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Abstract

Aspect sentiment quad prediction (ASQP) an-
alyzes the aspect terms, opinion terms, senti-
ment polarity, and aspect categories in a text.
One challenge in this task is the scarcity of
data owing to the high annotation cost. Data
augmentation techniques are commonly used
to address this issue. However, existing ap-
proaches simply rewrite texts in the training
data, restricting the semantic diversity of the
generated data and impairing the quality due to
the inconsistency between text and quads. To
address these limitations, we augment quads
and train a quads-to-text model to generate cor-
responding texts. Furthermore, we designed
novel strategies to filter out low-quality data
and balance the sample difficulty distribution
of the augmented dataset. Empirical studies
on two ASQP datasets demonstrate that our
method outperforms other data augmentation
methods and achieves state-of-the-art perfor-
mance on the benchmarks.1

1 Introduction

Aspect-based sentiment analysis (ABSA) aims to
mine opinions expressed regarding specific aspects
of a given text. Recently, Zhang et al. (2021a) pro-
posed a challenging compound subtask of ABSA
called aspect sentiment quad prediction (ASQP),
which predicts four kinds of elements (aspect cate-
gory, aspect term, opinion term, sentiment polarity)
as quadruplets (quads). A single text may contain
multiple quads. For example, the text “The pizza
is delicious but expensive.” mentions one aspect
term (pizza) and two opinion terms (delicious and
expensive). Because these two opinions are related
to the same aspect, the text includes two quads:
(taste, pizza, delicious, positive) and (price, pizza,
expensive, negative).

Traditional methods (Cai et al., 2020; Wan et al.,
2020; Cai et al., 2021) address such compound sub-

1The source code is available at https://github.
com/AnWang-AI/AugABSA

It is one the nicest outdoor restaurants I have ever seen in NY.

It is one of the most beautiful outdoor restaurants I have ever
seen in NY.

It is one the nicest restaurants I have ever seen in NY.
Random Deletion:

Back Translation:

It is one the best outdoor restaurants I have ever seen in NY.
Synonym Replacement:

[ambience general, outdoor restaurants, nicest, positive]

Source Text:

Label:
Augmented Text (Previous Methods):

Great space for meetings, but the outdoor restaurants is nothing
special. 

Our Method:
Augmented Label: 
[ambience general, space, Great, positive],
[ambience general, outdoor restaurants, nothing special, positive] 

Augmented Text: 

Figure 1: Examples of text data augmentation meth-
ods. We observe that the augmented texts from previous
methods fail to include all spans in the label and the
augmented texts are semantically very similar to the
source text. Our method addresses these problems by
generating texts from augmented labels.

tasks of ABSA in a discriminative manner. Recent
studies (Zhang et al., 2021b; Hu et al., 2022) have
primarily concentrated on sequence-to-sequence
frameworks for ASQP because of their superior
performance. Specifically, These frameworks trans-
form the input text into a sequence of linearized
quads.

Despite the success of the field of ASQP, the
scarcity of annotated data is still a remaining chal-
lenge. For instance, Rest15 and Rest16 ASQP
datasets only consist of 834 and 1,264 training sam-
ples respectively. However, manual annotation is
costly and time consuming. One solution for ex-
panding the number of training samples is data
augmentation. EDA (Wei and Zou, 2019) adopted
some typical data augmentation techniques such as
random swapping, inserting, deleting words, and
synonym replacement to improve text classifica-
tion. Back-translation (Yu et al., 2018) obtained
augmented data by translating the original text in
English into another language and then translating
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it back into English. However, applying these op-
erations to ASQP datasets usually disrupts crucial
spans, such as aspect or opinion terms, resulting
in label mismatches with the original input text.
Additionally, traditional data augmentation meth-
ods only focus on augmenting texts that preserve
semantic information similar to the original text in
the training dataset. Therefore, the ability of these
methods to help models generalize to unseen data
is limited.

In this study, we propose a novel Generative
Data Augmentation method (GenDA) by propos-
ing a quads-to-text (Q2T) generation task—the re-
verse task of ASQP, which aims to generate a text
based on the input quads. We synthesize a large
number of quads by mixing the labels from the
ASQP training dataset. Then, we feed these labels
to the trained Q2T model which uses a sequence-
to-sequence model to generate new parallel data
with high diversity. Figure 1 shows some exam-
ples of the traditional text augmentation methods
and our method. In addition, we propose a data
filtering strategy concerning the unalignment of the
aspect and opinion terms between text and quads
to remove low-quality augmented data. Further-
more, we propose a new measurement, Average
Context Inverse Document Frequency (AC-IDF),
to evaluate the difficulty of augmented samples and
a strategy to balance the difficulty distribution. Fi-
nally, we can augment sufficient training data with
good diversity and high quality.

To evaluate our method, we conducted empiri-
cal studies using two ASQP datasets. We applied
the proposed data augmentation with the previous
ASQP model. These studies demonstrate that our
method outperforms other data augmentation meth-
ods and achieves state-of-the-art performance on
the benchmark. In addition, the experimental anal-
ysis also verifies that our method successfully gen-
erates data with stronger diversity. Additionally,
we conducted a detailed ablation study to confirm
the effectiveness of each component of our method
and provide insights into how they contribute to the
performance of our method.

The contributions of this study are summarized
as follows: (1) We propose the synthesis of diverse
parallel data using a Q2T model for ASQP. To the
best of our knowledge, this is the first study to
achieve data augmentation by text generation for
ABSA. (2) We propose a data filtering strategy to
remove low-quality augmented data and a measure-

ment to evaluate the difficulty of the augmented
samples, which is used to balance the augmented
dataset. (3) Our experiments demonstrate that the
proposed method achieves state-of-the-art perfor-
mance on the two ASQP datasets.

2 Preliminaries

2.1 Task Definition of ASQP
Aspect sentiment quad prediction aims to predict
all sentiment-related quadruplets (ac, at, ot, sp)
from a given text x. The elements of each quadru-
plet are aspect category (ac), aspect term (at), opin-
ion term (ot), and sentiment polarity (sp). In par-
ticular, the aspect category belongs to a specific
category set AC and the sentiment polarity falls
into sentiment classes {POS, NEU, NEG} denoting
positive, neutral, and negative sentiments toward
the aspect. Note that if the aspect and opinion terms
are not explicitly mentioned in the given text, they
are set as NULL.

2.2 Generative ASQP Methods
Although early work handled ABSA in a dis-
criminative manner, recent studies (Zhang et al.,
2021a,b; Hu et al., 2022) have mainly focused on
generative ASQP methods because of their better
performances.

PARAPHRASE (Zhang et al., 2021a) formu-
lated ASQP into a paraphrasing problem. They
transformed sentiment-related quadruplets into
a natural language. Specifically, given a quad
(ac, at, ot, sp), they designed the following tem-
plate: “ac is sp because at is ot.”, where ac and
sp are projected onto the natural language format.
When the input text contains multiple quads, the
quads are transformed into different templated sen-
tences separately and then concatenated with a spe-
cial marker [SSEP]. Hu et al. (2022) explored the
effect of the order of each quad element in the tem-
plate. In addition, they proposed a more effective
target template: “[AT] at [OT] ot [AC] ac [SP]
sp”, where [AT], [OT], [AC], and [SP] are special
tokens.

Inspired by previous generative ASQP methods,
we consider the reverse process of text-to-quads
and further propose a generative data augmentation
method based on it.

3 Methodology

To alleviate the problem of annotated data scarcity
and to generate augmented data with strong diver-
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I am [OT] happy [1,2 /OT] with the [AT] food [1 /AT] in this [AT] dinner [2 /AT].

[1] [AT] food [OT] happy [AC] food quality [SP] good [1] [SSEP] [2]
[AT] dinner [OT] happy [AC] food quality [SP] good [2] 

① (food quality, dinner, great quality, POS),
② (food quality, food, happy, POS),
③ (service general, staff, nice, POS),
④ (service general, service, great, POS),
⑤ (food quality, lobster knuckles, tasteless, NEG),

Quad Collection

① (food quality, dinner, happy, POS),
② (service general, staff, great, NEG),

Augmented Quad Collection

(food quality, food, happy, POS), (food quality, dinner, happy, POS)

Q2T model

Random
Selection

I am happy with the food in this dinner.

Augmented Label:

Augmented Text:

Augmented Quad
Collection

Augmented Text

Augmented Label

Sampling

Q2T
Model Augmented

Parallel Data
Filtering

ASQP
Model

Balancing

ASQP
Training Data

Q2T
Training Data

Step 1：
 Training Q2T model

Step 2：
 Data Augmentation

Step 3：
Filtering and Balancing

Quad Collection

CW Set

OW Set

AW SetQuad
Augmention

Training

Recombine elements

Reverse
Data

(a) Pipeline of our method. (b) Example of generating augmented text.

...

...

Figure 2: Overview of our proposed method. In Step 3 of Figure (a), AW Set, OW Set, and CW Set represent aspect
word set, opinion word set, and context word set, respectively. They are utilized to aid the filtering process. Figure
(b) shows an example of synthesizing augmented parallel data consisting of a text, “I am happy with the food in this
dinner,” and an associated label, “(food quality, food, happy, POS), (food quality, dinner, happy, POS)”. The dotted
line indicates the source of the quad or label.

sity and high quality for the ASQP task, we propose
a novel generative data augmentation method. Fig-
ure 2 presents an overview of the proposed method.
The proposed method consists of three main steps.
(1) We reverse the data in the ASQP dataset to
create a new training set, which we then use to
train a quads-to-text model. (2) We aim to gen-
erate data that are semantically different from the
training data. Hence, we collect all labels from the
training set and propose mixing them to create an
augmented quad set. We then randomly sample
several mixed quads and feed them into the quads-
to-text model to generate the corresponding source
text. (3) To further improve the performance of
our data augmentation, we propose two strategies
to filter out generated texts that do not match the
given quads and balance the sample difficulty distri-
bution of the augmented data. Finally, we combine
the augmented data with the original training set to
train an ASQP model.

3.1 Quads-to-Text Task

Before introducing our generative data augmenta-
tion method, we first define a new text generation
task, the quads-to-text (Q2T) task, and then design
a Q2T model based on a pre-trained sequence-to-
sequence model.

3.1.1 Task Definition of Quads-to-Text Task
To obtain parallel augmented data for our gen-
erative ASQP data augmentation, we first pro-
pose a quads-to-text task. Q2T aims to generate
text describing the given quads. Given n quads
{q1, q2, ..., qn}, where qi = (aci, ati, oti, spi), the
task requires generating a text x that includes and
only includes the input quads.

3.1.2 Quads-to-Text Model
To handle the Q2T problem, we utilize the pre-
trained sequence-to-sequence model following
other works on controllable text generation (Zhang
et al., 2022). Unlike conventional text generation
methods, our designed Q2T model not only gen-
erates texts but also provides a mechanism to con-
veniently judge whether the generated statement
meets the task requirements of Q2T. In our method,
we mainly focus on the input and output designs of
the model.

For the input sequence of the model, we formu-
late the given quads as template sentences similarly
to Hu et al. (2022). The difference is that we insert
special indexing markers before and after each sen-
tence to distinguish multiple quads. Specifically,
the i-th quad (aci, ati, oti, spi) is transformed into
a templated text:

[i][AT] ati [OT] oti [AC] aci [SP] spi [i]
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The final transformed texts are linked with a special
marker [SSEP] following previous work (Zhang
et al., 2021b; Hu et al., 2022).

For the output sequence of the model, instead
of only generating the source text, the Q2T model
can generate text with annotations. The annota-
tions identify aspect terms and opinion terms in the
text. In addition, the annotation also includes the
relation information between aspects and opinions.
The model annotates aspect and opinion terms of
i-th quad in the text using special markers “[AT]”,
“[i /AT]”, “[OT]”, and “[i /OT]”. Special tokens
[AT] and [OT] denote the beginning of an aspect
and opinion term while [i /AT] and [i /OT] denote
the ending position. When there are multiple as-
pects in a text that are described by the same opin-
ion or there are multiple opinions describing the
same aspect, they can be grouped together using
a comma-separated list of numbers within square
brackets, such as [1,2 AT] to indicate that the first
and second opinion describe the same aspect. We
will explain the function of these annotations in
detail in Section 3.2.2.

3.1.3 Training
To make the Q2T model generate text that meets
our requirements, we first build Q2T datasets based
on ASQP datasets. ASQP aims to predict quads
from the given text, thus, we obtain Q2T datasets
by simply inverting the input and label of the ASQP
dataset. To enhance the ability to understand the
meaning of the special index markers, we augment
Q2T data by permuting the order of quads in the
templated input of Q2T model. After training the
Q2T model, the model can be used to obtain more
abundant augmented data for the ASQP task.

3.2 Augmention Strategy

In this section, we first propose a novel method
for obtaining a diverse augmented dataset based on
the Q2T model. We then propose a filtering strat-
egy and a difficulty balancing strategy to further
improve the performance of data augmentation.

3.2.1 Synthesizing Augmented Quads
To obtain diverse data that are meaningfully dif-
ferent from the data in the original ASQP training
dataset, we propose to diversify the input of the
Q2T as shown in figure 2.

First, we collect all quads from the ASQP
training dataset as a quad collection, denoted as
Sorigin = {(aci, ati, oti, spi)}. Subsequently, for

those quads that share the same aspect category
aci, we randomly exchange their aspect term at
and opinion term ot with sentiment polarity sp to
create new quads. The opinion term and senti-
ment polarity from the same original quad will be
bound together to avoid getting new quads where
elements conflict with each other. For example,
given two quads: (price, pizza, cheap, POS) and
(price, steak, expensive, NEG), we can synthesize
new quads (price, steak, cheap, POS) and (price,
pizza, expensive, NEG). Finally, we balance the
number of synthesized quads for each aspect cate-
gory to obtain the augmented quad collection, de-
noted as Saugment. Subsequently, each time we ran-
domly select 1 ∼ 3 quads from Sorigin∪Saugment,
and feed them to the Q2T model for data augmen-
tation. During the training of the ASQP model, we
remove the annotations such as [AT] in the aug-
mented text.

3.2.2 Data Filtering
For ASQP data augmentation, a common problem
is that the augmented texts may not be faithful to
the given quads. Specifically, the generated texts
from the Q2T model may contain fewer or more
quads compared to input quads. Using unfaithful
text as ground truth for given quads to train the
ASQP model will introduce noise that decreases the
performance. Thus we propose a two-step filtering
strategy to remove these low-quality data.

The first step of filtering involves checking the
consistency between the output text of the Q2T
model and the input quads. As introduced in Sec-
tion 3.1.2, our Q2T model annotates aspect terms
and opinion spans using special markers when
generating texts. This allows us to collect aspect-
opinion pairs from the output text and then check
the consistency between the detected pairs and in-
put quads. We filter out the examples with incon-
sistent aspect and opinion terms.

However, the generated texts that pass the first
filtering step may contain additional aspect or opin-
ion terms that are not annotated with special mark-
ers. Training the ASQP model with such data may
lead to a lower recall. To address this issue, we
propose the second step of data filtering. The pro-
cess involves building two keyword sets (an aspect
word set and an opinion word set) and a context
word set. Specifically, we begin by collecting all
the texts from the training data. Because the aspect
and opinion terms are annotated, we categorize the
words in the text based on labels into three groups:
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aspect words, opinion words, and context words.
After that, we gather all the aspect words to create
the aspect word set. Similarly, we collect all the
opinion words to form the opinion word set and
all the context words to construct the context word
set. If the unmarked part (i.e., the context) of a
generated text contains any word that belongs to
the keyword sets but does not exist in the context
word set, we consider this example as containing
additional aspect/opinion terms and remove it from
the augmented dataset.

3.2.3 Difficulty Balancing

In addition to the existence of low-quality data, an-
other problem we observe is that more than half of
the generated texts are simple expressions. These
generated texts are far simpler than most texts in
the ASTE dataset. A text can be divided into three
different parts, aspect terms, opinion terms, and
context. Even if being given different quads as in-
puts, the Q2T model usually generates text with
relatively similar context, such as ‘The at is ot’.
When most augmented training data are too simple,
the model may not learn the complex patterns re-
quired to make accurate predictions on unseen data.
Therefore, it is necessary to balance the distribution
of the sample difficulty of the augmented dataset.

To assess the sample difficulty, we propose a
new measurement factor, called the Average Con-
text Inverse Document Frequency (AC-IDF). The
difficulty of a text can be defined as the level of
language proficiency required to understand the
text (Fulcher, 1997). A text that uses many uncom-
mon words is considered more difficult than one
that uses simple and common language. Therefore,
one way to measure the difficulty of a text is to
calculate the average IDF score of the words in the
text. Furthermore, because aspects and opinions
are directly copied from the input of the model, it
is critical to evaluate the difficulty of the context
part of the text. Therefore, we propose using the
context difficulty to measure the learning difficulty
of the sample for our model.

Specifically, given a text collection X from the
dataset, we remove all aspects and opinions terms
to obtain only the context words. We denote the
preprocessed text collection by X̄ . Then, for each
text x̄i after preprocessing, we calculate the AC-
IDFi of the text as follows:

AC-IDFi =
1

ni

ni∑

j=1

IDF(tij), (1)

IDF(tij) = ln
|X̄|

1 + |{x̄ ∈ X̄ : tij ∈ x̄}| , (2)

where tij is the j-th word in x̄i, ni is the number
of words in x̄i, |X̄| denotes the size of X̄ , and
|{x̄ ∈ X̄ : tij ∈ x̄}| represents the total number of
texts where tij appears.

We build a subset according to the AC-IDF of the
generated texts so that the difficulty of the selected
data follows a uniform distribution. Specifically,
we set several intervals according to the sample
difficulty and randomly sample similar amounts of
data from the entire augmented dataset for each in-
terval. Finally, we create a subset whose data obey
an approximate uniform distribution with respect
to the sample difficulty. Thus, the model learns to
predict quads from diverse and balanced data to
improve performance.

4 Experiment

4.1 Datasets
We evaluate our method on two ASQP datasets:
Rest15 and Rest16 (Zhang et al., 2021b),
which originates from the SemEval Challenges
(Pontiki et al., 2015, 2016). Their domain is of
restaurant reviews. Detailed statistics are shown
in Appendix A. We also evaluate our method on
four Aspect Sentiment Triplet Extraction (ASTE)
datasets (Peng et al., 2020) in Appendix 5.

4.2 Experiment Setting
In accordance with previous studies (Zhang et al.,
2021a; Hu et al., 2022), our method also employs
T5-base (Raffel et al., 2020) as the pre-trained back-
bone for both Q2T and ASQP tasks. The parameter
count is twice the size of the backbone model (one
for the Q2T model and one for the ASQP model),
which is equivalent to 2× 220 million parameters.
We set the batch size to 8 and the learning rate to 1e-
4. During the inference stage, greedy decoding is
used to generate the output sequence. The amount
of augmented data is four times that of training
data. The experiments are run for a maximum of
20 epochs. All reported results are the average of
five runs initialized with different random seeds.
We use precision, recall, and micro F1 scores as the
evaluation metric. A sentiment quad prediction is
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considered accurate only when all of its predicted
elements match the ground truth exactly. We also
report the standard errors of our base model and
proposed data augmentation method.

4.3 Main Results
4.3.1 Compared Methods
Previous ASQP methods can be categorized into
two types: BERT (Devlin et al., 2019) based meth-
ods and T5 (Raffel et al., 2020) based methods. The
BERT based methods include HGCN (Cai et al.,
2020), TASO (Wan et al., 2020), and Extract-
Classify-ACOS (Cai et al., 2021). T5 based meth-
ods include GAS (Zhang et al., 2021b), PARA-
PHRASE (Zhang et al., 2021a), DLO and ILO
(Hu et al., 2022). We report the performance of
these methods directly copied from their paper.
PARAPHRASE + Marked Template is a variant
of the PARAPHRASE method. It uses a different
target template with special markers which are pro-
posed by Hu et al. (2022). We implement it by
ourselves and adopt it as our base model to apply
our data augmentation method.

4.3.2 Analysis
Table 1 shows the evaluation results on the ASQP
task. We observe that our proposed data augmen-
tation method, GenDA, clearly improves the per-
formance of the base model by +2.22 and +2.18 F1
score on Rest15 an Rest16. GenDA achieves
state-of-the-art performance on the ASQP bench-
mark. Note that GenDA has a higher precision
score while maintaining a good recall compared
with other methods. This observation indicates that
our proposed data augmentation method helps to
improve the robustness of our model, and therefore,
predicts the sentiment quadruplets more precisely.

Our base model PARAPHRASE + Marked
Template achieves better performance than the
original PARAPHRASE method but does not out-
perform DLO and ILO. The reason why we do not
choose DLO or ILO as our base model is that these
two methods are relatively complex and not suit-
able for integrating our data augmentation methods.

4.4 Effects of Augmentation Methods
To demonstrate the effectiveness of the data aug-
mentation method we proposed, we also compare
it with several representative data augmentation
methods on the ASQP benchmark. For all data
augmentation methods, the amount of augmented
data is four times that of training data.

EDA (Wei and Zou, 2019) adopts four opera-
tions including synonym replacement, random in-
sertion, random swap, and random deletion to the
input texts. We additionally design two ASQP-
specific variants of EDA: CEDA applies EDA only
in the context of input text whereas AOEDA ap-
plies EDA on the aspect terms and opinion terms of
the input text. Note that the terms in quads will also
be revised correspondingly. AEDA (Karimi et al.,
2021) is an simpler data augmentation method that
randomly inserts punctuation into the input texts.
Back Translation (Yu et al., 2018) augments data
by translating text from English to another lan-
guage and then back to English. We used the
machine translation models proposed by Ng et al.
(2019) in our experiment.

Comparison results are reported in Table 2. Com-
pared with existing data augmentation methods,
we observe that applying EDA and Back Transla-
tion on the base model brings no noticeable im-
provement and can even reduce performance. We
attribute it to the fact that sometimes these meth-
ods disrupt the matching of input text and labels
because they may revise some important spans
including aspects or opinion terms. To explore
whether directly modifying traditional data aug-
mentation methods to adapt the ASQP task can
improve model performance, we evaluate AOEDA
and CEDA, two simple variants of EDA which
avoid mismatches between text and labels of aug-
mented data. The results show that both two vari-
ants could improve the performance slightly, but
the improvement is limited, likely because the ex-
isting data augmentation methods cannot provide
training samples with high diversity. Finally, our
method GenDA significantly outperforms all tradi-
tional data augmentation methods under all evalua-
tion metrics. Compared with the best F1 scores of
previous data augmentation methods, the improve-
ment of our method reaches 1.26 and 1.04. These
results demonstrate the effectiveness of our data
augmentation method.

4.5 Analysis of the Text Diversity

We analyze the text diversity of different data aug-
mentation methods. In Figure 3, we visualize the
text representations of the entire Rest 16 train-
ing dataset and 4000 augmented data generated by
different data augmentation methods. Specifically,
we first adopt a BERT-based encoder to transform
each text into a representative vector and then use t-
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PLM Method
Rest 15 Rest 16

P R F1 P R F1

BERT

HGCN-Linear (Cai et al., 2020) 24.43 20.25 22.15 25.36 24.03 24.68
HGCN-TFM (Cai et al., 2020) 25.55 22.01 23.65 27.40 26.41 26.90
TASO-Linear (Wan et al., 2020) 41.86 26.50 32.46 49.73 40.70 44.77
TASO-CRF (Wan et al., 2020) 44.24 28.66 34.78 48.65 39.68 43.71
Extract-Classify-ACOS (Cai et al., 2021) 35.64 37.25 36.42 38.40 50.93 43.77

T5

GAS (Zhang et al., 2021b) 45.31 46.70 45.98 54.54 57.62 56.04
PARAPHRASE (Zhang et al., 2021a) 46.16 47.72 46.93 56.63 59.30 57.93
DLO (Hu et al., 2022) 47.08 49.33 48.18 57.92 61.80 59.79
ILO (Hu et al., 2022) 47.78 50.38 49.05 57.58 61.17 59.32
PARAPHRASE + Marked Template 47.40 ±0.20 48.18 ±0.44 47.79 ±0.30 57.85 ±0.30 59.58 ±0.42 58.70 ±0.35
+ GenDA 49.74 ±0.28 50.29 ±0.35 50.01 ±0.31 60.08 ±0.34 61.70 ±0.12 60.88 ±0.13

Table 1: Evaluation results (%) on Rest 16 and Rest 15 datasets of ASQP for comparing with previous state-
of-the-art methods. The best and second-best performances are highlighted in bold and underlined, respectively.

Type Method
Rest 15 Rest 16

P R F1 P R F1
Baseline PARAPHRASE + Marked Template 47.40 48.18 47.79 57.85 59.58 58.70

Previous Data Augmentation

+ EDA 47.77 48.27 47.85 57.70 58.85 58.27
+ CEDA 47.44 48.63 48.19 58.47 60.43 59.43
+ AOEDA 47.78 48.40 48.09 58.22 60.30 59.24
+ AEDA 48.17 48.65 48.40 58.40 59.70 59.04
+ Back Translation 47.08 47.30 47.19 58.58 59.86 59.21

Ablation

+ GenDA 49.74 50.29 50.01 60.08 61.70 60.88
+ GenDA (original label) 48.88 49.48 49.18 59.23 61.08 60.14
+ GenDA w/o Filtering & Balancing 47.95 48.55 48.25 58.33 60.45 59.37
+ GenDA w/o Balancing 48.34 49.21 48.77 58.84 60.61 59.71
+ GenDA w/o Filtering 48.63 49.18 48.91 59.39 61.05 60.21

Table 2: Evaluation results (%) on Rest 16 and Rest 15 datasets of ASQP for comparing different data
augmentation methods and ablations. All involved data augmentation methods use PARAPHRASE + Marked
Template as the base model for a fair comparison. GenDA (original label) denotes only using original labels from
the training dataset instead of augmented quads for Q2T.

SNE (Van der Maaten and Hinton, 2008) to reduce
dimension for visualizing the distributions.

To quantify the difference between the training
dataset and the augmented dataset, we calculate
the average Euclidean distance between each point
in the augmented dataset and its nearest neighbor
in the training dataset. We also provide the Self-
BLEU scores (Zhu et al., 2018) to evaluate the
diversity of each augmented dataset. Lower Self-
BLEU means better diversity.

From Figure 3, we observe that the semantic
representations of most EDA-augmented texts are
coincident with original texts, showing the smallest
average distance. The high Self-BLEU score of
EDA further indicates the low diversity of EDA-
augmented texts. Back Translation achieves a
much lower Self-BLEU score than EDA, but the
visualization shows a high semantic similarity be-
tween the original and augmented data. By contrast,
our proposed method GenDA achieves the largest
distance score and lowest Self-BLEU, demonstrat-
ing that it can generate texts that are more diverse

and less likely to semantically overlap with the
original texts.

4.6 Ablation Studies

To investigate the effectiveness of each compo-
nent of our proposed method, we conduct an ab-
lation study on two ASQP datasets as shown in
Table 2. Even without adopting our filtering or
balancing strategies, our model can outperform the
base model. After applying our filtering strategy,
we observe an improvement because it filters out
noisy and irrelevant data. The balancing strategy
also brings a performance gain, which indicates
that addressing the sample difficulty imbalance is-
sue in the augmented datasets is beneficial for mod-
els to learn. Note that compared to the filtering
strategy, the balancing strategy contributes more to
performance gains, which means that sample diffi-
culty imbalance has a worse impact on performance
than the low-quality problem. Furthermore, when
the filtering and balancing strategies are applied
jointly, our model achieves a further performance
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Figure 3: Visualization of text semantic representation.
Each subfigure shows the distribution of original texts
(in salmon color) from the Rest16 training dataset and
corresponding augmented texts (in blue color) obtained
using different methods. In each subcaption, we report
the distance between two datasets and the Self-BLEU
score (%) computed on each augmented dataset.

gain. In addition, when only the original labels are
input, the model’s f1 scores noticeably decline by
0.83 and 0.74 compared to when augmented labels
are input.

5 Effects on ASTE task

We conduct experiments on the ASTE task to verify
that our method is also effective on other ABSA
subtasks. We compare our method with strong
previous work.

ASTE methods Previous ASTE methods can be
categorized into three types: pipeline-based meth-
ods, end-to-end discrimination methods, and text-
generation methods. The pipeline-based methods
include CMLA (Wang et al., 2017), RINATE+ (Dai
and Song, 2019), Li-unified-R (Li et al., 2019), P-
pipeline (Peng et al., 2020), and Two-Stage (Huang
et al., 2021). End-to-end discrimination methods in-
clude BMRC (Chen et al., 2021), SPAN-ASTE (Xu
et al., 2021), EMC-GCN (Chen et al., 2022), and
COM-MRC (Zhai et al., 2022). Text-generation
methods for ASTE include GAS (Zhang et al.,
2021b) and PARAPHRASE (Zhang et al., 2021a).

We select three types of ASTE methods for
comparison: 1) Pipeline based methods includ-

ing CMLA (Wang et al., 2017), RINATE+ (Dai
and Song, 2019), Li-unified-R (Li et al., 2019), P-
pipeline (Peng et al., 2020) and Two-Stage (Huang
et al., 2021); 2) End-to-end discrimination methods:
BMRC (Chen et al., 2021), SPAN-ASTE (Xu et al.,
2021), EMC-GCN (Chen et al., 2022) and COM-
MRC (Zhai et al., 2022); and 3)Text-generation
methods: GAS (Zhang et al., 2021b) and PARA-
PHRASE (Zhang et al., 2021a).

Analysis Table 3 shows the evaluation results
of baselines and our methods on four datasets of
ASTE task, including Lap14, Rest14, Rest15,
and Rest16. Compared to ASQP, ASTE only
needs to predict three kinds of elements. In our
method, the target template of ASTE is changed to

[i] [AT] ati [OT] oti [SP] spi [i],

for the i-th triplet (ati, oti, spi). Other designs
for the ASTE task are the same as the ASQP task.
We find that with this slight revision, our methods
outperform the best results by 1.53, 1.73, 1.27, and
2.53 f1 score on these four datasets respectively,
achieving new state-of-the-art performance.

6 Related Work

6.1 Aspect-based Sentiment Analysis
ABSA aims to analyze fine-grained sentiment ele-
ments including not only the sentiment polarity but
also the aspect term, opinion term, and aspect cate-
gory. Intuitively, these elements are related. There-
fore, recent studies tried to model them jointly,
such as constructing aspect-sentiment pairs (Cai
et al., 2020) or triples (Peng et al., 2020). Further-
more, there is a growing interest in modeling these
four elements simultaneously, with two promising
directions being proposed. Cai et al. (2021) pro-
posed a two-stage method that first extracts aspect
and opinion terms, and then uses them to classify
aspect category and sentiment polarity. Another
framework is based on a generation model (Zhang
et al., 2021a,b), which predicts the quadruplet in
an end-to-end manner by paraphrasing the input
text to a target template. Since they additionally
exploit the information from label semantics, the
generation-based method achieves dominantly bet-
ter performance in the field of ABSA.

6.2 Data Augmentation
Data augmentation is a common technique in lan-
guage and vision domains to improve model per-
formance. Previous data augmentation methods
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Backbone Method L14 R14 R15 R16

BERT

CMLA (Wang et al., 2017) 33.16 42.79 37.01 41.72
RINATE+ (Dai and Song, 2019) 34.95 20.07 29.97 23.87
Li-unified-R (Li et al., 2019) 42.34 51.00 47.82 44.31
P-pipeline (Peng et al., 2020) 42.87 51.46 52.32 54.21
Jet (Xu et al., 2018) 51.04 62.40 57.53 63.83
GTS (Wu et al., 2020) 55.21 64.81 54.88 66.08
Two-Stage (Huang et al., 2021) 58.58 68.16 58.59 67.52
BMRC (Chen et al., 2021) 57.82 67.99 60.02 65.75
SPAN-ASTE (Xu et al., 2021) 59.38 71.85 63.27 70.26
EMC-GCN (Chen et al., 2022) 58.81 71.78 61.93 68.33
COM-MRC (Zhai et al., 2022) 60.17 72.01 64.53 71.57

T5
GAS (Zhang et al., 2021b) 58.19 70.52 60.23 69.05
PARAPHRASE (Zhang et al., 2021a) 61.13 72.03 62.56 71.70
GenDA 62.66 73.76 65.80 74.23

Table 3: Evaluation results (%) on four datasets of ASTE for comparing with previous state-of-the-art methods. The
best and second-best performances are highlighted in bold and underlined, respectively.

can be categorized into three types. The first type
only augments the input, such as image flipping,
rotation, and scaling (Bjerrum, 2017) for images,
and text modification (Wei and Zou, 2019) as well
as back translation (Yu et al., 2018) for natural
language. The second type only augments the out-
put, such as generating target-side soft pseudo se-
quences (Xie et al., 2022). These approaches are
particularly relevant for generation tasks where the
order of words is important. The third type aug-
ments both the input and the output, such as the
mixup approach (Zhang et al., 2018) which gener-
ates virtual training examples through linear com-
binations of feature vectors and their associated
targets. To the best of our knowledge, our work is
the first to propose a data augmentation method of
the third type specifically for subtasks of ABSA.
Unlike previous methods in this realm that augment
only the input (Li et al., 2020) or output (Hu et al.,
2022), our method augments both input and output,
leading to augmenting more diverse samples. Our
method reduces the model’s reliance on a limited
set of examples and enables it to better generalize
to unseen data, thereby mitigating the problem of
overfitting and achieving better performance on test
data.

7 Conclusion

In this paper, we have proposed a new approach
to tackle the problem of data scarcity in the ASQP
task. To address this challenge, we present a gen-
erative data augmentation method based on a pre-

trained quads-to-text model. Our method generates
new parallel data by synthesizing a large number
of quads from the training dataset and generating
corresponding pseudo texts. Moreover, we pro-
pose a data filtering strategy to remove low-quality
generated data and a measurement to balance the
difficulty of augmented samples. Our empirical
studies on two ASQP datasets have demonstrated
the superiority of our method compared to other
data augmentation methods and the effectiveness
of each component in our method. Our approach
not only is an innovative solution to the problem of
data scarcity in ASQP, but also provides a poten-
tial direction for future work in other related fields,
such as relation extraction and event extraction.

Limitation

Firstly, because our data augmentation method
relies on the quality of the quads-to-text (Q2T)
model’s generation, the performance of our method
may be limited by the quality of the generated
text. Besides, the quads-to-text (Q2T) model is
trained by the original ASQP dataset, thus it may
fail to generate expressions that do not appear in
the dataset. Additionally, training an extra Q2T
model brings additional computational costs. Fur-
thermore, as the model inputs are randomly sam-
pled from the augmented quad collection, some
quad combinations may not be suitable for text
generation, which could affect the effectiveness of
data augmentation.
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Dataset
#Text

Rest15 Rest16

Train 834 1264
Validation 209 316
Test 537 544

Table 4: Statistics of datasets of ASQP task.

Dataset
#Text

Laptop14 Rest14 Rest15 Rest16

Train 1300 920 593 842
Validation 323 228 148 210
Test 496 339 318 320

Table 5: Statistics of datasets of ASTE task.

A Dataset Statistic

We conduct experiments on two publicly available
ASQP datasets, namely Rest15 and Rest16 (Zhang
et al., 2021a). In these datasets, each sample in-
cludes a text as input, with sentiment quads as
ground truth. Datasets are split to train, validation,
and test sets officially. Table 4 presents the relevant
statistics. We also conduct experiments for Aspect
Sentiment Triplet Extraction (ASTE) task, which
aims to predict (aspect, opinion, sentiment polar-
ity) triplets from the given text. Table 5 presents
statistics of four ASTE datasets.

B Experimental Environment and
Runtime

All our experiments are conducted with a single
NVIDIA Tesla V100 GPU. Our method was im-
plemented using the Hugging Face transformers
library (Wolf et al., 2019). The training process of
our method on GPU for one run took approximately
50 minutes including 20 minutes for training the
Q2T model and 30 minutes for the ASQP model.

C Distribution of Context Difficulty

We present the frequency distribution histogram of
the AC-IDF values of texts in the training dataset
and augmented datasets in Figure 4. The AC-IDF
frequency distribution of the training dataset fol-
lows a Gaussian distribution, with most data points
falling between AC-IDF values of 4 and 6. How-
ever, for the augmented dataset generated without
the balancing strategy, most of the data points fall

0 2 4 6 8 10
AC-IDF

0.0

0.1

0.2

0.3

0.4

0.5

fre
qu

en
cy

(a) Training Dataset

0 2 4 6 8 10
AC-IDF

0.0

0.1

0.2

0.3

0.4

0.5

fre
qu

en
cy

(b) Augmented Dataset (Before Balancing)

0 2 4 6 8 10
AC-IDF

0.0

0.1

0.2

0.3

0.4

0.5

fre
qu

en
cy

(c) Augmented Dataset (After Balancing)

Figure 4: Frequency distribution histogram for AC-IDF
of texts in the training dataset and augmented datasets.

between AC-IDF values of 0 and 4. This indicates
that most of the generated texts are relatively sim-
ple and differ significantly from the distribution of
the training dataset. After applying the balancing
strategy, the augmented dataset shows a more uni-
form distribution of data points between AC-IDF
values of 3 and 7. This indicates that the balancing
strategy has effectively created a more balanced
distribution of sample difficulty.
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(food quality, food, happy, POS), (food quality, dinner, happy, pos)

I am [OT] happy [1,2 /OT] with the [AT] food [1 /AT] in this [AT] dinner [2 \AT].

I am [OT] happy [1,2 /OT] with [AT] food [1 /AT] and [AT] drinks [2 \AT].

I am [OT] happy [1,2 /OT] with [AT] food [1 /AT] and wine in this [AT] dinner [2 \AT].

Generated Text 1:

Generated Text 3:

Generated Text 4:

I am [OT] happy [1 /OT] with the [AT] food [1 /AT].

Generated Text 2:

('food', 'happy'), ('dinner', 'happy')

Aspect-Opinion Pairs

('food', 'happy'), ('dinner', 'happy')

('food', 'happy')

('food', 'happy'), ('drinks', 'happy')

Input Quads:

Figure 5: Examples of generative data.

Case 1
Sentence: If there is a line every day of the week for the entire time a place is open, you know it is great.
Predicted Quadruplet: (restaurant miscellaneous, place, great, positive)
Gold Quadruplet: (restaurant general, place, great, positive)
Case 2
Sentence: To be honest, I’ve had better frozen pizza.
Predicted Quadruplet: (food quality, frozen pizza, better, negative)
Gold Quadruplet: (food quality, pizza, better, negative)

Table 6: Two error examples of our methods.

D Examples of Generative Text

We present four examples of generative text: one
correct example and three low-quality examples.
The provided examples illustrate the issues of low-
quality generated text and the motivation of our
data filtering strategies. The first example is a high-
quality one, faithful to the input quads. The second
and third examples are low-quality ones that can
be filtered out by the first step of the proposed two-
step filtering strategy, which checks consistency
between the output text and input quads. The fourth
example is another low-quality one, which contains
an additional aspect that is not present in the input
but not annotated by the special markers. Such
noisy texts would escape the first-step filtering but
can be identified by the second-step filtering.

E Error Analysis

After conducting a comprehensive analysis of the
error cases, we present two specific examples to
shed light on the challenges encountered by our ap-
proach, as illustrated in Figure 6. In the first case,
our model incorrectly identifies the predicted as-
pect category as "restaurant miscellaneous" instead
of the correct label "restaurant general." This error
highlights a limitation of our model in accurately
categorizing certain aspects where the classifica-

tion boundaries become ambiguous. In the second
case, we observe a flaw in aspect extraction. The
predicted aspect is "frozen pizza," whereas the cor-
rect aspect should have been "pizza." This error
reveals that our model sometimes faces difficul-
ties in extracting the precise aspect when there are
subtle variations or distinctions within the aspect
terms. Consequently, our data augmentation ap-
proach may not effectively assist the model when
it encounters such challenging instances.

140


