
Proceedings of the 5th Workshop on Research in Computational Linguistic Typology and Multilingual NLP (SIGTYP 2023), pages 96–109
May 6, 2023 ©2023 Association for Computational Linguistics

Information-Theoretic Characterization of Vowel Harmony:
A Cross-Linguistic Study on Word Lists

Julius SteuerU Badr M. AbdullahU Johann-Mattis ListY Dietrich KlakowU

ULanguage Science and Technology (LST), Saarland University
YMPI-EVA, Univ. of Passau

{ jsteuer, babdullah, dietrich }@lsv.uni-saarland.de, mattis.list@uni-passau.de

Abstract

We present a cross-linguistic study that aims
to quantify vowel harmony using data-driven
computational modeling. Concretely, we define
an information-theoretic measure of harmonic-
ity based on the predictability of vowels in a
natural language lexicon, which we estimate
using phoneme-level language models (PLMs).
Prior quantitative studies have relied heavily on
inflected word-forms in the analysis of vowel
harmony. We instead train our models using
cross-linguistically comparable lemma forms
with little or no inflection, which enables us
to cover more under-studied languages. Train-
ing data for our PLMs consists of word lists
with a maximum of 1000 entries per language.
Despite the fact that the data we employ are
substantially smaller than previously used cor-
pora, our experiments demonstrate the neural
PLMs capture vowel harmony patterns in a set
of languages that exhibit this phenomenon. Our
work also demonstrates that word lists are a
valuable resource for typological research, and
offers new possibilities for future studies on
low-resource, under-studied languages.

1 Introduction

1.1 Vowel Harmony
Many of the world’s languages exhibit vowel har-
mony – a phonological co-occurrence constraint
whereby vowels in polysyllabic words have to be
members of the same natural class (Ohala, 1994).
Natural classes of vowels are defined with respect
to polar phonological features such as vowel back-
ness (±BACK) and roundedness (±ROUND). In a
prototypical language with backness, or ±BACK

harmony, all vowels within a word tend to share
the ±BACK feature, i.e. they are either all front
(−BACK) or back (+BACK). Table 1 illustrates
vowel harmony in Turkish, one of the languages
best known to have this feature. In Table 1, the
nominative plural and genitive plural are examples
of −BACK harmony, while the genitive singular

column of +BACK harmony. In the case of Turk-
ish, vowel harmony can be defined as a constraint
applying to almost all words and the entire inflec-
tional system. In other languages vowel harmony
may be restricted to the inflectional system, or even
only a subset of inflectional suffixes. For example,
In Estonian there are vestiges of vowel harmony
in lexical items and it is absent from the inflec-
tional system, while in Bislama it only occurs in
a single suffix marking transivity (Crowley, 2014).
Between these extremes of Turkish and Bislama
lie languages such as Finnish and Hungarian, with
intermediate vowel harmony systems where not all
vowels participate in vowel harmony to the same
extent. Both languages have ±BACK harmony,
but a subset of the −BACK vowels allow +BACK

harmony to spread: In a word like [lAtik:o] ‘box’
(not [lAtik:ø]), +BACK harmony is not violated,
whereas a word containing only neutral vowels trig-
gers −BACK harmony, as in [merkitys] ‘meaning’
where the +BACK disharmonic form [merkitus] is
not possible.

The rather broad application of the term has
made it increasingly difficult to define it as a phono-
logical process (cf. Anderson 1980). If vowel
harmony is used as a typological feature to group
languages into phylogenetic families, this broad ap-
plication becomes perilous to the researcher since
they have to be aware of the the degree of vowel
harmonicity in the individual languages. Instead
of searching for a necessarily complex definition
of vowel harmony, research has consequentially
concentrated on a quantitative description.

1.2 Prior Work and Scope

Prior approaches to a quantitative description of
vowel harmony have mostly focused on strictly lo-
cal harmony processes. Mayer et al. (2010) used
vowel succession counts derived from corpora of
inflected word-forms to quantify vowel harmony in
a large number of languages in terms of χ2-values,
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Nom. Sg. Gen. Sg. Nom. Pl. Gen. Pl. Gloss
−BACK/−ROUND [ip] [ip-in] [ip-lEr] [ip-lEr-in] ’string’
+BACK/−ROUND [kWz] [kWz-Wn] [kWz-lar] [kWz-lar-Wn] ’girl’
−BACK/+ROUND [jyz] [jyz-yn] [jyz-lEr] [jyz-lEr-in] ’face’
+BACK/+ROUND [pul] [pul-un] [pul-lar] [pul-lar-Wn] ’stamp’

Table 1: Illustration of the Turkish vowel harmony system following Polgárdi (1999). The first vowel of a word
form determines the harmony type. If the first vowel is +BACK, the vowels of the following suffixes must agree w. r.
t. the +BACK feature. ±ROUND harmony applies only in suffixes that have separate forms for this feature: The
genitive suffix takes both ±BACK and ±ROUND forms, while the plural suffix varies only for ±BACK.

while Ozburn (2019) used count data to estimate
succession probabilities and calculate the relative
risk of encountering an harmonic vowel in a word
form. These two approaches treated all positions
in a word form identically. Goldsmith and Riggle
(2012) argued that vowel harmony involves at least
one type of non-local dependency, since it oper-
ates over consonants intervening between adjacent
vowels. They employed a simple n-gram language
model to learn the phonology of Finnish and calcu-
lated pointwise mutual information of vowel-vowel
and consonant-vowel pairs based on the phoneme
probabilities predicted by the language model, find-
ing evidence for consonant-vowel harmony besides
the expected ±BACK harmony, with a small bias
towards +BACK harmony. However, n-gram lan-
guage models are limited by their predefined con-
text size. A language model with a left-hand con-
text of n = 3 cannot capture the effect of vowel har-
mony if it operates over a neutral vowel intervening
between two harmonic vowels. While this effect
could be mitigated by allowing by allowing for a
larger or flexible n, estimating probabilities from
corpora becomes increasingly difficult with higher
values of n. In this study we aim to improve over
these methods by quantifying vowel harmony with
a information-theoretic measure based on surprisal,
capturing the relative strength of vowel harmony in
language in terms of the likelihood of a vowel in a
word to share a specific feature with preceding vow-
els. To do so, we employ neural recurrent language
models with variable-length preceding phoneme
context that are trained on cross-linguistically com-
parable lexical data. While some previous work
on modeling vowel harmony with language mod-
els has been carried out (Rodd, 1997), finding ev-
idence for Turkish vowel harmony in the hidden
activations of a simple neural language model, it
seems that this topic has not been further explored
since then. In the following section, we first intro-

duce feature surprisal as an information-theoretic
measure of vowel harmony (§2). We then present
our computational experiments with the introduced
measure of vowel harmony and discuss the results
of their application to a large collection of cross-
linguistic lexical data (§3, §4). We conclude by
discussing the implications of our study for future
studies on vowel harmony in classical and compu-
tational studies (§5).

2 Quantifying Vowel Harmony

2.1 Phoneme-Level Language Models

Preliminaries and Notations. To quantify
vowel harmony in our study, we make use of
phoneme-level language models (PLMs). Consider
a natural language with a lexicon L and a phoneme
inventory Φ (using IPA symbols). Using a cross-
linguistic word list, we obtain K samples from the
lexicon D = {wk}Kk=1 ∼ L where each sample
is a word-form that is transcribed as a phoneme
sequence w = (φ1, · · · , φ|w|) ∈ Φ∗. Given this
sample of word-forms as training data, a PLM can
be trained to estimate a probability distribution over
Φ by maximizing the term

J(θ,D) =
∑

w∈D
p(w; θ)

=
∑

w∈D

∏

t∈{1,··· ,|w|}
p(φt|φ<t; θ)

(1)

Here, θ are the parameters of the model that
are learned by maximizing the objective function
above. Once a PLM has been trained, it can be
used to compute the probability of unseen, held-
out word-forms (i.e, word-forms that were not ob-
served in the training data). Ideally, a PLM should
assign a higher probability mass to plausible word-
forms given the phonotactic rules of the language
of the train data, and lower probability to implausi-
ble word-forms.
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Recurrent PLMs. Although different archi-
tectures can be used to build a PLM, we choose
to employ a recurrent architecture based on uni-
directional long short-term memory (LSTM) cell
(Hochreiter and Schmidhuber, 1997). Given a
word-form as a sequence of phonemes w =
(φ1, · · · , φ|w|), each phoneme is first projected
into a continuous-vector phoneme representation
using an embedding matrix as E(φt) = xt ∈ Rd.
Then, the LSTM takes as input the sequence at
each position t within the word-form to compute
the hidden state representation

ht = FLSTM(xt,ht−1) ∈ Rh (2)

To obtain a probability distribution over the
phoneme inventory, a linear transformation is ap-
plied on the hidden state vector followed by a soft-
max function to obtain a probability vector as

p(φt|φ<t) = SOFTMAX(Wht + b) (3)

Here, W ∈ R|Φ|×h is a projection matrix at the
network output and b ∈ R|Φ| is a bias term.

Nevertheless, we make a few (trivial) design
modifications to the vanilla LSTM-based PLMs
to make them more suitable for our study. First,
since our main interest is to model the predictability
of the vowels, we confine the output probability
distribution to be over the set of vocalic segments,
which is a subset of the phoneme inventory V ⊂ Φ.
Second, we train and evaluate our PLMs to predict
the next vowel only in the intra-word positions
where we know that the next phoneme is indeed
a vowel, given a preceding phoneme context that
contains at least one vowel. While the output in this
modified PLM is over the set V , the word-forms
remain sequences in Φ∗. That is, both consonants
and vowels could appear in the preceding context.

Note that we do not employ fixed-length context
n-gram PLMs in our study since we aim to ac-
count for non-local phoneme dependencies within
a word-form. Given that word-forms within a lexi-
con have arbitrary lengths, restricting the preceding
context to a fixed number of phonemes does not
enable us to model vowel harmony across variable-
length contexts beyond phoneme n-grams. On
the other hand, we do not employ more power-
ful architectures such as a transformer (Vaswani
et al., 2017) or a bidirectional LSTM (Graves and
Schmidhuber, 2005) on grounds of suitability for
the task: (1) the dependencies between vowels are

relatively short (the domain of vowel harmony is
the phonological word), (2) vowel harmony is a
progressive phenomenon (i.e., operates from left
to right–unlike its regressive counterpart umlaut),
and (3) the training sets of the individual languages
in our study are likely too small to train a large
transformer model. Moreover, several prior stud-
ies within the information-theoretic approaches to
investigate phonological structure have also em-
ployed LSTM-based PLMs (e.g., Pimentel et al.,
2020, 2021a).

2.2 Harmony as Surprisal
Given that our phoneme-level language model that
was trained on a set of word-forms sampled from
a natural language lexicon, we can quantify the
vowel harmony phenomenon using Shannon’s in-
formation content, or surprisal. Given a non-initial
vocalic position t after a phoneme context φ<t,
vowel surprisal is

η(v, t) = −log2 p(v | t,φ<t) (4)

which is measured in bits. Note that surprisal
is maximal when the preceding context tells us
nothing about which vowels are more likely to oc-
cur. That is, if the vowels are sampled from a
uniform distribution over the vowel inventory V ,
then η(v, t) = log2|V| (bits). Therefore, surprisal
in our case is mainly a metric of how “predictable”
a vowel is in a given context. Now consider a set
of vowels H ∈ V that share a phonological fea-
ture. For a given vowel v ∈ H, we refer to the
set H as a harmonic group, while its disharmonic
counterpart ¬H ∈ V \ H as a disharmonic group
with respect to the vowel v. For example, consider
the front vowel [i] in Turkish that has the feature
−BACK. With respect to [i], the front vowels in the
Turkish vowel inventory H = {[i], [e], [y], [œ]}
make a harmonic group since they all share the fea-
ture −BACK, while the rest of the vowels make a
disharmonic group ¬H = {[W], [a], [u], [o]} since
they all lack the feature −BACK. Given a phoneme
context that contains at least one vowel v such that
v ∈ H, we compute the surprisal of a harmonic
group at position t in a word-form by summing
over the vowels in H, i.e.

η(H, t) = −log2
∑

π∈H
p(π | t,φ<t) (5)

We refer to the quantity η(H, t) as feature sur-
prisal, since all members of the harmonic group
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Language Harmonic Groups
Finnish −BACK {y, ø, æ} +BACK {u, o, A} BACK neutral {e, i}
Hungarian −BACK {y, ø} +BACK {u, o, 6} BACK neutral {e, i}
Manchu −BACK {e/7} +BACK {A, O} BACK neutral {i, u}

Khalkha Mongolian
−ATR {e, u, O} +ATR {a, 6, o} ATR neutral {i}

−ROUND {e, a, i} +ROUND {o} ROUND neutral {u, U}

Turkish
−BACK {i, e, y, œ} +BACK {W, a, u, o}
−ROUND {i, e, u, o} +ROUND {W, a, y, œ}

Arabic, Ainu, Armenian, Basque, Estonian† – – –

Table 2: Languages from NorthEuraLex used in our sample along with their harmonic groups. Khalkha Mongolian
has a special type of vowel harmony involving the placement of the tongue root: +ATR codes an advanced position
of the tongue root in the vocal tract, while −ATR encodes an retracted or further back position. Languages in our
sample that do not exhibit vowel harmony are marked with the symbol (†).

H share one phonological feature. Likewise, we
compute the surprisal of a disharnomic group by
summing over the vowels in ¬H as

η(¬H, t) = −log2
∑

π∈¬H
p(π | t,φ<t) (6)

Assuming that a PLM has learned the vowel har-
mony constraints of a language from the training
word-forms, we expect the model to predict that
vowels in H are more likely to co-occur in a single
word-form. By implication, we expect the model to
“disfavour” the occurrence of a vowel in ¬H when
observing members of H in the context. That is, in
a language that exhibits this linguistic phenomenon,
word-forms that conform to vowel harmony should
be assigned a higher probability than word-forms
that do not. For example, the Finnish word form [s
i l m æ s ae] is expected to be assigned a high prob-
ability by our model since the sequence of vowels
[i], [ae], [ae] is −BACK harmonic, and its dishar-
monic counterpart [s i l m æ s o] is expected to be
assigned a lower probability.

Note in equations (5) and (6) we compute the sur-
prisal at a single vocalic position in a given word-
form. To quantify harmonic group surprisal across
a set of held-out word-forms W , we compute the
quantity

η(H) = − 1

|W|
∑

w∈W

∑

t∈{τ,··· ,T}
η(H, t) (7)

which is the average feature surprisal. Here, the
outer sum

∑
w∈W iterates over all word-forms in

W , while the inner sum
∑

t∈{τ,··· ,T} iterates over
non-initial vocalic positions within the word-form
w. The feature surprisal of a disharmonic group
η(¬H) is computed in the same way as in equation
(7) but summing over the term η(¬H, t) instead.

Finally, we quantify the strength of a vowel har-
mony constraint in a language as the difference of
feature surprisal of the harmonic and disharmonic
vowels

∆η = η(H)− η(¬H) (8)

If feature surprisal in harmonic phoneme sequences
is lower than feature surprisal in disharmonic
phoneme sequences, ∆η is negative, indicating that
harmonic sequences are assigned higher probabil-
ity. It is worth pointing out that our grouping of the
vowels into harmonic groups is only used to obtain
feature surprisal values from the model after it has
been trained. That is, our PLMs for all languages
in our study are trained without an explicit signal
that informs the model about the features of the
vowels.

3 Experimental Data and Setup

3.1 Data
Previous research has made use of large corpora
of inflected word-forms (Goldsmith and Riggle,
2012) or running text (Mayer et al., 2010) to infer
vowel harmony patterns. This is mainly because
vowel harmony constraints often surface in inflec-
tional suffixes, especially in highly agglutinating
languages such as Finnish, Hungarian or Turkish.
Though this approach is not in itself problematic, it
relies on data that may not exist for the majority of
the world’s languages. It is also not applicable for
languages that have a different grammatical struc-
ture, for example, reduced or fusional morphology.
On the other hand, if a language has vowel har-
mony as a phonologically conditioned rather than
a purely grammatical phenomenon, the relevant
vowel harmony patterns should also be recoverable
from lexical data with little or no inflection at all.

We use parts of the NorthEuraLex database
(http://www.northeuralex.org/, Dellert et al.
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Maximum Minimum Average Median
Phoneme inventory size 72 (Skolt Sami) 23 (Turkish) 38.9 37
Number of word-forms 1513 (Manchu) 677 (Italian) 1136.6 1142

Table 3: Inventory sizes and word list lengths in the data sampled from NorthEuraLex.

2020) as experimental data to train our phoneme
language models and quantify the effect of vowel
harmony in languages that are known to exhibit
this linguistic phenomenon. NorthEuraLex offers a
large multilingual word list consisting of 1005 con-
cepts translated into 107 language varieties from
North Eurasia with translations provided in a uni-
fied transcription following the International Pho-
netic Alphabet (IPA). Moreover, NorthEuraLex
contains a larger number of diverse language vari-
eties from various language families that are known
to exhibit vowel harmony, as well as language vari-
eties that are known to lack the phenomenon.

As there is no clear definition of what consti-
tutes vowel harmony in languages, and linguistic
resources such as the World Atlas of Language
Structures (Dryer et al., 2014) do not provide this
information, we concentrate on a subset of 10 lan-
guage varieties from NorthEuraLex, with five vari-
eties traditionally known to exhibit vowel harmony,
and five known to not exhibit the phenomenon.
When selecting the languages, we tried to obtain a
rather diverse sample of languages from different
language families. Table 2 gives an overview over
the languages and their active harmony processes
(where present).

The NorthEuraLex data is available in the form
of Cross-Linguistic Data Formats (CLDF https:
//cldf.clld.org, Forkel et al. 2018), follow-
ing the recommendations underlying Lexibank
(List et al., 2022a), a large collection of lexi-
cal word lists (https://github.com/lexibank/
northeuralex). A core feature of CLDF is the
integration of reference catalogs. Reference cat-
alogs are metadata collections that offer basic in-
formation on major linguistic constructs, such as
languages (Glottolog, https://glottolog.org,
Hammarström et al. 2022) or concepts (Concepti-
con, https://concepticon.clld.org, List et al.
2022b). In addition to offering word lists stan-
dardized with respect to language names and con-
cept elicitation glosses, Lexibank offers standard-
ized phonetic transcriptions as specified by Cross-
Linguistic Transcription Systems (CLTS, https:
//clts.clld.org, List et al. 2021), a reference

catalog that offers a transcription system that con-
forms to the IPA but resolves ambiguities encoun-
tered in the original IPA specification (Anderson
et al., 2018).

Since NorthEuraLex is available in CLDF, this
means that we have direct access to standardized
phonetic transcriptions segmented into individual
sounds in each word form along with an underlying
set of distinctive features provided by CLTS. The
resulting data set provides on average 1136 unique
word-forms per language (with several concepts
having two or more word-forms as translational
equivalents), with larger differences between indi-
vidual languages. We decided against downsam-
pling word lists to a common size due to the already
small number of samples. The word list sizes range
from 971 (Ainu) to 1513 (Manchu).

3.2 Preprocessing

For each of the languages, identical word-forms
are collapsed to a single item, such that each se-
quence of phonemes is presented only once to
the model. In addition, word-forms which are a
substring of another word form are also ignored.
Thus, if the word list of a language contains the
sequences { [s i l m æ], [s i l m æ], [s i l m æ s: æ],
[s i l m æ d æ] }, only the latter two sequences are
kept: { [s i l m æ s: æ], [s i l m æ d æ] }. This
procedure ensures that only unique sequences are
presented to the model, and that train and test splits
do not contain identical forms, which might other-
wise lead to unjustified higher weights for sound
sequences recurring across the vocabulary of indi-
vidual language varieties.

3.3 Training

For each language, we randomly split the data into
60%, 10% and 30% subsets for train, validation and
test splits respectively. The models were trained
with the Adam optimizer (Kingma and Ba, 2015)
on the task of minimizing the cross entropy of the
predicted distribution and the true probability dis-
tributions over the vowel inventory. This is equiv-
alent to minimizing the negative log-likelihood of
the true phoneme at each position. 25% of the in-
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puts were randomly replaced by a mask token to
prevent overfitting on the relatively small sample.
Note that the output probability distribution of the
model is restricted to the vowel inventory of the lan-
guage plus the end-of-sequence token, since only
the vowel positions are of interest for the analysis.

A separate model was trained for each language
in our subset of 10 languages from NorthEuraLex.
The same hyperparameters were used for training
as in Pimentel et al. (2021b), with batch size re-
duced to 32 since NorthEuraLex wordlists are con-
siderably smaller than the datasets used in that pa-
per. Table 4 in Appendix A shows the exact config-
uration of the hyperparameters. After each epoch
the models were evaluated on a validation set, and
all models were trained until validation loss con-
verged. Training the models on unique sequences
derived from word lists ensures that the model sees
each sequence only once per epoch, and minimizes
overlaps between train, test and validation set.

3.4 Significance Tests
As the expected behavior of vowel harmony lan-
guages is that the vowels are not evenly distributed
over their words, average feature surprisal is likely
to not be normally distributed. The Shapiro-Wilk
test (Shapiro and Wilk, 1965) was used to check
whether the surprisal values for every comparison.
For every pairing of conditions at least one of them
was not normally distributed with p < 0.01. Thus,
the Wilcoxon signed-rank test was conducted to test
the significance of a paired contrast (as in the exam-
ple above). Effect size was calculated as the rank-
biserial coefficient using the common language ef-
fect size f = U

n1·n2
as r = f − (1− f), with U be-

ing the test statistic and n1 ·n2 being the number of
possible comparisons between two conditions. For
an unpaired contrast (e.g. the contrast between aver-
age feature surprisal for +ROUND after a −ROUND

vowel and average feature surprisal for +BACK af-
ter a −BACK vowel) a Mann-Whitney U-test was
conducted, with effect size calculated as the rank-
biserial coefficient using the T statistic and the
sum of ranks S as r = T

S . All significance tests
were conducted using the SciPy Python package
(Virtanen et al., 2020).

3.5 Implementation
The methods described here are implemented
in Python. The PyTorch library (Paszke et al.,
2019) is used to train and evaluate our neu-
ral models. CLDF data are accessed with

the help of CL Toolkit (https://pypi.org/
project/cltoolkit, List and Forkel 2021), a
Python package that provides convenient access
to lexical word lists in CLDF.

4 Experimental Results

4.1 Feature Surprisal

All vowel harmony languages show significant dif-
ferences in feature surprisal between harmonic and
disharmonic conditions with negative ∆η; individ-
ual results can be retrieved from the result tables 6-
10 in Appendix C. Feature surprisal in the +BACK

disharmonic condition was found to be higher than
feature surprisal in the −BACK disharmonic con-
dition for Finnish (∆η = −0.2148, p < 0.01),
Hungarian (∆η = −1.0806, p < 0.01) and Turk-
ish (∆η = −0.8602, p < 0.01), which confirms
the findings of Goldsmith (1985). Note that if the
+BACK and −BACK harmony were equally strong,
one would expect no difference in surprisal if the
harmony is violated. Three out of four languages
with ±BACK harmony show this tendency, indicat-
ing that the relative strength of +BACK harmony
over −BACK harmony is the usual case rather than
an exception. A possible explanation for this differ-
ence in strength is the existence of neutral vowels,
with 3 of the 4 ±BACK harmony languages in our
sample having at least one neutral vowel, and Turk-
ish, the only language without neutral vowels, also
showing the largest difference between the two
disharmonic conditions . The probabilities of the
neutral vowels are not included in the feature sur-
prisal calculation, causing feature surprisal to be
higher in the +BACK disharmonic condition while
lowering feature surprisal in the −BACK dishar-
monic condition. For Hungarian feature surprisal
was lowest in the neutral harmonic condition, mean-
ing that neutral vowels are most likely to occur
after another neutral vowel. Even though Hungar-
ian neutral vowels trigger −BACK harmony, the
low number of forms containing both −BACK vow-
els and neutral vowels makes it difficult for the
neural language model to learn the pattern, lead-
ing to the highest feature surprisal occurring in
the harmonic condition (i.e. for the −BACK fea-
ture). Figure 1 gives an overview of the relative
strength of vowel harmony for all languages and
harmonic features in the sample used in this study.
For this figure the sign of ∆η was reversed in or-
der to quantify the reduction of feature surprisal in
the harmonic sequences as compared to the dishar-
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Figure 1: Surprisal reduction for the 10 varieties from NorthEuraLex. Best viewed in color.

monic sequences for each combination of feature
and language. The boxplots of languages with-
out vowel harmony are located towards the left of
the plot with small differences between harmonic
and disharmonic sequences, with some vowel har-
mony languages showing similar, yet still positive
surprisal reduction (e.g. Finnish +BACK vowels,
Hungarian +BACK vowels)

4.2 The Case of Turkish

For Turkish the difference in feature surprisal be-
tween harmonic and disharmonic conditions was
large. Figure 2 shows that for both the ±BACK

and ±ROUND conditions, the disharmonic condi-
tion displays a much higher surprisal value as com-
pared to the harmonic condition (∆η = −3.6816,
p < 0.01 and ∆η = −2.7061, p < 0.01 re-

Figure 2: Feature surprisal for Turkish back har-
monic/disharmonic sequences (left) and round har-
monic/disharmonic sequences (right). The difference
between harmonic and disharmonic conditions is sig-
nificant with p < 0.01 in both cases.**: p < 0.01, *:
p < 0.05, ns: p > 0.05

spectively). A small but significant bias towards
+BACK harmony was detected (∆η = −0.8602,
p < 0.01). There is one obvious reason for the rel-
ative strength of ±BACK harmony over ±ROUND,
namely the parasitic nature of ±ROUND harmony
in Turkish: while all morphemes have different
forms for ±BACK, allowing for ±ROUND dishar-
mony, only a subset also has separate forms for
±ROUND (Tab. 1). Thus, there are more instances
of ±BACK harmony to be observed by the model,
and this is expected to result in higher surprisal
values for the ±BACK disharmonic conditions.

After ±ROUND vowels feature surprisal was also
much higher in the disharmonic conditions, with
feature surprisal in the round disharmonic condi-
tion being higher than in the unrounded dishar-
monic condition (∆η = −1.5827, p < 0.01).
In other words, +ROUND harmony seems to be
stronger than −ROUND harmony in Turkish. When
combining the disharmonic conditions within a har-
monic feature and comparing them to the dishar-
monic conditions in the other harmonic feature, the
combined back disharmonic condition (both front
disharmonic and back disharmonic) yields slightly
higher feature surprisal than the combined rounded
disharmonic condition (∆η = 0.8555, p < 0.01);
see Table 8 in the appendix. This is in line with
earlier research (Baker, 2009) that found a bias to-
wards ±BACK harmony over ±ROUND harmony.
This is also the expected result when taking into
account that many suffixes do not have +ROUND

forms and therefore introduce noise to the data.

4.3 Neutral Vowels

Learning vowel dependencies across neutral vow-
els turned out to be difficult: For Manchu and
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Khalkha Mongolian the number of test items in
this category was so low that no meaningful result
could be produced. This is again caused by the
nature of the data which consists of lemma forms.
For Finnish and Hungarian the number of items
was sufficient to conduct the appropriate signifi-
cance tests, but the numbers are still small (102
and 63 respectively). The neural language model
did not learn the association of neutral vowels with
−BACK as assumed for Finnish and Hungarian,
with significant ∆η > 0 between the neutral har-
monic and neutral disharmonic condition only for
Khalkha Mongolian and ±ATR sequences. In Hun-
garian, neutral vowels are most likely to occur after
other neutral vowels, but this is not the case for
Finnish, Manchu and Khalkha Mongolian. On the
other hand, Turkish as the only language in the
sample without neutral vowels showed the largest
difference between harmonic and disharmonic con-
ditions for both ±BACK and ±ROUND (see App. C
for results).

It may be noted that Turkish, the language with
the strongest vowel harmony effect in terms of
∆η, has no neutral vowels both for ±BACK and
±ROUND harmony. This could have facilitated the
generalization on the ±BACK and ±ROUND har-
mony patterns for the neural language model, at
least proving that the neural language model does
indeed assign higher surprisal to disharmonic se-
quences, since there the harmony system is sym-
metrical and the number of vowels is the same for
each feature.

5 Discussion and Conclusion

Prior work in the (computational) linguistics com-
munity has adopted information theory as a frame-
work for the study of human language structure
across different linguistic levels including phonol-
ogy (e.g., Pimentel et al., 2020, 2021c), morphol-
ogy (e.g., Rathi et al., 2021; Wu et al., 2019), and
syntax (e.g., Hahn et al., 2018; Futrell et al., 2015).
Following the same spirit, we have introduced an
information-theoretic metric to quantify vowel har-
mony based on feature surprisal. Our experiments
have demonstrated that feature surprisal is a good
indicator of whether a certain feature participates
in vowel harmony patterns in a language, produc-
ing significant differences between harmonic and
disharmonic conditions for most harmonic features
in five vowel harmony languages. The effect was
found on a very small sample of lemma forms

with little to no morphological information, show-
ing that large amounts of inflectional data are not
necessary to identify some, but not all vowel har-
mony constraints. When calculated for ±BACK

and ±ROUND features for five non-vowel harmony
languages, the difference in surprisal was close to
zero, meaning the neural language model did not
detect any preference for harmony constraints in
the languages evaluated.

We showed that neural language models can cap-
ture non-local harmony constraints over neutral
vowels, which is not possible with count-based
methods as employed by Mayer et al. (2010) or
bigram models as in (Goldsmith and Riggle, 2012).
Here the resolution of the analysis is more fine-
grained with respect to the features underlying the
harmonic groups. The advantage of the modeling
approach presented here over both count-based and
probabilistic models is that it can be used with a
small dataset (word lists of about 1000 word-forms,
of which ca. 300 are in the test set as the basis of
the actual analysis).

The analysis presented could be extended to
other types of phonological constraints, since neu-
ral language models in theory are able to learn all
types of dependencies over sequences of arbitrary
length. However, analysing Finnish, Hungarian,
Manchu and Khalkha Mongolian required prior
knowledge about harmonic vowels and the split of
vowels into harmonic groups, either because the
groups are not defined by the value of a feature as
is the case for languages with neutral vowels, or
because the feature representation in our standard-
ized data itself might not describe a sound with
the feature that is assumed to participate in vowel
harmony.

If it is not known which vowels participate in
vowel harmony, it seems best to use information
on distinctive features in the data in order to find
out which effects can be observed. However, if
the vowel harmony patterns are as complex as in
Khalkha Mongolian, the approach presented here
would probably find its limits in corpus size. Iden-
tifying the approximate number of distinct word-
forms needed to infer vowel harmony systems of
individual language varieties (similar to previous
studies inferring the number of words needed to
get an approximate account of phoneme numbers,
Dockum and Bowern 2019) would be an interesting
topic for future analysis.
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Limitations

The limiting factor in the analysis of Hungarian
and Khalkha Mongolian was the low number of
items with more than two vowels in the test data.
Although this was less of a problem in the other
three languages (Finnish, Turkish and Manchu all
have 400+ items with three or more vowels), this
is likely the case for many of the languages in
NorthEuraLex. Figure 3 in Appendix B shows
that many languages have an even lower number of
items with more than three vowels than Finnish and
Khalkha Mongolian. Given a train-valid-test split
of 60%-10%-30%, the number of items available
to the analysis of long-range dependencies (includ-
ing, but not restricted to, the operation of vowel
harmony across neutral vowels) will be very low
for these languages. This is an inherent property
of the data, and could only be amended by using
larger word lists or a larger corpora that are not
restricted to lemma forms.
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A LSTM Hyperparameters

Hyperparameter Value
Embedding Size 32

Hidden Size 256
LSTM Layers 2

Dropout 0.33
Batch Size 32

Table 4: Model and Training Hyperparameters as taken from (Pimentel et al., 2021b)

B Abbreviations of Harmonic Features

Abbreviation Feature
b back +BACK

f front −BACK

r round +ROUND

u unround −ROUND

atr advanced tongue root +ATR

natr retracted tongue root −ATR

n neutral
h harmonic

dish disharmonic

Table 5: Explanation of the abbreviations used in the result tables. The condition column refers to the type of
harmony tested, with vowel successions abbreviated in the way described in this table. The sequence "f_n_f"
represents sequences starting with a front/−BACK vowel, followed by a neutral/BACK neutral vowel and another
front/BACK vowel. If more than one harmonic feature is present (as in Turkish, Manchu and Khalkha Mongolian),
the magnitude of the effect on feature surprisal is compared between the two features in the disharmonic condition
only (compare row "f_r/dish" in Table 8).

C Result Tables

Table 6: P-values, ∆η and effect size for Finnish feature surprisal

Condition ∆η Statistic p-value Effect Size Test
f_f/f_b -0.8298 71.0 2.e-12 0.0263 Wilcoxon
b_b/b_f -0.8469 415.0 3.8e-17 0.0572 Wilcoxon
n_f/n_b 0.0009 4800.0 0.1723 0.4353 Wilcoxon
f_b/b_f -0.2148 3148.0 0.001 -0.2813 Mann-Whitney

f_n_f/f_n_b -0.563 59.0 7.57e-05 0.1052 Wilcoxon
b_n_b/b_n_f -0.6077 236.0 0.0009 0.2183 Wilcoxon
n_n_f/n_n_b -0.1206 85.0 0.1114 0.308 Wilcoxon
f_n_b/b_n_f -0.1188 688.0 0.4834 -0.0935 Mann-Whitney
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Table 7: P-values, ∆η and effect size for Hungarian feature surprisal

Condition ∆η Statistic p-value Effect Size Test
f_f/f_b -0.0917 270.0 0.64 0.4538 Wilcoxon
b_b/b_f -2.1995 2.0 9.46e-21 0.0003 Wilcoxon
n_f/n_b 0.7951 1270.0 2.47e-14 0.1287 Wilcoxon
f_b/b_f -1.0806 364.0 5.36e-13 -0.8154 Mann-Whitney

f_n_f/f_n_b 0.0864 27.0 1.0 0.4909 Wilcoxon
b_n_b/b_n_f -1.6036 0.0 0.0078 0.0 Wilcoxon
n_n_f/n_n_b 0.4453 243.0 0.0019 0.2348 Wilcoxon
f_n_b/b_n_f -0.674 24.0 0.1728 -0.4 Mann-Whitney

Table 8: P-values, ∆η and effect size for Turkish feature surprisal

Condition ∆η Statistic p-value Effect Size Test
f_f/f_b -3.1502 429.0 1.65e-29 0.0244 Wilcoxon
b_b/b_f -4.0729 258.0 4.25e-42 0.008 Wilcoxon
f_b/b_f -0.8602 14301.0 9.15e-13 -0.3978 Mann-Whitney
r_r/r_u -1.0516 1107.0 1.8e-06 0.2236 Wilcoxon
u_u/u_r -3.185 10.0 9.0e-58 0.0002 Wilcoxon
r_u/u_r -1.5827 6339.0 2.48e-21 -0.6256 Mann-Whitney
f_h/dish -3.6816 1348.0 4.71e-70 0.0138 Wilcoxon
r_h/dish -2.7061 3473.0 4.5e-64 0.0356 Wilcoxon
f/r_dish 0.8555 132794.0 5.55e-21 0.3656 Mann-Whitney

Table 9: P-values, ∆η and effect size for Manchu feature surprisal

Condition ∆η Statistic p-value Effect Size Test
f_f/f_b -2.5563 6.0 1.68e-24 0.0006 Wilcoxon
b_b/b_f -3.4993 209.0 1.16e-20 0.0253 Wilcoxon
n_f/n_b 0.354 14803.0 0.0086 0.4076 Wilcoxon
f_b/b_f 0.1359 9167.0 0.6778 0.0305 Mann-Whitney

f_n_f/f_n_b -1.3331 43.0 3.58e-05 0.0814 Wilcoxon
b_n_b/b_n_f -1.5021 259.0 1.61e-11 0.0743 Wilcoxon
n_n_f/n_n_b 0.1291 3941.0 0.7673 0.4849 Wilcoxon
f_n_b/b_n_f -0.0086 1273.0 0.7338 -0.0414 Mann-Whitney

Table 10: P-values, ∆η and effect size for Khalkha Mongolian feature surprisal

Condition ∆η Statistic p-value Effect Size Test
atr_atr/atr_natr -1.8211 27.0 1.55e-13 0.0095 Wilcoxon

natr_natr/natr_atr -0.6621 1819.0 2.55e-12 0.1672 Wilcoxon
n_atr/n_natr -0.6531 91.0 0.0185 0.2407 Wilcoxon

atr_natr/natr_atr -1.5526 7395.0 3.21e-05 0.3415 Mann-Whitney
r_r/r_u -1.8211 2.0 4.37e-07 0.0034 Wilcoxon
u_u/u_r -0.6621 2.0 8.35e-13 0.0009 Wilcoxon
n_r/n_u -0.6531 371.0 0.148 0.3747 Wilcoxon
r_u/u_r -1.5526 170.0 2.64e-12 -0.8529 Mann-Whitney

atr_h/dish -1.0537 2337.5 1.09e-25 0.0944 Wilcoxon
r_h/dish -1.6815 6.0 2.18e-18 0.0011 Wilcoxon

atr/r_dish -0.3697 8941.0 0.0024 -0.2103 Mann-Whitney
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Figure 3: Number of items with 2 vowels (x-axis) and 3 or more vowels (y-axis) in all languages in NorthEuraLex.
Hungarian and Khalkha Mongolian in red circles. Languages were coded for language family (see legend)
and identified by ISO codes. For a mapping of ISO codes to language see the NorthEuraLex website http:
//www.northeuralex.org/languages.
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