
Proceedings of the 5th Workshop on Research in Computational Linguistic Typology and Multilingual NLP (SIGTYP 2023), pages 132–136
May 6, 2023 ©2023 Association for Computational Linguistics

ÚFAL Submission for SIGTYP Supervised Cognate Detection Task

Tomasz Limisiewicz
Faculty of Mathematics and Physics, Charles University in Prague

limisiewcz@ufal.mff.uni.cz

Abstract

In this work, I present ÚFAL submission for
the supervised task of detecting cognates and
derivatives. Cognates are word pairs in differ-
ent languages sharing the origin in earlier at-
tested forms in ancestral language, while deriva-
tives come directly from another language. For
the task, I developed gradient boosted tree clas-
sifier trained on linguistic and statistical fea-
tures. The solution came first from two deliv-
ered systems with an 87% F1 score on the test
split. This write-up gives an insight into the
system and shows the importance of using lin-
guistic features and character-level statistics for
the task.

1 Introduction

The described system is a supervised model trained
for three-way classifications aimed to distinguish
cognate and cross-lingual derivatives or no rela-
tionship for pairs of words in different languages.
Cognates are pairs with similar meanings and come
from the same root in an ancestral language. For
instance, the German “vater” is cognate with the
English “father” coming from the same Proto-Indo-
European root. In contrast, multilingual deriva-
tives are words borrowed from another language
potentially with some modification, e.g., the word
“restaurant” in English comes from a French word
with the same spelling (Crystal, 2008).

The solution used only the data provided by the
organizers, i.e., 232,482 bilingual pairs in 34 Eu-
ropean languages. The data came with the rela-
tionship labels (cognate, derivative, or no relation)
scraped from Wiktionary.1 In the examples con-
taining derivative pairs, the order of words did not
indicate the source and recipient language.

The proposed system was evaluated on the test
data with 876 bilingual word pairs with hidden
target labels. The evaluation metric was a macro-
averaged F1 score. For development purposes, I

1https://www.wiktionary.org/

sampled 10% of the provided training data to create
a validation set not used in the model fitting.

My solution is based on gradient boosted tree
classifier trained on the set of language features
comprising multilingual language model embed-
dings, language and language group id, character-
level Levenshtein distance, and a binary variable
marking capitalized words.

The system obtained the F1 score of 87% on the
test set and came first out of two submitted to the
shared task. The source code for the submission
is publicly available at GitHub: https://github.
com/tomlimi/cognate_detection.

The system description is organized in the fol-
lowing way: in Section 2, I describe the classifica-
tion model and the hyperparameter search method;
in Section 3, I introduce the features selected as
input for the classifier; lastly, in Section 4, I present
the results of the method together with the accumu-
lation study and the analysis of feature importance.

2 Classification

For classification tasks, I used a gradient-boosted
tree implemented in the XGBoost library (Chen and
Guestrin, 2016).2 The boosting tree is the method
that enables the predictions of a large set of deci-
sion trees obtained with a gradient search. This
section describes the hyperparameters used for the
classifier and the method used to select them.

I chose XGBoost because it performs well for
data containing real and discrete variables, and the
set of input variables can be easily extended. More-
over, XGBoost can be interpreted through feature
importance analysis.

2.1 Class Weighting

The cognate data were significantly skewed toward
no relation class (78.0%), followed by derived pairs
(16.9%) and cognates (5.1%). The task organizers

2https://xgboost.readthedocs.io/

132

https://www.wiktionary.org/
https://github.com/tomlimi/cognate_detection
https://github.com/tomlimi/cognate_detection
https://xgboost.readthedocs.io/


Figure 1: The visualization of features selected as an input to XGBoost classifier. For each word from the test
cases, I obtained embeddings from two models, XLM-V and CANINE-C. The embeddings were compressed to 16
dimensions for each model by selecting the first principal components. The language and language group labels
were fed to the classifier as one-hot vectors. Levenshtein distance between words in each pair was inputted as a
real-valued variable. The last component of the classifier input were binary variables denoting if each word of the
pair is capitalized.

notified contestants that the training data contains
a significant share of false positives, i.e., unmarked
cognates pairs. For those reasons, I weighted test
examples in order to counter the imbalance, assign-
ing higher weights to examples containing cognate
and derived forms.

2.2 XGBoost Hyperparameters

The boosting algorithm was trained to maximize
the area under the classification curve with gradient
descent performed for 100 steps. In the parameter
search, I considered the following ones:

• eta shrinks the weights of features.

• gamma minimum loss reduction needed to
make a partition of the node

• maximum depth maximum depth of the tree.

• minimum child weight minimum sum of the
instance weights in a leaf.

• maximum delta step the cap of the output in
the leaf helps to counter data imbalance

• subsample sampling training instances for
each boosting iteration.

• column sample family of arguments: sam-
pling columns (features) before adding a new
tree, level, or node.

• lambda L2 regularization on the model’s
weights.

• alpha L1 regularization on the model’s
weights.

2.3 Bayesian Paremeter Search
The hyperparameters are searched by Bayesian op-
timization (Bergstra et al., 2013) based on the Hy-
peropt library.3 In this algorithm, the hyperparame-
ter space is searched by sampling the configuration
with a high probability of increasing the objective
function. The search is performed iteratively, updat-
ing hyperparameter distributions after each epoch.
I ran a Bayesian search for 50 epochs (in each
epoch, the XGBoost was run for 100 steps).

3https://hyperopt.github.io/hyperopt

133

https://hyperopt.github.io/hyperopt


Parameter Search Range Selected

eta 0.01 - 0.3 0.275
gamma 0 - 5.0 0.642
maximum depth 3 - 20 12
minimum child weight 1 - 6 4
subsample 0.6 - 1.0 0.723
column sample (tree) 0.6 - 1.0 0.919
column sample (node) 0.6 - 1.0 0.749
column sample (level) 0.6 - 1.0 0.998
lambda 0 - 5.0 1.507
alpha 0 - 5.0 1.138

Table 1: Hyperparameter search spaces: uniform dis-
tributions in the given ranges. The value was selected
with Bayesian optimization. Distributions of maximum
depth and minimum child weight are discrete.

Table 1 shows the search spaces and selected
parameters.

3 Feature Selection

I used an ensemble of word embeddings, typologi-
cal and orthographical information as input to the
XGBoost classifier. This Section describes how
those features were selected and pre-processed.
The visualization of all the picked features is pre-
sented in Figure 1.

3.1 Language Model Embeddings

I computed the embedding representation of the
words in each test pair. I took the final layer repre-
sentation of two recent multilingual Transformer-
based models available through the HuggigFace in-
terface (Wolf et al., 2020):4 XLM-V (Liang et al.,
2023) and CANINE (Clark et al., 2022). The former
model tokenizes the input with a large (1 million
entries) subword vocabulary. The latter splits the
input into character sequences and applies a convo-
lution layer before the proper Transformer. I used
these two models aiming to merge character and
subword signals.

The resulting word embeddings have high di-
mensionality, i.e., 1024 for each model. I decided
to decrease the dimensionality of the embeddings
in order to balance out the composition of the clas-
sifier input vector. For that purpose, I applied SVD
decomposition on the embeddings obtained for the
training set and sorted the principal components in
the order of the variance explained. Subsequently,

4https://huggingface.co/

Features Train Validation
Acc F1 Acc F1

1 Language ID 75.9 64.2 76.1 64.2
2 1 + Group ID 76.6 64.7 76.7 64.6

3 2 + Capitalized 78.4 66.3 78.6 66.4

4 3 + Levenshtein 83.1 70.6 83.0 69.8

5 3 + Embeddings 97.2 94.2 92.6 80.3

6 4 + Embeddings
No weighting

98.4 95.8 93.8 79.6

7 4 + Embeddings 97.8 95.3 93.7 82.7

Table 2: The feature accumulation analysis results from
the XGBoost classifier. Each row presents the results
for the model trained on a different set of features.

I picked the first 16 principal components for each
model and used the projection matrix to obtain the
representation for the development and test sets.

3.2 Typology

I encoded language information as two class vari-
ables: the first is language identity (34 classes),
and the second is language group identity (7
classes: Romance, Slavic, Germanic, Celtic, Hel-
lenic, Baltic).

Both variables were encoded in a one-hot vector,
with 34 dimensions for language and 7 dimensions
for language family.

3.3 Orthography

I used Levensthein distance (Levenshtein, 1966)
on character level as the measure of similarity be-
tween words. The second feature based on ortho-
graphical forms was the binary variable denoting
for each word whether it is capitalized. I added this
feature because I have observed that proper names
are often borrowed in other languages. Therefore,
the capitalized word’s appearance increased the
derivative class’s probability.

Admittedly, the adequate way to utilize Lev-
enshtein distance would be to compute it on the
phoneme level. However, the text-to-phonemes
models were not publicly available for many low-
resource languages included in the shared task.

4 Results

I trained the classifier on top of input vectors con-
structed from the features described in Section 3
and using the hyperparameters picked by Bayesian
search described in Section 2.3. I split the training

134

https://huggingface.co/


la

lev
en

sh
te

in

ca
ni

ne
1

ca
pi

ta
liz

ed

ca
ni

ne
3

ro
m

an
ce

ca
ni

ne
0

ca
ni

ne
10

ca
ni

ne
4

ca
ni

ne
9
sla

vi
c

ca
ni

ne
2

xl
m

-v
2

ca
ni

ne
12 fr

ca
ni

ne
15

ca
ni

ne
13

ca
ni

ne
8

ca
ni

ne
14

ca
ni

ne
7

ca
ni

ne
6

xl
m

-v
5

ca
ni

ne
5

ca
ni

ne
11

xl
m

-v
6

xl
m

-v
11

xl
m

-v
12

xl
m

-v
9 nb

xl
m

-v
15

Feature

0

20000

40000

60000

80000

100000

120000

140000
T

ot
al

G
ai

n

Figure 2: The sum of objective gains for when a given feature was used for a tree split. Features la, fr, nb are ones
of 34 language ID features indicating if one of the languages in the pair is Latin, French, or Bokmål (Norwegian).
canine_x and xlm-v_x denote the main principal component of language models CANINE and XLM-V, where x
indicates the rank of the component according to the proportion of explained variance. The figure presents only 20
features with the highest total gain.

set provided by the organizers into train and val-
idation splits containing 90% and 10% randomly
selected data examples.

The submitted solution obtained 95.3% macro
F1 score on the train set and 82.7% on the vali-
dation set. On the held-out test split, the system
achieved 87% F1 score, as reported by the organiz-
ers. This section presents the results of the accu-
mulation study and feature importance analysis.

4.1 Accumulation Analysis

Table 2 shows the accuracies obtained by the classi-
fier trained on subsets of features. Interestingly, the
classifier trained just on language labels achieves
a relatively high F1 (64.2% on the validation set).
The highest gain is observed after adding word em-
beddings (+12.9% validation F1 increase in 8 );
Levenshtein distance also visibly improves results (
+3.87% in 5 ). The model without class weighting

7 achieves better class accuracies and a lower F1
score due to class imbalance.

In summary: there is a visible impact of includ-
ing language model embeddings and Levenshtein
distance as classification features.

4.2 Feature Importance

Figure 2 presents the feature importance computed
as the total gain each feature brought in the splits.

The most important feature is a binary variable
indicating if one of the languages in a pair is Latin.
The importance of this feature can be explained by
the fact that Latin is the source language of many
borrowings throughout European languages. The
second feature is Levesnshtein distance, followed
by one of the CANINE principal components (ca-
nine_1) and binary variable marking capitalized
words. These three feature depends on the charac-
ter composition of the analyzed words, highlighting
the importance of orthographical information for
cognate detection. Furthermore, character-based
CANINE embeddings tend to be more influential
to the predictions than subword-based ones (XLM-
V).

5 Conclusions

The developed supervised system achieves com-
petitive results in cognate detection (87% on the
test set). The model was trained on a diverse set of
linguistic and statistical signals. The accumulation
and importance analysis showed the importance of
nuance aspects of the dataset, such as Latin or cap-
italization, as an indication of derivative relation.
The analysis also showed the high importance of
using character-based representation for the task in
the form of CANINE embedding and character-level
Levenshtein distance.

135



Limitations

I acknowledge that the solution is limited in its
scope. For instance, I did not use phonetical rep-
resentation, which is more suitable for comparing
the potential cognates across languages. Also, the
solution could benefit from more complex histor-
ical linguistic analysis, e.g., obtained with Pyling
package (List and Forkel, 2021).5 However, the
proposed classification method can be easily ex-
tended to incorporate additional features.

The flawed annotation of the training set causes
another limitation of the method. According to
information from the organizers, the dataset con-
tained a significant number of false negatives, i.e.,
missing cognate relations.

Acknowledgments

I thank Abishek Stephen for his theoretical insight
and valuable suggestions for using linguistic fea-
tures in the classification model. I also thank Mar-
tin Popel, Ondřej Plátek, and Ondřej Dušek for
their helpful comments on the previous draft of this
system description. My work has been supported
by grant 338521 of the Charles University Grant
Agency.

References
James Bergstra, Daniel Yamins, and David Cox. 2013.

Making a science of model search: Hyperparameter
optimization in hundreds of dimensions for vision
architectures. In Proceedings of the 30th Interna-
tional Conference on Machine Learning, volume 28
of Proceedings of Machine Learning Research, pages
115–123, Atlanta, Georgia, USA. PMLR.

Tianqi Chen and Carlos Guestrin. 2016. XGBoost. In
Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Min-
ing. ACM.

Jonathan H. Clark, Dan Garrette, Iulia Turc, and John
Wieting. 2022. Canine: Pre-training an Efficient
Tokenization-Free Encoder for Language Represen-
tation. Trans. Assoc. Comput. Linguistics, 10:73–91.

David Crystal. 2008. A Dictionary of Linguistics and
Phonetics, 6th ed. edition. Blackwell Pub Malden,
MA ; Oxford.

V. I. Levenshtein. 1966. Binary codes capable of cor-
recting deletions, insertions, and reversals. Cybern
Control Theory, 10:707–710.

5https://lingpy.readthedocs.io

Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Na-
man Goyal, Marjan Ghazvininejad, Luke Zettle-
moyer, and Madian Khabsa. 2023. XLM-V: Over-
coming the Vocabulary Bottleneck in Multilingual
Masked Language Models. CoRR, abs/2301.10472.

Johann-Mattis List and Robert Forkel. 2021. LingPy. A
Python Library for Historical Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-Art Natural Language Processing.
In Proceedings of the 2020 Conference on Empiri-
cal Methods in Natural Language Processing: Sys-
tem Demonstrations, EMNLP 2020 - Demos, Online,
November 16-20, 2020, pages 38–45. Association for
Computational Linguistics.

136

https://proceedings.mlr.press/v28/bergstra13.html
https://proceedings.mlr.press/v28/bergstra13.html
https://proceedings.mlr.press/v28/bergstra13.html
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1162/tacl_a_00448
https://doi.org/10.1162/tacl_a_00448
https://doi.org/10.1162/tacl_a_00448
https://lingpy.readthedocs.io
https://doi.org/10.48550/arXiv.2301.10472
https://doi.org/10.48550/arXiv.2301.10472
https://doi.org/10.48550/arXiv.2301.10472
https://doi.org/10.5281/zenodo.5144474
https://doi.org/10.5281/zenodo.5144474
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6

