, our results suggest a new direc-
tion for multilingual modeling that accounts for
a more even performance across low- and high-
resource languages and improves cross-lingual
transfer.

8 Limitations

Restricted model size and training. Due to lim-
ited computational resources, we performed exper-
iments for models significantly smaller than the
ones developed by the industry. We based our
down-scaling choices on previous ablation stud-
ies on cross-lingual models (K et al., 2020). In line
with their findings, we prioritized model depth (6
hidden layers) over width (4 attention heads). Also,
we examine only BERT based models. This work
serves as a proof of concept for a new multilingual
language modeling, and future work can extend the
study to bigger models with different architectures.

Restricted data. We decided to train our mod-
els on sub-sampled Wikipedia to achieve reason-
able training times. As shown in appendix B.2

the chosen sample follows the resource-richness
trend across languages but does not fully reflect
the imbalance between high- and low-resource lan-
guages. Nevertheless, we think that this issue does
not weaken our point, as even our “unbalanced”
baseline model is trained on less skewed data than
currently deployed multilingual models. Further-
more, we train our models on 7 languages. Our
method needs to be verified on larger data sizes
and broader language sets.

Working with limited training data might still be
valuable in several aspects. First, there’s a grow-
ing interest in efficient, and green AI. Smaller and
more efficient models will reduce training and in-
ference costs while allowing them to run on less
capable hardware and make them accessible to a
wider community. Second, from a linguistic per-
spective, many of the world’s languages lack large
corpora, and hence will benefit from models that
leverage a limited amount of available resources
(Joshi et al., 2020).

Naive balancing method. We truncate our train-
ing to the size of the smallest low-resource lan-
guages, which might be a naive and aggressive
approach leading to a sub-optimal performance on
our available data. However, our simple approach
achieves good results even with naive balancing.
Future work can extend it with complex data bal-
ancing approaches, such as weighing training data
using a learned data scorer (as done in Wang et al.
(2020)).

Teacher model availability. Our teacher-student
training method assumes the existence of pre-
trained monolingual teachers for each considered
language, which is considerably less sustainable
than training only one multilingual model. Never-
theless, we believe that it is possible to re-use pub-
licly available models as teachers for high-resource
languages, while for low-resource languages, com-
petitive results can be obtained with smaller models
requiring less computation (Hoffmann et al., 2022).
Because our distillation method works on predicted
distribution and not latent representations, to com-
bine knowledge of teachers from multiple source
languages, we will need to align their vocabularies,
which was shown to be feasible by Artetxe et al.
(2020); Rust et al. (2021). We leave this engineer-
ing task for future work.

Metrics for probing tasks. To evaluate probing
for NER we used macro-F1 measured per token
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and not per entity as in usual NER evaluation. We
observed that the probes underperformed in cor-
rectly classifying all tokens in a single entity. It led
to overall low results in regular F1 that would not
allow meaningful comparison between analyzed
models. Importantly, macro-F1 equally weights
the performance in predicting each class. Thus, it
is appropriate to evaluate NER task, where most
tokens are annotated as not belonging to any entity.
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Lang.
POS NER

train test train test

de 166849 22458 20000 10000
es 28492 3147 20000 10000
en 21253 5440 20000 10000
eu 5396 1799 10000 10000
hu 910 449 20000 10000
tr 3664 4785 20000 10000
vi 1400 800 20000 10000

ru 67435 11336 20000 10000
ko 27410 4276 20000 10000
el 28152 2809 20000 10000
hi 13304 2684 5000 1000
te 1051 146 1000 1000
ur 4043 535 20000 1000

Table 4: Number of training and testing sentences for
POS and NER tasks in XTREME data collection. The
data were used to train and evaluate probes on top of
analysed models.

A Appendix

In the appendix: we provide details on datasets
used in this work Section B; show how proposed
teacher-student distillation behaves in the mono-
lingual scenario with just one teacher Section C;
present detailed results of our two experimental for
each language Section D; provide details of our
training procedure and hardware usage Section E.

B Datasets Details

B.1 Data Splits

For pre-training (monolingual) teacher and HL
models, we use Wikipedia splits of sizes indicated
in Table 1, for training student and HL balanced
models, we subsample training corpus to 10 mil-
lion characters. We use validation and test sets
containing 10000 Wikipedia sentences each.

For downstream probing, we use train and test
splits from XTREME. The numbers of sentences
in these splits per language are shown in table 4.

B.2 Correspondence of the Sizes of Our
Corpora and Wikipedias

Figure 3 shows the per language correspondence
between our corpora size and the whole Wikipedia.
The latter was used to pre-train MBERT (Devlin
et al., 2019). We observe a good linear fit between
character numbers in our corpora and the logarithm
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Figure 3: A comparison of subsampled corpora
sized and the data available in Wikipedia, which was
MBERT’s training corpus.
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Figure 4: Performance of a language model as the func-
tion of training corpora size. The regular HL training is
compared with the knowledge distillation to a student
on the dataset lower or equal in size than the teacher’s
training set.

of Wikipedia byte size. It suggests that the multilin-
gual imbalance is even more severe in the original
dataset than in our sample.

C Teacher-Student Method in the
Monolingual World

The purpose of this experiment is to visualize how
the model’s performance scales with the size of the
pre-training dataset. Also, we check the behavior
of the teacher-student knowledge distillation with
the change of data size used to train a teacher and
a student in a monolingual setting.

We train a monolingual model on German
Wikipedia data with five sizes (in millions of char-
acters): 10, 20, 30, 50, and 100. Subsequently, we
designate 10, 50, and 100 million character models
as teachers and distill their knowledge into students
on the same size or smaller corpus.7

As presented in figure 4, the teacher performance
7In monolingual knowledge distillation, we used a learning

rate 5 times higher than in the default BERT training script.
This choice led to better results.
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Shared script Diverse script
HL -2.9 -2.5
HL Balanced -9.2 -12
Ours -6.1 -5.2

Table 5: Difference from monolingual baseline, for Ger-
man. German achieves better results in diverse script,
except for HL Balanced. This suggest that diverse script
might help increase language modeling performance.

Shared Diverse

40

42

44

46

48

50

HL Ours HL Balanced Monolingual

Figure 5: MRR scores for German trained in the set of
languages with shared script and diverse script. We ob-
serve slight improvement for diverse script over shared
script, and significant deterioration for HL Balanced.

can be nearly matched by a student trained on a con-
siderably smaller corpus. For the teacher trained
on the largest split, the student performance rises
steadily with the increase of distillation detest from
10 to 30 million characters and drops after that
point. The performance of the student trained on
100 million characters is noticeably low. It is a sign
of over-fitting, as in our setting, distillation set is
always a subset of the teacher’s training set. Also,
in the case of teachers trained on smaller corpora,
distillation on the dataset of the same size (as the
teacher training set) leads to a drop in performance.
Therefore, we claim that the distillation is benefi-
cial when the teacher’s training set is larger than
the student’s one.

D Per Language Results

D.1 German: Comparing Shared and Diverse
Scripts

Table 5 and Figure 5 present masked language mod-
eling performance for German for three analyzed
multilingual model types. German is the language
included both in the shared and diverse script lan-
guage sets. Therefore the results allow comparing
which setting is more effective in multilingual lan-
guage modeling.

D.2 Results for Every Language
We present per language results in masked lan-
guage modeling performance in Figure 6 and for
probing tasks (POS and NER) in Tables 6 and 7.

E GPUs and training procedures

All of our models (monolingual teachers, students,
and multilingual models trained using hard labels)
are trained on a single GPU core.

We used varying GPUs architectures allocated
for each model upon availability (nvidia gtx 980,
tesla M60, and RTX 2080Ti). Training time var-
ied between 1 to 3 hours for monolingual models
(depending on the data size, language, and GPU
core). Multilingual models’ training took around
18 hours to complete. Early stopping was used for
all models based on results on a balanced dev set.

MLM evaluation was run on the same machines
as training or on CPU. the run time ranged from
2 to 4 hours. Training a probe on top of a frozen
model took from 1 to 20 minutes, depending on
the number of training examples available for a
language. The evaluation time on a downstream
task was less than 2 minutes.
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Figure 6: The figures present MRR results for each language. Our model is compared with baselines: HL balanced,
HL and monolingual models. We observe similar trends as in Figure 2 at higher granularity.
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Script Lang. HL HL balanced Ours
In-Lang Zero-Shot In-Lang Zero-Shot In-Lang Zero-Shot

Shared

de 87.1 ±0.0 32.3 ±0.9 84.1 ±0.0 32.2 ±1.0 86.8 ±0.0 33.0 ±1.1

en 79.5 ±0.1 34.2 ±1.4 77.4 ±0.2 32.1 ±2.1 81.1 ±0.2 34.1 ±1.3

es 83.1 ±0.1 34.6 ±1.7 82.0 ±0.1 32.8 ±1.7 84.8 ±0.1 34.2 ±1.0

eu 56.3 ±1.2 34.1 ±1.2 58.1 ±1.5 35.0 ±2.7 58.2 ±0.7 33.1 ±2.2

hu 18.5 ±3.5 37.4 ±1.0 16.6 ±3.4 37.9 ±1.7 18.5 ±5.2 39.5 ±1.2

tr 40.5 ±2.2 33.3 ±1.5 40.6 ±3.8 34.5 ±2.2 42.1 ±2.6 34.1 ±2.6

vi 25.5 ±2.2 28.7 ±1.1 26.9 ±3.1 29.9 ±1.3 27.7 ±4.5 31.3 ±1.9

Diverse

de 87.7 ±0.0 36.8 ±0.9 83.3 ±0.0 35.3 ±1.1 87.4 ±0.0 38.1 ±0.3

ru 79.0 ±0.0 36.9 ±0.9 74.0 ±0.1 36.9 ±1.2 78.6 ±0.1 38.8 ±1.5

ko 63.7 ±0.2 34.8 ±1.6 62.8 ±0.2 31.9 ±1.8 65.8 ±0.2 33.5 ±1.2

el 66.6 ±0.2 29.9 ±1.1 66.7 ±0.2 27.0 ±1.0 69.0 ±0.3 30.8 ±1.4

hi 70.7 ±0.2 34.9 ±0.8 69.6 ±0.1 34.7 ±1.9 70.8 ±0.4 36.0 ±1.6

te 25.1 ±9.9 42.1 ±1.8 30.0 ±8.4 43.0 ±1.2 28.4 ±6.0 42.6 ±1.3

ur 50.0 ±1.0 36.3 ±0.6 52.2 ±3.4 34.7 ±0.8 54.4 ±2.0 34.1 ±1.4

Table 6: Accuracy of POS probing for each language. Standard deviations and mean results are computed based on
5 runs with different initialization of the probe.

Script Lang. HL HL balanced Ours
In-Lang Zero-Shot In-Lang Zero-Shot In-Lang Zero-Shot

Shared

de 31.4 ±0.6 27.4 ±1.0 32.1 ±0.4 25.7 ±0.4 32.0 ±0.7 26.9 ±1.1

en 33.0 ±0.5 24.9 ±0.7 33.3 ±0.4 24.8 ±0.2 37.8 ±0.7 25.9 ±0.9

es 38.2 ±0.6 22.6 ±0.3 38.8 ±1.3 23.7 ±0.7 42.9 ±1.0 25.4 ±1.7

eu 20.6 ±2.0 27.3 ±0.9 18.5 ±1.3 27.9 ±0.9 20.5 ±0.9 25.9 ±1.0

hu 26.6 ±0.5 24.3 ±0.9 26.8 ±1.0 25.3 ±0.4 30.2 ±0.6 26.1 ±0.9

tr 27.3 ±0.5 24.4 ±1.0 30.8 ±0.5 25.4 ±0.4 29.5 ±0.4 24.2 ±0.4

vi 31.5 ±1.4 18.7 ±0.5 35.5 ±0.5 18.6 ±0.5 39.0 ±1.5 19.2 ±1.3

Diverse

de 32.5 ±0.8 14.8 ±0.6 31.5 ±0.7 15.7 ±0.7 35.3 ±0.4 17.2 ±1.0

ru 33.7 ±0.8 15.8 ±0.7 29.9 ±0.7 14.6 ±0.7 38.0 ±0.2 16.8 ±0.7

ko 32.1 ±0.4 14.2 ±0.4 28.2 ±0.5 15.0 ±0.4 38.3 ±0.8 17.3 ±1.1

el 27.4 ±0.7 16.6 ±0.6 26.5 ±0.9 17.2 ±0.8 31.5 ±0.6 16.6 ±0.6

hi 16.3 ±0.7 12.8 ±0.4 18.1 ±1.0 14.4 ±1.2 15.7 ±1.1 13.2 ±0.7

te 13.3 ±1.1 13.8 ±0.5 14.6 ±2.0 13.7 ±0.4 14.2 ±0.6 13.9 ±0.2

ur 45.6 ±1.1 7.9 ±1.4 52.7 ±1.2 10.0 ±1.2 58.0 ±1.0 8.0 ±0.9

Table 7: Macro-F1 of NER probing for each language. Standard deviations and mean results are computed based on
5 runs with different initialization of the probe.
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